LATEX for Psychological Researchers

Lecture 2: Basics of the LATEX language

Sacha Epskamp

University of Amsterdam Department of Psychological Methods

10/04/2013

$\mathsf{Outline}_{\mathsf{Week}}$

The LATEX Language

Commands

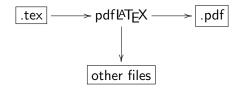
Document Structure

Documentclass

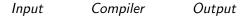
Preamble

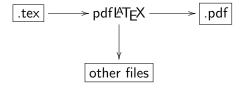
Body of a document

Sectioning

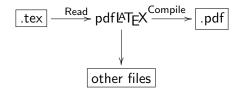

Environments

Figures and Tables


floats


Mathematics

The LATEX process



The $\ensuremath{\text{PT}_{E}X}$ process

The LATEX process

LATEX refers to the *programming language* used to write the input file and the *program* used to interpret this file and compile the output file. It does **not** refer to an editor in which you write the input file.

For clarity, in this course $\[Mathebaar]$ refers only to the language, the compiler is referred to as "the compiler" generally or pdf $\[Mathebaar]$ specifically.

Hello World Example

.tex file:

- 1 **documentclass**{ └article}
- 2 $\begin{displaystyle}{ document } \end{bmatrix}$
- 3
- 4 Hello World!
- 5
- 6 $\ensuremath{\mathsf{end}}{\mathsf{document}}$

.pdf file:

The LATEX Language

Commands

- Document Structure
 - Documentclass
 - Preamble
- Body of a document
 - Sectioning
 - Environments
 - Figures and Tables
 - floats
- Mathematics

Today

- \blacktriangleright Today we will be looking at the basics of the $\ensuremath{{\mbox{\sc bs}}} T_{\mbox{\sc bs}}X$ language
- This is possibly a very boring lecture with many commands and terms
- This material is covered in many different resources online. For example, the getting started part of the wikibook:

http://en.wikibooks.org/wiki/LaTeX/

Try not to memorize everything, but try to understand what is happening!

The $\ensuremath{\text{PT}_{\text{E}}}\xspace$ X language

- LATEX is the markup/programming language that the compiler can understand and process
- ► LATEX consists only of ASCII characters
- ► Just like a natural language LATEX it uses syntax and semantics
- ► Also just like a natural language LATEX has exceptions
- These must be correct. Unlike humans the compiler cannot understand the language with spelling errors

${ { { { { { { ET } } } X } } } } Commands$

A LATEX document is mainly defined through **commands**. These generally take one of two formats:

- A backslash \ and then a name consisting of letters only.
 Command names are terminated by a space, a number or any other "non-letter"
- \blacktriangleright A backslash \setminus and exactly one non-letter

For example:

\int \alpha \beta \\$ \& \[\]

${ { { { { { { ET } } } X } } } } Commands$

Some commands need an argument, which has to be given between curly braces $\{\ \}$ after the command name (with some exceptions). Some commands support optional parameters, which are added after the command name in square brackets []. The general syntax is:

 $commandname[option1, option2, ...]{argument1}{argument2}...$

ETEX Arguments

 $commandname[option1, option2, ...]{argument1}{argument2}...$

- Many commands require a single argument, and some commands require even multiple arguments
- ► Generally an argument is interpreted in one of three ways:
 - The text a command is applied to
 - \textit{text to make italic}
 - The mode or specification of a command
 - > \documentclass{classname}
 - A name or title to be used for something
 - \usepackage{packagename}

[₽]T_EX Options

- Some commands can have several options
- Often optional
- Each option is a verbatim term of one of several mutually exclusive options
 - > \documentclass[a4paper,11pt]{article}
 - \usepackage[dutch]{babel}
 - ▶ \sqrt[3]{x}

Environments

- Two special commands are \begin{environment} and \end{environment}
- These initiate and exit an environment
- The type of environment is applied to everything between the begin and end commands
- ► These must be properly nested
- ► As we will see, the entire LATEX document is one big environment

Environments

${\mathbb A}_{\mathsf{E}} \mathsf{X}$ code:

Output:

- 1 \begin{itemize}
- 2 \item Two special commands are \\verb|\begin{environment}| and
- 4 \item The type of environment is
 b applied to everything between
 b the begin and end commands
- 5 **item** These must be properly ↓nested
- 6 **\item** As we will see, the entire ↓ **\LaTeX**\ document is one big ↓environment
- 7 **end**{itemize}

- Two special commands are \begin{environment} and \end{environment}
- These initiate and exit an environment
- The type of environment is applied to everything between the begin and end commands
- ► These must be properly nested
- As we will see, the entire LATEX document is one big environment

Environments

1 2 3

4

LATEX code:

Output:

The LATEX Language

Commands

Document Structure

Documentclass

Preamble

Body of a document

Sectioning

Environments

Figures and Tables

floats

Mathematics

Every $\[MT_EX\]$ document has the following form:

```
\documentclass{ CLASS }
    PREAMBLE
    \begin{document}
    BODY
    \end{document}
```

- ► The first line is always the \documentclass command, specifying the *class of the document*
 - This specifies what *sort* of document you intend to write
- ► After the document-class comes the *preamble*
 - Load needed packages
 - Define things that affect the whole document
 - Define variables, custom commands or other things needed in the document
- After the preamble comes the *body*
 - Starts with \begin{document} and ends with \end{document}
 - This is the main document
 - ► Contains all text, figures, tables, etcetera
- Finally, anything added after \end{document} is not compiled. This room can be used for comments

Every $\[MT_EX\]$ document has the following form:

```
\documentclass{ CLASS }
    PREAMBLE
    \begin{document}
    BODY
    \end{document}
```

The first line of any LATEX document is always to define the document class, written as \documentclass{CLASS}. You can define the type of the document that you will write by changing CLASS in the class you want.

\documentclass[option1,option2,...]{CLASS}

The Document Class Arguments

A few possible documentclasses:

Document class	Output	
article	For writing articles, but this is also your gen-	
	eral all-purposes class.	
report	Can contain chapters. For larger articles,	
	thesis and small books.	
book	For larger books.	
letter	For letters.	
apa	For APA style articles, comes with the apa	
	package and includes apacite.	
beamer	For making presentations. comes with the	
	beamer package.	

The Document Class Options

The options differ per documentclass and each document class has different defaults (for example, article and report use oneside by default, but book uses twoside). A few common options are:

Option	Specifies
10pt, 11pt, 12pt	Main font size
a4paper,	Sets the paper size
letterpaper,	
onecolumn,	Number of columns for main text
twocolumn	
oneside, twoside	Is the document meant for two sided print- ing?
landscape	Flip the document
draft	Enables you to easily spot typesetting errors

Every $\[MT_EX\]$ document has the following form:

```
\documentclass{ CLASS }
    PREAMBLE
    \begin{document}
    BODY
    \end{document}
```

The Preamble

- The preamble is used to define several things that influence the whole document
- Packages are loaded in the preamble
- Define variables, custom commands or other things needed in the document
- Depending on the documentclass several things must be defined in the preamble. For example:
 - ▶ The theme of a presentation in beamer
 - ► Authorname, affiliation, title, abstract and more in apa

Loading Packages

- ► LATEX can be extended through many packages
- Packages are stored online at CTAN. Google "CTAN packagename" for documentation on a certain package
- ► To use a package, it must first be installed on your computer
 - If you did a full install, this is probably already the case (do not forget to update your distribution each year or so)
 - Otherwise the package need to be installed. MiKTEX can do this automatically (although download might be slow) and for the other distributions you can look at the installation guide
- ► Secondly, the package must be loaded in the LATEX document
- Loading a package can enable new commands, change commands and even fundamentally change the way a document looks

Packages can be with the \usepackage command:

```
\usepackage[option1,option2,...]{ PACKAGE }
```

- Most packages do not have options
- Packages can conflict with other packages
- ► In general it is best to not load packages you don't need
- Some packages however are so commonly used that they should always be loaded. In this course it is assumed these are loaded

Common Packages

Package	Description	
amsmath	Advanced math extensions	*
amssymb	Mathematical symbols	*
graphicx	Needed to include pictures	*
babel	Sets the language of the document through an	*
geometry	option Manages the document margins and papersize	*
Beemeerly	through option	
apa	Comes with the apa documentclass	
apacite	Citing using bibTEX in APA style	
beamer	Creates presentations	

* Recommended to load in every document

Outline Last Week

The LATEX Language

Commands

Document Structure

Documentclass

Preamble

Body of a document

Sectioning

Environments

Figures and Tables

floats

Mathematics

Every $\[MT_EX\]$ document has the following form:

```
\documentclass{ CLASS }
    PREAMBLE
    \begin{document}
    BODY
    \end{document}
```

The Body of a $\ensuremath{{\ensuremath{\mathbb E}}} ^{The}X$ Document

IAT_EX code:

Output:

this is an example of the \setminus 1 **↓emph**{body} of a **LaTeX**\ [↓]document. 2 this is an example of the body of a Here we can write all sorts of 3 LATEX document. \downarrow funny things (e.g. \ Stories, Here we can write all sorts of funny └→ fairy tales, general Microsoft things (e.g. Stories, fairy tales, general └→ Word bashing). But also Microsoft Word bashing). But also \downarrow equations : equations: 4 5 $F(k) = \int_{-\infty}^{\infty} e^{-2\pi i k x} \, \mathrm{d}x$ $_{6}| F(k) = \inf_{- \frac{1}{2} \in \mathbb{C}^{-1}} e^{-infty} e^{$ $\downarrow^{(-2)}$ i k x \, \mathrm{ ⊢d}x 7

The Body of a $\ensuremath{{\ensuremath{\mathbb E}}} ^{The}X$ Document

IAT_EX code:

Output:

In a $LaTeX \ body there are 3$ different modes in which youcan write:

```
2
```

4

- 3 \begin{itemize}
 - **item** Text
- 5 \item Math
- 6 \item Verbatim
- 7 \end{itemize}

```
8
```

9 Where text mode is the default
 4 and the other two are obtained
 4 in environments. We will
 4 first focus on Text mode.

In a $\ensuremath{\text{LTE}} X$ body there are 3 different modes in which you can write:

- Text
- Math
- Verbatim

Where text mode is the default and the other two are obtained in environments. We will first focus on Text mode.

Letters and Spacing $\label{eq:letters} \begin{tabular}{l} \label{eq:letters} \begin{tabular}{l} \label{eq:letters} \begin{tabular}{l} \label{eq:letters} \begin{tabular}{l} \begin{tab$

Output:

1 All letters that we type are the 4 same in the output.		
 White space is interpreted as a single space between words. A newline is ignored but 	All letters that we type are the same in the output. White space is interpreted as a single space between words. A newline is ig- nored but	
 two newlines are interpreted as a change in paragraphs. 	two newlines are interpreted as a change in paragraphs. After a period the spacing is slightly larger. This might not be what you want (e.g. right here). Force a normal space with a backslash (e.g. as here).	
After a period the spacing is After a period the spacing is slightly larger. This might not be what you want (e.g. right here). Force a normal space with a backslash (e.g. bas here).		

Line breaking

IAT_EX code:

Output:

```
1 A new line can be forced with \setminus
   <sup>L</sup>,textbackslash\textbackslash\
   \downarrow which breaks the \backslash paragraph
   └and \textbackslash\
   \downarrowtextbackslash* \\* to not break
   \downarrow the paragraph.
2
   Alternatively |\mathbf{newline} |
3
   ↓newline | can be used.
4
  A new page can be made with \setminus
5
   ↓verb|\newpage| or \verb|\
   <sup>L</sup>, clearpage |.
```

A new line can be forced with \\ which breaks the paragraph and * to not break the paragraph. Alternatively \newline can be used. A new page can be made with \newpage or \clearpage.

Accents

IAT_EX code:

Output:

```
Because the input is ASCII many
by special characters can not be
by written directly. Such a
by letter will not be compiled.
```

2

Because the input is ASCII many special characters can not be written directly. Such a letter will not be compiled.

Hyphenation

LATEX code:

Output:

LaTeX automatically 1 ↓hyphenates verylongwords 2 \mathbf{verb} (mbox {}) can be used to 3 \downarrow force \mbox{verylongwords} to [↓]not be hyphenated. 4 $|verb||mbox{}|$ can be used to ↓ force verylongwords to not be [↓]hyphenated. 6 $|\mathbf{verb}|| = |$ can be used to make 7 ↓sure very\−longwords hyphenate L at a certain point 8 $|\mathbf{verb}|| = |\mathbf{can}|$ be used to make 9

└-sure verylong \-words hyphenate

 \downarrow at a certain point.

Let Automatically hyphenates verylongwords

\mbox{} can be used to force verylongwords to not be hyphenated. \mbox{} can be used to force verylongwords to not be hyphenated.

\- can be used to make sure verylongwords hyphenate at a certain point \- can be used to make sure verylongwords hyphenate at a certain point. Emphasis

₽TEX code:

```
\label{eq:product} \begin{array}{l} \mbox{We can } \mbox{emph} \{ \mbox{emph} \} \\ \mbox{$\downarrow$} \mbox{important parts of the text with $$$\\ \mbox{$\downarrow$} \mbox{verb} \mbox{$\downarrow$} \mbox
```

```
2
```

```
3 This works nested, in this way

$\emph{we can \emph{

$\emphasize} while we are

$\emphasizing}.
```

```
4
```

In \LaTeX\ this is the preferred is method for emphasizing over is manually setting text \textit { is italic } or \textbf{bold}. Output:

We can *emphasize* important parts of the text with \emph{}.

This works nested, in this way *we can emphasize while we are emphasizing*. In LATEX this is the preferred method for emphasizing over manually setting text *italic* or **bold**.

Quote marks

LATEX code:

Output:

1	$\LaTeX\$ treats left and right $ quotes$ as different entities .	
2 3	The left quote mark is the backtick (usually under tilde) b (`)	LATEX treats left and right quotes as different entities. The left quote mark is the backtick (usually under tilde) (') The right quote is the normal tick
5	The right quote is the normal ↓ tick mark (')	mark (') A double quote mark is obtained
6 7	A double quote mark is obtained	though two ticks at both sides. For "example" like so.
	[↓] though two ticks at both sides ↓. For ``example'' like so.	

Dashes and Footnotes

IAT_EX code:

Output:

An n−dash can be included with ↓two dashes−−like this−−and an ↓ m−dash can be included with ↓three dashes−−−like this−−−.

```
2
```

An n-dash can be included with two dashes-like this-and an m-dash can be included with three dashes—like this—

A footnote can be added with the \footnote command.

Font size

LATEX code:

Output:

2

\footnotesize{But it is \recommended to do this only by \recurstrian setting an option in the \recurstrian documentclass.} There are several commands to make text bigger or smaller. But it is recommended to do this only by setting an option in the documentclass. Special Characters

IAT_EX code:

Output:

Several characters are used as
 special commands in \LaTeX \
 and can not be entered normally.
 % For example, anything
 following a % is a comment and
 is not compiled.

2

3 Generally, you can get most └→ characters by ``escaping'' └→ them (i.e.\ adding a backslash └→ before it): \\$ \% \&. Several characters are used as special commands in $\[mathbb{E}T_{EX}\]$ and can not be entered normally.

Generally, you can get most characters by "escaping" them (i.e. adding a backslash before it): \$ % &.

- There are several commands to properly section your document
- This is useful for adding titles, making a table of contents and cross referencing
- ► A section is defined by a single command
- A type of section may not be available in certain documentclasses
- Sectioning automatically numbers the sections

Section commands: Command	Level	Comment
\part{ name }	-1	Not in letters
\chapter{ name }	0	Only in Books and Reports
\section{ name }	1	Not in letters
\subsection{ name }	2	Not in letters
\subsubsection{ name }	3	Not in letters
<pre>\paragraph{ name }</pre>	4	Not in letters
\subparagraph{ name }	5	Not in letters

A single experiment APA research paper:

Command	Examples
\section{ name }	Methods, Results, Discussion
<pre>\paragraph{ name }</pre>	Participants, Materials, Procedure
Note: Not the title	

An APA paper with multiple experiments Command Examples \section{ name } Experiment 1, ..., General discussion \subsection{ name } Methods, Results, Discussion \paragraph{ name } Participants, Materials, Procedure Note: Not the title

Sectioning Example

.tex file:

```
\ documentclass { article }
 1
2 \begin { document }
3 Once upon a time someone had to do a
   ↓ research on the effect of
   ↓grasshoppers.
  This was very important!
 4
 5
 6
   \ section { Methods }
 7
8
   \paragraph{participants} Nobody.
9
10
   \paragraph{Materials} A computer.
11
12
   \ section { Results }
13
14
  p < 0.05
15
16
   \ section { Discussion }
17
18
   Yes it is true!
19
20
   \end{document}
```

.pdf file:

Once upon a time someone had to do a research on the effect of grasshoppers. This was very important!

1 Methods

participants Nobody.

Materials A computer.

2 Results

p < 0.05

3 Discussion

Yes it is true!

1

- To omit numbering you can add an asterisk to the command. E.g. \section*{ name }
- A table of contents can be added with the \tableofcontents command
 - ► This might require two runs of pdflATEX to work
- To start the appendices you can use the \appendix command. Sectioning will continue afterwards in letters

Sectioning Example

.tex file:

```
documentclass { article }
 1
 2 \begin { document }
 3 \tableofcontents
 4
   \section { This is a Section }
 5
   \subsection { This is a subsection }
 6
   \paragraph { paragraph } With some text
    ↓ here maybe
 7
 8
   \section { Another Section }
 9
10
   \ appendix
11
12
   \section { This is an appendix }
13
   \end{document}
```

.pdf file:

Contents	
1 This is a Section 1.1 This is a subsection	1 1
2 Another Section	1
A This is an appendix	1
1 This is a Section	
1.1 This is a subsection	
2 Another Section	
paragraph With some text here maybe	
A This is an appendix	
1	

- The \begin and \end commands can be used to create an environment
- This is used for many different things
- An environment breaks the paragraph, but in some cases we can also use inline environments

LATEX code:

Output:

- 1 We can \emph{itemize} with the \\verb|itemize| environment:
- 2 \begin{itemize}
- (item This creates a bulletedist
- 4 **item** The symbols depend on \$\geq your documentclass
- 5 \item Can also be nested
- 6 **begin**{itemize}
- 7 \item By adding an environment in an environment
- 9 **end**{itemize}
- 10 \item After such a nested 4 itemization we can continue 4 with the first one
- 11 $\ensuremath{\mathsf{end}}{\mathsf{itemize}}$

We can *itemize* with the itemize environment:

- This creates a bulleted list
- The symbols depend on your documentclass
- Can also be nested
 - By adding an environment in an environment
 - Note that these must be properly nested (FILO)
- After such a nested itemization we can continue with the first one

IAT_EX code:

- 1 We can also itemize with ↓numbers with the **verb**| ↓enumerate| environment:
- $2 \setminus begin \{enumerate\}$
- 3 **item** This creates an Genumerated list
- 4 \item Can also be nested
- 5 **begin**{enumerate}
- 6 \item Like this
- 7 \end{enumerate}
- 8 **\item** After nesting we can ↓ continue with the original ↓ numbering
- 9 **end**{enumerate}

We can also itemize with numbers with the enumerate environment:

- 1. This creates an enumerated list
- 2. Can also be nested
 - 2.1 Like this
- 3. After nesting we can continue with the original numbering

Output:

LATEX code:

Output:

1	With the \ verb description benvironment we can itemize	
	↓with descriptions . So to ↓summarize	With the description environment we can itemize with descriptions. So
2	\ begin {description}	to summarize
3	\ item [Itemize] Creates bulleted └- list	Itemize Creates bulleted list
4	\ item [enumerate] Creates ↓enumerated list	enumerate Creates enumerated list
5	\item[description] Creates a list with titles such as this bone	description Creates a list with titles such as this one
6	\end{description}	

Verbatim

IAT_EX code:

```
To be able to include code as it
  \downarrow is the \verb|verbatim|
  Genvironment can be used:
2 \setminus begin \{verbatim\}
3 $ Whatever % we write here
  it does not break @
  \end{verbatim}
5
6
  Can also be used inline with the
  \downarrow \verb|\verb| command, but
  ↓this requires $\mid$ symbols
  instead of curly brackets.
```

Output:

To be able to include code as it is the verbatim environment can be used:

```
$ Whatever % we write here
it does not break @
```

Can also be used inline with the \verb command, but this requires | symbols instead of curly brackets.

Verbatim

IAT_EX code:

Output:

 1
 \begin{center}

 2
 The \verb|center| environment

 ↓can be used to center text and
 ↓ even figures and tables.

 $|| \mathbf{end} \{ center \}$

The center environment can be used to center text and even figures and tables.

Including figures

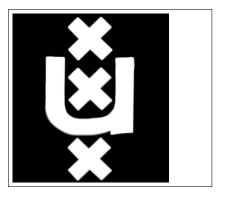
- With the graphicx package we can use the command \includegraphics to import figures
- This can be a number of different types of files
 - ► jpg
 - ► png
 - ► pdf
 - ► eps
- Options can be used to specify the size of the image

\includegraphics[option1=value,option2=value,...]{filename}

Including figures

Options:

width=xx	Set preferred width to xx (default in inches)
height=xx	Set preferred height to xx
keepaspectratio=true	Keeps aspect ratio, can also be false
scale=xx	Scaling factor
angle=xx	Rotate by xx degrees
page=xx	Select what page to include from multipage pdf


Often you want to make width and height proportional to text width and height. This can be done with e.g. 0.8\textwidth

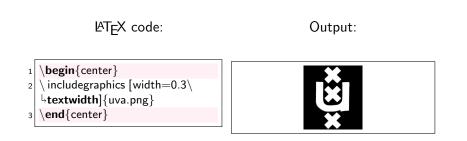
Including Figures

LATEX code:

Output:

 $1 \setminus include graphics \{uva.png\}$

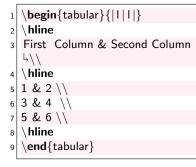
Including Figures


LATEX code:

Output:

- 2 \ includegraphics {uva.png}
- 3 \end{center}

Including Figures


- Tables can be created with the tabular environment
- This requires one argument that specifies each column, indicated with a 1 for left aligned, c for right aligned, r for right aligned or p{width} for a column of fixed width
- ► Vertical lines are created in this argument with a | symbol
- ► Horizontal lines are created with the \hline command
- ► Cells are separated with the & command
- ▶ rows are separated with the \\ command

In the fourth lecture we will see a way to automate this from R!

LATEX code:	Output:
1 \begin{tabular}{ II } 2 First Column & Second Column 4 \hline 4 1 & 2 \\ 5 3 & 4 \\ 6 5 & 6 7 \end{tabular}	First ColumnSecond Column123456

LATEX code:

Output:

First Column	Second Column	
1	2	
3	4	
5	6	

₽T_EX code:

Output:

First Col-	Second Column
umn	
1	2
3	4
5	6

- Including a figure and tables at exactly a certain place in the text can make it look unprofessional
- ► Furthermore we want to add captions to figures and tables
- A float environment is a special kind of environment that can hold a figure or table and sort of floats through your document to find a good place to end up
- This is usually near the place you specified the float, but at the top or bottom of a page or in another way your documentclass specifies it
- The float environment for figures is figure and for tables is table

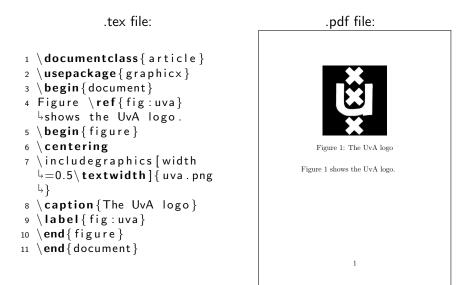
```
In general:
```

```
\begin{ FLOAT }[placement options]
\centering
% Code for figure or table
\caption{ }
\label{ }
\end{ FLOAT }
```

```
For figures:
\begin{figure}[placement options]
\centering
\includegraphics{}
\caption{}
\label{}
\end{figure}
```

For tables:

```
\begin{table}[placement options]
\centering
% Code for tabular
\caption{
    label{
    label{
        end{table}
}
```


Placement options:

Specifier	Permission
h	Try to place float approximately at this
	point in text
t	Float can be placed at top of pages
b	Float can be placed at bottom of page
Н	From float package, places float exactly
	here

Only do this when your text is complete

- ► The \caption command is used to add a caption to the float
- ► the \label command is used in referencing
 - \label{key} stores the float under some key, this can then be referenced in the text with \ref{key}
 - ► To get this right, run pdfLaTEX twice
 - Note that \label should come after \caption

Floats Example

Outline Last Week

The LATEX Language

Commands

Document Structure

Documentclass

Preamble

Body of a document

Sectioning

Environments

Figures and Tables

floats

Mathematics

- LATEX is often used for its strong capabilities of writing mathematical text
- This is done in "math mode", which can be enabled in several ways
- In the next few slides is a brief overview of the basics. For more information on this topic see one of many resources online

LATEX code:

Output:

```
<sup>1</sup> We can use the \$ or sign to

<sup>1</sup> Genable and disable math mode

<sup>1</sup> in text. Within math mode

<sup>1</sup> spaces are ignored and letters

<sup>1</sup> re written as variables : $1

<sup>1</sup> apple + 2 apples = 3 apples$
```

2

```
To obtain roman letters in math \ mode we can use the \verb|\

\text| and \verb|\mathbf{mathrm|

\commands: $1\text{ apple} +

\2\text{ apples} = 3\text{

\apples}$.
```

```
4
```

We can use the \$ or sign to enable and disable math mode in text. Within math mode spaces are ignored and letters re written as variables: 1apple + 2apples = 3applesTo obtain roman letters in math mode we can use the \text and \mathrm commands: 1 apple + 2 apples = 3 apples. Alternatively \(and \) can be used

IAT_EX code:

Output:

1 To write equations, the \downarrow commands |verb|| and |verb||**begin**{equation∗}| can be used. └→For an enumerated equation you \downarrow can use **verb**|**begin**{equation ५}|: 2 3 1+1=2 4 5 **begin**{equation*} 6 1+1=2 \end{equation*} 7 8 **begin**{equation} 9 1+1=2 $10 \setminus end \{equation\}$

To write equations, the commands \[and \begin{equation*} can be used. For an enumerated equation you can use \begin{equation}:

> 1 + 1 = 21 + 1 = 2

1 + 1 = 2 (1)

LATEX code:

Output:

1	To align several equations you
	\downarrow can use the \setminus verb $ $ align $* $ or \setminus
	↓ verb align environments.
	\downarrow These use the $\&$ sign to align
	$ ^{\downarrow}$ and the $ackslashackslashackslashackslash$
	${}^{\downarrow}$ textbackslash sign to go to a
	└-new line:
2	$\mathbf{begin}{align*}$
3	$x^2 + 100 \&= 200 \setminus$
4	x^2 &= 100 \\
5	× &= $sqrt{100} \setminus$
6	&= 10
7	$end{align*}$

To align several equations you can use the align* or align environments. These use the & sign to align and the \\sign to go to a new line:

```
x^{2} + 100 = 200x^{2} = 100x = \sqrt{100}= 10
```

IAT_EX code:

Output:

1	Many mathematical an evotors
1	Many mathematical operators
	\downarrow work (and are properly spaced)
	\downarrow as expected:
2]/
3	f(x) = 5x + 2
4	\]
5	For superscripts you can use \setminus
	\downarrow verb $ ^{} $ and for subscripts \setminus
	└→ verb _ :
6]/
7	$f(x_1,x_2) = x_1^2 + 5x_2 - 1$
8	\]
9	To group characters together you
	\downarrow can use \{ and \}:
10	\[
11	$f(x) = e^{2x+1}$
12	\]

Many mathematical operators work (and are properly spaced) as expected:

f(x) = 5x + 2

For superscripts you can use ^ and for subscripts _:

$$f(x_1, x_2) = x_1^2 + 5x_2 - 1$$

To group characters together you can use $\{ \text{ and } \}:$

$$f(x) = e^{2x+1}$$

IAT_EX code:

Output:

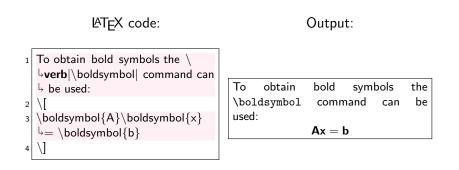
1 All mathematical operators can 4 be used. These require you to 4 know the commands. Some 4 editors have these commands in 4 the menu.

2 \[

All mathematical operators can be used. These require you to know the commands. Some editors have these commands in the menu.

$$\int_{-\infty}^{\infty} \prod_{j=1}^{m} \left(\sum_{i=1}^{n} \frac{x \sqrt{i}}{\ln y_j} \right) \, \mathrm{d}x$$

IAT_EX code:


Output:

```
1 Many Greek letters can be
  \downarrow obtained with |verb|| letter |
  \downarrow for lower case letters or \setminus
  ↓verb|\Letter| for upper case
  → letters :
2
3 \gamma, \Gamma, \theta, \
  └→Theta, \lambda, \Lambda
4
  \backslash 1
5 Note that some Greek letters.
  such as omicron and capital
  ↓ beta, do not differ from
  <sup>↓</sup>roman letters and are not
  <sup>↓</sup>included.
```

Many Greek letters can be obtained with *letter* for lower case letters or *letter* for upper case letters:

 $\gamma, \Gamma, \theta, \Theta, \lambda, \Lambda$

Note that some Greek letters, such as omicron and capital beta, do not differ from roman letters and are not included.

IAT_EX code:

```
Matrices can be made by, among
  \downarrow others, the \backslash verb | bmatrix |
  <sup>↓</sup>environment, which works
  \downarrow somewhat similar to the | verb|
  └→tabular | environment:
2
  boldsymbol{A} =
3
4 \begin{bmatrix}
5 1 & 2 \\
6 3 & 4 \\
7 \setminus end{bmatrix}
8 \]
```

Output:

Matrices can be made by, among others, the bmatrix environment, which works somewhat similar to the tabular environment:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Very useful equation editor:

http://www.codecogs.com/latex/eqneditor.php

Next week: APA style, bibTEX and beamer.

Course website:

http://sachaepskamp.com/latex-course

E-mail:

sacha.epskamp@gmail.com