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Psychological Networks

A psychological network is a model in which nodes represent observed psychological
variables, usually psychometric test items such as responses to questions about whether
a person suffered from insomnia or fatigue in past weeks. These nodes are connected by
edges which indicate some statistical relationship between them. These models are con-
ceptually different from commonly used reflective latent variable models that explain the
co-occurrence among symptoms (e.g., the fact that individuals often suffer from sadness,
insomnia, fatigue, and concentration problems at the same time) by invoking an underly-
ing unobserved latent trait (e.g., depression) as the common cause of all the symptoms.
Psychological networks offer a different conceptual interpretation of the data and explain
such co-occurrences via direct relationships between symptoms; for example, someone who
sleeps poorly will be tired, and someone who is tired will not concentrate well (fried2015;
schmittmann2013). Such relationships can then be more easily interpreted when drawn
as a network structure where edges indicate pathways on which nodes can affect each other.
The edges can differ in strength of connection, also termed edge weight (jssv048i04), in-
dicating if a relationship is strong (commonly visualized with thick edges) or weak (thin,
less saturated edges) and positive (green edges) or negative (red edges). After a network
structure is estimated, the visualization of the graph itself tells the researcher a detailed
story of the multivariate dependencies in the data. Additionally, many inference methods
from graph theory can be used to assess which nodes are the most important in the network,
termed the most central nodes.



SUPPLEMENTARY MATERIALS 2

Directed and Undirected Networks

In general, there are two types of edges that can be present in a network: an edge
can be directed, in which case one head of the edge has an arrowhead indicating a one-
way effect, or an edge can be undirected, indicating some mutual relationship. A network
that contains only directed edges is termed a directed network, whereas a network that
contains only undirected edges is termed an undirected network (newman2010). Many
fields of science consider directed networks interesting because they can be used to encode
causal structures (pearl2000causality). For example, the edge insomnia → fatigue can
be taken to indicate that insomnia causes fatigue. The work of Pearl describes that such
causal structures can be tested using only observational cross-sectional data and can even
be estimated to a certain extent (kalisch2012causal; Scutari2010). However, when
temporal information is lacking, there is only limited information present in cross-sectional
observational data. Such estimation methods typically only work under two very strict
assumptions (a) that all entities which play a causal role have been measured and (b) that
the causal chain of cause and effect is not cyclic (i.e., a variable cannot cause itself via any
path). Both assumptions are not very plausible in psychological systems. Furthermore,
such directed networks suffer from the problem that many equivalent models can exist that
feature the same relationships found in the data (maccallum1993problem); this makes
the interpretation of structures difficult. For example, the structure insomnia → fatigue →
concentration is statistically equivalent to the structure insomnia← fatigue→ concentration
as well as the structure insomnia ← fatigue ← concentration: All three only indicate that
insomnia and concentration problems are conditionally independent after controlling for
fatigue.

For the reasons outlined above, psychological networks estimated on cross-sectional
data are typically undirected networks. The current state-of-the-art method for estimating
undirected psychological network structures involves the estimation of PMRFs. A PMRF
is a network model in which edges indicate the full conditional association between two
nodes after conditioning on all other nodes in the network. This means when two nodes
are connected, there is a relationship between these two nodes that cannot be explained by
any other node in the network. Simplified, it can be understood as a partial correlation
controlling for all other connections. The absence of an edge between two nodes indicates
that these nodes are conditionally independent of each other given the other nodes in the
network. Thus, a completely equivalent undirected structure (compared to the structures
described above) would be insomnia — fatigue — concentration, indicating that insomnia
and concentration problems are conditionally independent after controlling for fatigue.

Figure ?? shows a PMRF similar to the example described above. In this network,
there is a positive relationship between insomnia and fatigue and a negative relationship
between fatigue and concentration. The positive edge is thicker and more saturated than
the negative edge, indicating that this interaction effect is stronger than that of the negative
edge. This network shows that insomnia and concentration do not directly interact with
each other in any way other than through their common connection with fatigue. There-
fore, fatigue is the most important node in this network—a concept we will later quantify
as centrality. These edges can be interpreted in several different ways. First, as shown
above, the model is in line with causal interpretations of associations among the symptoms.
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Figure 1 . Example of a pairwise Markov random field. Node A positively interacts with
node B, and node B negatively interacts with node C. Nodes A and C are conditionally
independent given node B.

Second, this model implies that insomnia and fatigue predict each other after controlling
for concentration; even when we know someone is concentrating poorly, that person is more
likely to suffer from insomnia when we observe that person suffering from fatigue. Similarly,
fatigue and concentration predict each other after controlling for insomnia. After controlling
for fatigue, there is no longer any predictive quality between insomnia and concentration,
even though these variables are correlated; fatigue now mediates the prediction between
these two symptoms (netpsych). Finally, these edges can represent genuine symmetric
causal interactions between symptoms (e.g., in statistical physics, a PRMF called the Ising
model is used to model particles that cause neighboring particles to be aligned). We refer
the reader to dynamics for a longer introduction to the above-mentioned interpretation of
edges in a PMRF.

Network Inference

In the first step of network analysis, the obtained network is typically presented
graphically to show the structure of the data (jssv048i04). Afterwards, inference methods
derived from graph theory can be applied to the network structure. The estimated PRMF
is always a weighted network, which means that we not only look at the structure of the
network (e.g., are two nodes connected or not) but also at the strength of connection
between pairs of nodes. Because of this, many typical inference methods that concern
the global structure of the network (e.g., small-worldness, density, and global clustering;
kolaczyk2009statistical; newman2010; watts1998) are less useful in the context of
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psychological networks because they only take into account whether nodes are connected or
not and not the strength of association among nodes. Because the global inference methods
for weighted networks and PRMFs are still in development and no consensus has been
reached, the network inference section focuses on local network properties: How are two
nodes related, and what is the influence of a single node?

Relationship between two nodes. The relationship between two nodes can be
assessed in two ways. First, we can directly assess the edge weight. This is always a
number that is nonzero because an edge weight of zero would indicate there is no edge.
The sign of the edge weight (positive or negative) indicates the type of interaction, and
the absolute value of the edge weight indicates the strength of the effect. For example, a
positive edge weight of 0.5 is equal in strength to a negative edge weight of −0.5 and both
are stronger than an edge weight of 0.2. Two strongly connected nodes influence each other
more easily than two weakly connected nodes. This is similar to how two persons standing
closer to each other can communicate more easily (via talking) than two people standing
far away from each other (via shouting)—two strongly connected nodes are closer to each
other. As such, the length of an edge is defined as the inverse of the edge strength. Finally,
the distance between two nodes is equal to the sum of the lengths of all edges on the shortest
path between two nodes (newman2010).

Node centrality. The importance of individual nodes in the network can be as-
sessed by investigating the node centrality. A visualization of a network, such as the one
shown in Figure ??, is an abstract rendition of a high-dimensional space in two dimen-
sions. Although visualizations of network models often aim to place highly connected
nodes into the center of the graph, for instance using the Fruchterman-Reingold algo-
rithm (fruchterman1991graph), the two-dimensional visualization cannot properly re-
flect the true space of the model. Thus, the metric distance between the placement of
nodes in the two-dimensional space has no direct interpretation as it has in multidimen-
sional scaling, for instance. Therefore, graph theory has developed several methods to
more objectively quantify which node is most central in a network. Three such centrality
measures have appropriate weighted generalizations that can be used with psychological
networks (opsahl2010node). First, node strength, also called degree in unweighted net-
works (newman2010), simply adds up the strength of all connected edges to a node; if
the network is made up of partial correlation coefficients, the node strength equals the sum
of absolute partial correlation coefficients between a node and all other nodes. Second,
closeness takes the inverse of the sum of all the shortest paths between one node and all
other nodes in the network. Thus, where node strength investigates how strongly a node
is directly connected to other nodes in the network, closeness investigates how strongly a
node is indirectly connected to other nodes in the network. Finally, betweenness looks at
how many of the shortest paths between two nodes go through the node in question; the
higher the betweenness, the more important a node is in connecting other nodes.

The bootstrap and centrality indices

The bootstrap is not a foolproof methodology that always works. There are, in fact,
many cases in which the bootstrap fails (chernick2011bootstrap). One such case is when
the parameter of interest has an expected value at the boundary of the parameter space.
In bootstrapping edge-weights (as described in the main manuscript above), such as partial
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correlation coefficients, this is not a problem because edge-weights at the boundary of 1
or -1 rarely occur. However, when continuing network inference, we do not use the edge-
weights directly but instead the edge strength: the absolute value of the edge-weight. Here,
a boundary problem is present, as we expect many edges to have an expected value of
exactly zero (implying the absence of an edge). To exemplify, suppose we find an edge-
weight of 0.01 in our original sample, with a standard error of 0.1. When bootstrapping,
95% of the samples should fall roughly in the interval −0.19 to 0.21; the absolute value of
these samples will, almost always, be higher than the original sampled edge strength.

We discovered a two-sided bias when many edge-weights are expected to equal zero
(sparse network structure). First, absolute edge-weights, and as a result centrality indices,
are highly biased estimators of the true parameter. This makes sense: if the true edge-
weight is zero, any estimated absolute edge-weight based on a sample would be higher than
zero. Second, bootstrapped absolute edge-weights are biased as well when the expected
value is zero, because the bootstrap sampling distribution is likely to be centered near zero
leading to many higher absolute edge-weights. To exemplify, we simulated 10,000 pairs
of independent variables (true correlation of zero) and investigated the sample absolute
correlation as well as the absolute correlation of a single nonparametric and parametric
bootstrap. The sample correlation was on average 0.081 higher than the true correlation of
zero, the nonparametric bootstrap was on average 0.032 higher than the sampled absolute
correlation and the parametric bootstrap was on average 0.033 higher than the sampled
absolute correlation.

Computing node strength takes a sum and computing closeness takes the inverse of
a more complicated sum of these biased values; adding up these biases leads to highly
inaccurate estimates of the true parameter. Indeed, we found that it is not uncommon for
quantiles of the bootstrapped strength and closeness to not contain the true parameter at
all, nor even the parameter value based on the original sample. This bias seemed to be
mostly present using non-regularization estimation methods and low sample sizes. Thus,
constructing true CIs for centrality indices—containing the true parameter 95% of the
times—is a challenging research question, involving correcting for bias of the sample due to
true network structure and sample size as well as correcting for the bias in the bootstrap
samples. The current paper does not aim to solve this highly technical question, as we are
not so much interested in estimating a region around the true parameter value as that we
are interested in showing the sampling variability of these centrality indices, even if they
are biased.

As explained above, the bootstrap cannot be used to form 95% CIs on centrality
indices. However, we can use the bootstrap to show the reader the importance of taking
centrality in accuracy into account. If we assume that the estimated partial correlation
matrix is the true network structure, then the parametric bootstrap can be used to show
the sampling distribution of such a network model:

boot3 <- bootnet(Data, 100,default = "pcor", type = "parametric")

The 95% quantile regions can be plotted using the following codes:

plot(boot3, statistics = c("strength", "closeness", "betweenness"),
CIstyle = "quantiles")
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Figure 2 . Parametric bootstrap on centrality indices based on the partial correlation net-
work.

which will return a warning on that the intervals cannot be interpreted as 95% CIs. The
argument CIstyle = "quantiles" makes sure quantiles are plotted. By default, bootnet
plots intervals based on the sample centrality plus and minus two times the standard devi-
ation of the bootstraps. Which are more interpretable, even though they still are not true
95% CIs.

Figure ?? shows the resulting plot. If the partial correlation network used is the
true model, then the red line shows the true centrality indices and the gray area the 95%
quantile region of the sampling distribution. The placement of the red line indicates the
aforementioned bias in both bootstrapping and sampling of centrality indices. The size of
the gray area is large in all indices, indicating that the order of centrality indices from any
sample would be very hard to interpret. In the sample on which these plots are based,
none of the 1000 samples captured the true order of any of the centrality indices, and the
probability that the node with the true strongest centrality was correctly detected was only
43%, 36% and 33% for strength, closeness and betweenness respectively.

These plots only show the sampling distribution if the used network is the true
model—which it is not (as the network is estimated from data). Therefore, these plots
should be interpreted with care. However, they do highlight the importance of accuracy
analysis on centrality indices, as the sampling distribution of the true model is likely not
much smaller than the ones shown in these plots.

Loading the PTSD dataset

To download the dataset, go to:

https://datashare.nida.nih.gov/study/nida-ctn-0015

and click on “CTN-0015 Data Files”. The relevant data file is called “qs.csv”, which can be
loaded into R by using the default read.csv function:
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FullData <- read.csv("qs.csv", stringsAsFactors = FALSE)

This loads the data in long format, which contains a column with subject id’s, a column with
the names of the administered items, and a third column containing the item responses.
For network analysis, we need the data to be in wide format. Furthermore, we need to
assign that the response "NOT ANSWERED" indicates a missing response and other responses
are ordinal. Finally, we need to extract relevant dataset at baseline measure for the PTSD
symptom frequency scores. To do this, we can utilize the dplyr and tidyr R packages as
follows:

# Load packages:
library("dplyr")
library("tidyr")
# Frequency at baseline:
Data <- FullData %>%

filter(EPOCH == "BASELINE",
grepl("^PSSR\\d+A$",QSTESTCD)) %>%

select(USUBJID,QSTEST,QSORRES) %>%
spread(QSTEST, QSORRES) %>%
select(-USUBJID) %>%
mutate_each(funs(replace(.,.=="NOT ANSWERED",NA))) %>%
mutate_each(funs(ordered(.,c("NOT AT ALL","ONCE A WEEK",

"2-4 TIMES PER WEEK/HALF THE TIME",
"5 OR MORE TIMES PER WEEK/ALMOST ALWAYS"))))

names(Data) <- seq_len(ncol(Data))

Note: since bootnet version 1.3, the estimateNetwork function no longer uses
cor_auto by default, meaning that the aboved ordered categorical encoding no longer works
by default. To reproduce analyses from the paper, use argument corMethod = "cor_auto"
in estimateNetwork. Alternatively, encode all data as continuous to use other methods:

for (i in seq_len(ncol(Data))) Data[,i] <- as.numeric(Data[,i])


