SEM 2: Structural Equation Modeling
Week 3 - Partial expectation

Sacha Epskamp



If the SEM model fits, then all implied conditional independence
relations are likely to hold. We can now investigate the predictive
effect of seeing x = z (some observed value) on y:

Predictive effect = E(y | See(x = 2)) — E(y)

as well as the causal effect of x on y (z is the result of a causal
intervention):

Causal effect = E(y | Do(x = 2)) — E(y)



If the SEM model fits, then all implied conditional independence
relations are likely to hold. We can now investigate the predictive
effect of seeing x = z (some observed value) on y:

Predictive effect = E(y | See(x = 2)) — E(y)

as well as the causal effect of x on y (z is the result of a causal
intervention):

Causal effect = E(y | Do(x = 2)) — E(y)
For simplicity, we will assume all variables to be centered:
E(x)=0 & &(y)=0

which simply makes the predictive effect £(y | See(x = z)) and the
causal effect £(y | Do(x = z))



The predictive effect can then be obtained from the conditional
Gaussian distribution (assuming centered variables):

E(y | See(x = z)) = Cov(y, x)Var(x) "'z
Or if x and y are both single variables:

E(y | See(x = x;)) = C{Zﬁ)(/),(;d

X Z
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Predictive effect of x on y»:

E(ys | See(x = 2)) =
_ B281 Var(x) <

_ Cov(y2,x)
Var(x)

Var(x)
= B2z
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Predictive effect of x on y»:

E(yz | See(x = z)) = %}a)}() < 7

o Bzﬁﬂ/&r(x)
T Vax) °

= fofhz
Predictive effect of y1 on y»:

C ,
E(ys | See(n = 2)) = % x z

_ B23i Var(x) + B2 5

B3Var(x) + 61
= Boz
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Predictive effect of x on y»:

E(yz | See(x = z)) = %}a)}() < 7
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= fofhz
Predictive effect of y1 on y»:

Co ,
E(ys | See(n = 2)) = % x z

_ B2 Var(x) + Babs 5
 BVar(x) + 61

= Bz

Predictive effect of y» on x:

Cov(y», x)
Var(y») xz
_ B21Var(x)
B3B3 Var(x) + 8361 + 02

E(x | See(y2 = 2)) =

X z




For the causal effect:
1. Make a dummy model in which the variable you intervene on
is exogenous
> Remove all incoming uni-directional arrows (causal effects) to

the variable you intervene on
» Remove all covariances connected to the variable you intervene

on
» Retain the variance of the variable you intervene on

2. Now, compute the predictive effect using this dummy model



For the causal effect:
1. Make a dummy model in which the variable you intervene on
is exogenous
> Remove all incoming uni-directional arrows (causal effects) to
the variable you intervene on
» Remove all covariances connected to the variable you intervene

on
» Retain the variance of the variable you intervene on

2. Now, compute the predictive effect using this dummy model
An alternative is to calculate the total effect:

1. List all paths of uni-directional edges from the node you
intervene on to the node of interest (only going forward along
the direction)

2. For each path: multiply all regression coefficients on the path
3. Sum all these products
4. Multiply the result with the result of your intervention
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Causal effect of x on y» (no difference in
dummy model):

E(y2 | Do(x = 2)) = C(z;(szz);)x)

B Var(x)
= Bz
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Causal effect of y;3 on y» (using dummy
model):

E(y2 | Dolys = 2)) = Cv(y;yly;) %z

B Ba(B2Var(x) + 61)
~ B3Var(x) + 6
= Pz
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Causal effect of y» on x?
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Causal effect of y» on x? Using the dummy
model:
Cov(ya, x)
g D = =
(X ‘ O(y2 Z)) Val"(yz) X

But now Cov(ys,x) =0, and hence
E(x | Do(y2 = z)) = 0!
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Var(n) = (I — B)"'w(l - B)~'T

1.00 0.60 0.18
= [0.60 1.36 0.41
0.18 0.41 1.12

Note: 11 is conditionally independent from 73 given n5:

Cov(n1,m3 | m2) = Cov(n1,m3) —
0.6 x 0.41

=0.18 —
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04 08 -0.3 04 05 O
0.5 0.4 0.5 0.3 0.6 04

What is Cov(y1, y6 | 72)?

Cov(y1,n2)Cov(n, v6)

Cov(y1,y6 | 12) = Cov(y1,¥6) —

0.24 0.16 _
136

Var(1,)
=0.03 -
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What is £(ys | See(y1r = 0.5))?

Cov(yi,
E(ys | See(yr = 0.5)) = \m x 0.5
_ 90 05 —0.02

"~ 0.66
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What is £(ys | Do(y1 = 0.5))7?
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What is £(ys | Do(y1 = 0.5))?

E(y6 | Do(y1 = 0.5)) =0
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What is E(ys | Do(12 = 0.5))?
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What is E(ys | Do(12 = 0.5))?
£(y6 | Do(ys = 0.5)) = 24 * 00 x136 (o 012

1.36



