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If the SEM model fits, then all implied conditional independence
relations are likely to hold. We can now investigate the predictive
effect of seeing xxx = zzz (some observed value) on yyy :

Predictive effect = E(yyy | See(xxx = zzz))− E(yyy)

as well as the causal effect of xxx on yyy (zzz is the result of a causal
intervention):

Causal effect = E(yyy | Do(xxx = zzz))− E(yyy)

For simplicity, we will assume all variables to be centered:

E(xxx) = 000 & E(yyy) = 000

which simply makes the predictive effect E(yyy | See(xxx = zzz)) and the
causal effect E(yyy | Do(xxx = zzz))
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The predictive effect can then be obtained from the conditional
Gaussian distribution (assuming centered variables):

E(yyy | See(xxx = zzz)) = Cov(yyy ,xxx)Var(xxx)−1zzz

Or if x and y are both single variables:

E(y | See(x = xi )) =
Cov(y , x)

Var(x)
× z
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For the causal effect:

1. Make a dummy model in which the variable you intervene on
is exogenous
I Remove all incoming uni-directional arrows (causal effects) to

the variable you intervene on
I Remove all covariances connected to the variable you intervene

on
I Retain the variance of the variable you intervene on

2. Now, compute the predictive effect using this dummy model

An alternative is to calculate the total effect:

1. List all paths of uni-directional edges from the node you
intervene on to the node of interest (only going forward along
the direction)

2. For each path: multiply all regression coefficients on the path

3. Sum all these products

4. Multiply the result with the result of your intervention
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Causal effect of x on y2 (no difference in
dummy model):

E(y2 | Do(x = z)) =
Cov(y2, x)

Var(x)
× z

=
β2β1Var(x)

Var(x)
× z

= β2β1z
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Causal effect of y1 on y2 (using dummy
model):

E(y2 | Do(y1 = z)) =
Cov(y2, y1)

Var(y1)
× z

=
β2(β21Var(x) + θ1)

β21Var(x) + θ1
× z

= β2z
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Causal effect of y2 on x?

Using the dummy
model:

E(x | Do(y2 = z)) =
Cov(y2, x)

Var(y2)
× z

But now Cov(y2, x) = 0, and hence
E(x | Do(y2 = z)) = 0!
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ΛΛΛ =


0.4 0 0
0.6 0 0
0 −0.3 0
0 0.4 0
0 0 0.5
0 0 0.4

 ,ΨΨΨ = III ,BBB =

 0 0 0
0.6 0 0
0 0.3 0

 ,Diag(ΘΘΘ) =


0.5
0.4
0.5
0.3
0.6
0.4
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0 0 0.4

 ,ΨΨΨ = III ,BBB =

 0 0 0
0.6 0 0
0 0.3 0

 ,Diag(ΘΘΘ) =
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0.6
0.4



Var(yyy) = ΣΣΣ = ΛΛΛ(III −BBB)−1ΨΨΨ(III −BBB)−1>ΛΛΛ> + ΘΘΘ

=



0.66 0.24 −0.07 0.10 0.04 0.03
0.24 0.76 −0.11 0.14 0.05 0.04
−0.07 −0.11 0.62 −0.16 −0.06 −0.05
0.10 0.14 −0.16 0.52 0.08 0.07
0.04 0.05 −0.06 0.08 0.88 0.22
0.03 0.04 −0.05 0.07 0.22 0.58
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Note: η1 is conditionally independent from η3 given η2:

Cov(η1, η3 | η2) = Cov(η1, η3)− Cov(η1, η2)Cov(η3, η2)

Var(η2)

= 0.18− 0.6× 0.41

1.36
= 0

(rounded to two digits).



ΛΛΛ =


0.4 0 0
0.6 0 0
0 −0.3 0
0 0.4 0
0 0 0.5
0 0 0.4

 ,ΨΨΨ = III ,BBB =

 0 0 0
0.6 0 0
0 0.3 0

 ,Diag(ΘΘΘ) =


0.5
0.4
0.5
0.3
0.6
0.4



Var(ηηη) = (III −BBB)−1ΨΨΨ(III −BBB)−1>

=

1.00 0.60 0.18
0.60 1.36 0.41
0.18 0.41 1.12



Note: η1 is conditionally independent from η3 given η2:

Cov(η1, η3 | η2) = Cov(η1, η3)− Cov(η1, η2)Cov(η3, η2)

Var(η2)

= 0.18− 0.6× 0.41

1.36
= 0

(rounded to two digits).



ΛΛΛ =


0.4 0 0
0.6 0 0
0 −0.3 0
0 0.4 0
0 0 0.5
0 0 0.4

 ,ΨΨΨ = III ,BBB =

 0 0 0
0.6 0 0
0 0.3 0

 ,Diag(ΘΘΘ) =


0.5
0.4
0.5
0.3
0.6
0.4



Var(ηηη) = (III −BBB)−1ΨΨΨ(III −BBB)−1>

=

1.00 0.60 0.18
0.60 1.36 0.41
0.18 0.41 1.12


Note: η1 is conditionally independent from η3 given η2:

Cov(η1, η3 | η2) = Cov(η1, η3)− Cov(η1, η2)Cov(η3, η2)

Var(η2)

= 0.18− 0.6× 0.41

1.36
= 0

(rounded to two digits).



ΛΛΛ =


0.4 0 0
0.6 0 0
0 −0.3 0
0 0.4 0
0 0 0.5
0 0 0.4

 ,ΨΨΨ = III ,BBB =

 0 0 0
0.6 0 0
0 0.3 0

 ,Diag(ΘΘΘ) =


0.5
0.4
0.5
0.3
0.6
0.4



Cov(ηηη,yyy) = Cov(ηηη,ΛΛΛηηη + εεε)

= Var(ηηη)ΛΛΛ>

= (III −BBB)−1ΨΨΨ(III −BBB)−1>ΛΛΛ>

=

0.40 0.60 −0.18 0.24 0.09 0.07
0.24 0.36 −0.41 0.54 0.20 0.16
0.07 0.11 −0.12 0.16 0.56 0.45





ΛΛΛ =


0.4 0 0
0.6 0 0
0 −0.3 0
0 0.4 0
0 0 0.5
0 0 0.4

 ,ΨΨΨ = III ,BBB =

 0 0 0
0.6 0 0
0 0.3 0

 ,Diag(ΘΘΘ) =


0.5
0.4
0.5
0.3
0.6
0.4



Cov(ηηη,yyy) = Cov(ηηη,ΛΛΛηηη + εεε)

= Var(ηηη)ΛΛΛ>

= (III −BBB)−1ΨΨΨ(III −BBB)−1>ΛΛΛ>

=

0.40 0.60 −0.18 0.24 0.09 0.07
0.24 0.36 −0.41 0.54 0.20 0.16
0.07 0.11 −0.12 0.16 0.56 0.45





0.6 0.3

0.4 0.6 −0.3 0.4 0.5 0.4

1 1 1

0.5 0.4 0.5 0.3 0.6 0.4

η1 η2 η3

y1 y2 y3 y4 y5 y6

What is Cov(y1, y6 | η2)?

Cov(y1, y6 | η2) = Cov(y1, y6)− Cov(y1, η2)Cov(η2, y6)

Var(η2)

= 0.03− 0.24× 0.16

1.36
= 0



0.6 0.3

0.4 0.6 −0.3 0.4 0.5 0.4

1 1 1

0.5 0.4 0.5 0.3 0.6 0.4

η1 η2 η3

y1 y2 y3 y4 y5 y6

What is Cov(y1, y6 | η2)?

Cov(y1, y6 | η2) = Cov(y1, y6)− Cov(y1, η2)Cov(η2, y6)

Var(η2)

= 0.03− 0.24× 0.16

1.36
= 0



0.6 0.3

0.4 0.6 −0.3 0.4 0.5 0.4

1 1 1

0.5 0.4 0.5 0.3 0.6 0.4

η1 η2 η3

y1 y2 y3 y4 y5 y6

What is E(y6 | See(y1 = 0.5))?

E(y6 | See(y1 = 0.5)) =
Cov(y1, y6)

Var(y1)
× 0.5

=
0.03

0.66
× 0.5 = 0.02



0.6 0.3

0.4 0.6 −0.3 0.4 0.5 0.4

1 1 1

0.5 0.4 0.5 0.3 0.6 0.4

η1 η2 η3

y1 y2 y3 y4 y5 y6

What is E(y6 | See(y1 = 0.5))?

E(y6 | See(y1 = 0.5)) =
Cov(y1, y6)

Var(y1)
× 0.5

=
0.03

0.66
× 0.5 = 0.02



0.6 0.3

0.4 0.6 −0.3 0.4 0.5 0.4

1 1 1

0.5 0.4 0.5 0.3 0.6 0.4

η1 η2 η3

y1 y2 y3 y4 y5 y6

What is E(y6 | Do(y1 = 0.5))?



0.6 0.3

0.6 −0.3 0.4 0.5 0.4

1 1 1

0.66 0.4 0.5 0.3 0.6 0.4

η1 η2 η3

y1 y2 y3 y4 y5 y6

What is E(y6 | Do(y1 = 0.5))?

E(y6 | Do(y1 = 0.5)) = 0



0.6

0.3 0.6 −0.3 0.4 0.5 0.4

1 1.36 1

0.5 0.4 0.5 0.3 0.6 0.4

η1 η2 η3

y1 y2 y3 y4 y5 y6

What is E(y6 | Do(η2 = 0.5))?

E(y6 | Do(y1 = 0.5)) =
0.4× 0.6× 1.36

1.36
× 0.5 = 0.12



0.6

0.3 0.6 −0.3 0.4 0.5 0.4

1 1.36 1

0.5 0.4 0.5 0.3 0.6 0.4

η1 η2 η3

y1 y2 y3 y4 y5 y6

What is E(y6 | Do(η2 = 0.5))?

E(y6 | Do(y1 = 0.5)) =
0.4× 0.6× 1.36

1.36
× 0.5 = 0.12


