SEM 2: Structural Equation Modeling
 Week 3 - Partial expectation

Sacha Epskamp

If the SEM model fits, then all implied conditional independence relations are likely to hold. We can now investigate the predictive effect of seeing $\boldsymbol{x}=\boldsymbol{z}$ (some observed value) on \boldsymbol{y} :

$$
\text { Predictive effect }=\mathcal{E}(\boldsymbol{y} \mid \operatorname{See}(\boldsymbol{x}=\boldsymbol{z}))-\mathcal{E}(\boldsymbol{y})
$$

as well as the causal effect of \boldsymbol{x} on \boldsymbol{y} (\boldsymbol{z} is the result of a causal intervention):

$$
\text { Causal effect }=\mathcal{E}(\boldsymbol{y} \mid \operatorname{Do}(\boldsymbol{x}=\boldsymbol{z}))-\mathcal{E}(\boldsymbol{y})
$$

If the SEM model fits, then all implied conditional independence relations are likely to hold. We can now investigate the predictive effect of seeing $\boldsymbol{x}=\boldsymbol{z}$ (some observed value) on \boldsymbol{y} :

$$
\text { Predictive effect }=\mathcal{E}(\boldsymbol{y} \mid \operatorname{See}(\boldsymbol{x}=\boldsymbol{z}))-\mathcal{E}(\boldsymbol{y})
$$

as well as the causal effect of \boldsymbol{x} on \boldsymbol{y} (\boldsymbol{z} is the result of a causal intervention):

$$
\text { Causal effect }=\mathcal{E}(\boldsymbol{y} \mid \operatorname{Do}(\boldsymbol{x}=\boldsymbol{z}))-\mathcal{E}(\boldsymbol{y})
$$

For simplicity, we will assume all variables to be centered:

$$
\mathcal{E}(x)=0 \quad \& \quad \mathcal{E}(y)=0
$$

which simply makes the predictive effect $\mathcal{E}(\boldsymbol{y} \mid \operatorname{See}(\boldsymbol{x}=\boldsymbol{z}))$ and the causal effect $\mathcal{E}(\boldsymbol{y} \mid \operatorname{Do}(\boldsymbol{x}=\boldsymbol{z}))$

The predictive effect can then be obtained from the conditional Gaussian distribution (assuming centered variables):

$$
\mathcal{E}(\boldsymbol{y} \mid \operatorname{See}(\boldsymbol{x}=\boldsymbol{z}))=\operatorname{Cov}(\boldsymbol{y}, \boldsymbol{x}) \operatorname{Var}(\boldsymbol{x})^{-1} \boldsymbol{z}
$$

Or if x and y are both single variables:

$$
\mathcal{E}\left(y \mid \operatorname{See}\left(x=x_{i}\right)\right)=\frac{\operatorname{Cov}(y, x)}{\operatorname{Var}(x)} \times z
$$

Predictive effect of x on y_{2} :

Predictive effect of x on y_{2} :

$$
\begin{aligned}
\mathcal{E}\left(y_{2} \mid \operatorname{See}(x=z)\right) & =\frac{\operatorname{Cov}\left(y_{2}, x\right)}{\operatorname{Var}(x)} \times z \\
& =\frac{\beta_{2} \beta_{1} \operatorname{Var}(x)}{\operatorname{Var}(x)} \times z \\
& =\beta_{2} \beta_{1} z
\end{aligned}
$$

Predictive effect of y_{1} on y_{2} :

$$
\begin{aligned}
\mathcal{E}\left(y_{2} \mid \operatorname{See}\left(y_{1}=z\right)\right) & =\frac{\operatorname{Cov}\left(y_{2}, y_{1}\right)}{\operatorname{Var}\left(y_{1}\right)} \times z \\
& =\frac{\beta_{2} \beta_{1}^{2} \operatorname{Var}(x)+\beta_{2} \theta_{1}}{\beta_{1}^{2} \operatorname{Var}(x)+\theta_{1}} \times z \\
& =\beta_{2} z
\end{aligned}
$$

Predictive effect of x on y_{2} :

$$
\begin{aligned}
\mathcal{E}\left(y_{2} \mid \operatorname{See}(x=z)\right) & =\frac{\operatorname{Cov}\left(y_{2}, x\right)}{\operatorname{Var}(x)} \times z \\
& =\frac{\beta_{2} \beta_{1} \operatorname{Var}(x)}{\operatorname{Var}(x)} \times z \\
& =\beta_{2} \beta_{1} z
\end{aligned}
$$

Predictive effect of y_{1} on y_{2} :

$$
\begin{aligned}
\mathcal{E}\left(y_{2} \mid \operatorname{See}\left(y_{1}=z\right)\right) & =\frac{\operatorname{Cov}\left(y_{2}, y_{1}\right)}{\operatorname{Var}\left(y_{1}\right)} \times z \\
& =\frac{\beta_{2} \beta_{1}^{2} \operatorname{Var}(x)+\beta_{2} \theta_{1}}{\beta_{1}^{2} \operatorname{Var}(x)+\theta_{1}} \times z \\
& =\beta_{2} z
\end{aligned}
$$

Predictive effect of y_{2} on x :

$$
\begin{aligned}
\mathcal{E}\left(x \mid \operatorname{See}\left(y_{2}=z\right)\right) & =\frac{\operatorname{Cov}\left(y_{2}, x\right)}{\operatorname{Var}\left(y_{2}\right)} \times z \\
& =\frac{\beta_{2} \beta_{1} \operatorname{Var}(x)}{\beta_{2}^{2} \beta_{1}^{2} \operatorname{Var}(x)+\beta_{2}^{2} \theta_{1}+\theta_{2}} \times z
\end{aligned}
$$

For the causal effect:

1. Make a dummy model in which the variable you intervene on is exogenous

- Remove all incoming uni-directional arrows (causal effects) to the variable you intervene on
- Remove all covariances connected to the variable you intervene on
- Retain the variance of the variable you intervene on

2. Now, compute the predictive effect using this dummy model

For the causal effect:

1. Make a dummy model in which the variable you intervene on is exogenous

- Remove all incoming uni-directional arrows (causal effects) to the variable you intervene on
- Remove all covariances connected to the variable you intervene on
- Retain the variance of the variable you intervene on

2. Now, compute the predictive effect using this dummy model

An alternative is to calculate the total effect:

1. List all paths of uni-directional edges from the node you intervene on to the node of interest (only going forward along the direction)
2. For each path: multiply all regression coefficients on the path
3. Sum all these products
4. Multiply the result with the result of your intervention

Causal effect of x on y_{2} (no difference in dummy model):

$$
\begin{aligned}
\mathcal{E}\left(y_{2} \mid \operatorname{Do}(x=z)\right) & =\frac{\operatorname{Cov}\left(y_{2}, x\right)}{\operatorname{Var}(x)} \times z \\
& =\frac{\beta_{2} \beta_{1} \operatorname{Var}(x)}{\operatorname{Var}(x)} \times z \\
& =\beta_{2} \beta_{1} z
\end{aligned}
$$

Causal effect of y_{1} on y_{2} (using dummy model):

$$
\begin{aligned}
\mathcal{E}\left(y_{2} \mid \operatorname{Do}\left(y_{1}=z\right)\right) & =\frac{\operatorname{Cov}\left(y_{2}, y_{1}\right)}{\operatorname{Var}\left(y_{1}\right)} \times z \\
& =\frac{\beta_{2}\left(\beta_{1}^{2} \operatorname{Var}(x)+\theta_{1}\right)}{\beta_{1}^{2} \operatorname{Var}(x)+\theta_{1}} \times z \\
& =\beta_{2} z
\end{aligned}
$$

Causal effect of y_{2} on x ?

Causal effect of y_{2} on x ? Using the dummy model:

$$
\mathcal{E}\left(x \mid \operatorname{Do}\left(y_{2}=z\right)\right)=\frac{\operatorname{Cov}\left(y_{2}, x\right)}{\operatorname{Var}\left(y_{2}\right)} \times z
$$

But now $\operatorname{Cov}\left(y_{2}, x\right)=0$, and hence $\mathcal{E}\left(x \mid \operatorname{Do}\left(y_{2}=z\right)\right)=0$!

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0.4 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & -0.3 & 0 \\
0 & 0.4 & 0 \\
0 & 0 & 0.5 \\
0 & 0 & 0.4
\end{array}\right], \boldsymbol{\Psi}=\boldsymbol{I}, \boldsymbol{B}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & 0.3 & 0
\end{array}\right], \operatorname{Diag}(\boldsymbol{\Theta})=\left[\begin{array}{l}
0.5 \\
0.4 \\
0.5 \\
0.3 \\
0.6 \\
0.4
\end{array}\right]
$$

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0.4 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & -0.3 & 0 \\
0 & 0.4 & 0 \\
0 & 0 & 0.5 \\
0 & 0 & 0.4
\end{array}\right], \boldsymbol{\Psi}=\boldsymbol{I}, \boldsymbol{B}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & 0.3 & 0
\end{array}\right], \operatorname{Diag}(\boldsymbol{\Theta})=\left[\begin{array}{l}
0.5 \\
0.4 \\
0.5 \\
0.3 \\
0.6 \\
0.4
\end{array}\right]
$$

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0.4 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & -0.3 & 0 \\
0 & 0.4 & 0 \\
0 & 0 & 0.5 \\
0 & 0 & 0.4
\end{array}\right], \boldsymbol{\Psi}=\boldsymbol{I}, \boldsymbol{B}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & 0.3 & 0
\end{array}\right], \operatorname{Diag}(\boldsymbol{\Theta})=\left[\begin{array}{l}
0.5 \\
0.4 \\
0.5 \\
0.3 \\
0.6 \\
0.4
\end{array}\right]
$$

$\operatorname{Var}(\boldsymbol{y})=\boldsymbol{\Sigma}=\boldsymbol{\Lambda}(\boldsymbol{I}-\boldsymbol{B})^{-1} \boldsymbol{\Psi}(\boldsymbol{I}-\boldsymbol{B})^{-1 \boldsymbol{\top}} \boldsymbol{\Lambda}^{\top}+\boldsymbol{\Theta}$

$$
=\left[\begin{array}{cccccc}
0.66 & 0.24 & -0.07 & 0.10 & 0.04 & 0.03 \\
0.24 & 0.76 & -0.11 & 0.14 & 0.05 & 0.04 \\
-0.07 & -0.11 & 0.62 & -0.16 & -0.06 & -0.05 \\
0.10 & 0.14 & -0.16 & 0.52 & 0.08 & 0.07 \\
0.04 & 0.05 & -0.06 & 0.08 & 0.88 & 0.22 \\
0.03 & 0.04 & -0.05 & 0.07 & 0.22 & 0.58
\end{array}\right]
$$

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0.4 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & -0.3 & 0 \\
0 & 0.4 & 0 \\
0 & 0 & 0.5 \\
0 & 0 & 0.4
\end{array}\right], \boldsymbol{\Psi}=\boldsymbol{I}, \boldsymbol{B}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & 0.3 & 0
\end{array}\right], \operatorname{Diag}(\boldsymbol{\Theta})=\left[\begin{array}{l}
0.5 \\
0.4 \\
0.5 \\
0.3 \\
0.6 \\
0.4
\end{array}\right]
$$

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0.4 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & -0.3 & 0 \\
0 & 0.4 & 0 \\
0 & 0 & 0.5 \\
0 & 0 & 0.4
\end{array}\right], \boldsymbol{\Psi}=\boldsymbol{I}, \boldsymbol{B}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & 0.3 & 0
\end{array}\right], \operatorname{Diag}(\boldsymbol{\Theta})=\left[\begin{array}{l}
0.5 \\
0.4 \\
0.5 \\
0.3 \\
0.6 \\
0.4
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{Var}(\boldsymbol{\eta}) & =(\boldsymbol{I}-\boldsymbol{B})^{-1} \boldsymbol{\Psi}(\boldsymbol{I}-\boldsymbol{B})^{-1 \top} \\
& =\left[\begin{array}{lll}
1.00 & 0.60 & 0.18 \\
0.60 & 1.36 & 0.41 \\
0.18 & 0.41 & 1.12
\end{array}\right]
\end{aligned}
$$

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0.4 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & -0.3 & 0 \\
0 & 0.4 & 0 \\
0 & 0 & 0.5 \\
0 & 0 & 0.4
\end{array}\right], \boldsymbol{\Psi}=\boldsymbol{I}, \boldsymbol{B}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & 0.3 & 0
\end{array}\right], \operatorname{Diag}(\boldsymbol{\Theta})=\left[\begin{array}{l}
0.5 \\
0.4 \\
0.5 \\
0.3 \\
0.6 \\
0.4
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{Var}(\boldsymbol{\eta}) & =(\boldsymbol{I}-\boldsymbol{B})^{-1} \boldsymbol{\Psi}(\boldsymbol{I}-\boldsymbol{B})^{-1 \top} \\
& =\left[\begin{array}{lll}
1.00 & 0.60 & 0.18 \\
0.60 & 1.36 & 0.41 \\
0.18 & 0.41 & 1.12
\end{array}\right]
\end{aligned}
$$

Note: η_{1} is conditionally independent from η_{3} given η_{2} :

$$
\begin{aligned}
\operatorname{Cov}\left(\eta_{1}, \eta_{3} \mid \eta_{2}\right) & =\operatorname{Cov}\left(\eta_{1}, \eta_{3}\right)-\frac{\operatorname{Cov}\left(\eta_{1}, \eta_{2}\right) \operatorname{Cov}\left(\eta_{3}, \eta_{2}\right)}{\operatorname{Var}\left(\eta_{2}\right)} \\
& =0.18-\frac{0.6 \times 0.41}{1.36}=0
\end{aligned}
$$

(rounded to two digits).

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0.4 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & -0.3 & 0 \\
0 & 0.4 & 0 \\
0 & 0 & 0.5 \\
0 & 0 & 0.4
\end{array}\right], \boldsymbol{\Psi}=\boldsymbol{I}, \boldsymbol{B}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & 0.3 & 0
\end{array}\right], \operatorname{Diag}(\boldsymbol{\Theta})=\left[\begin{array}{l}
0.5 \\
0.4 \\
0.5 \\
0.3 \\
0.6 \\
0.4
\end{array}\right]
$$

$$
\boldsymbol{\Lambda}=\left[\begin{array}{ccc}
0.4 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & -0.3 & 0 \\
0 & 0.4 & 0 \\
0 & 0 & 0.5 \\
0 & 0 & 0.4
\end{array}\right], \boldsymbol{\Psi}=\boldsymbol{I}, \boldsymbol{B}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0.6 & 0 & 0 \\
0 & 0.3 & 0
\end{array}\right], \operatorname{Diag}(\boldsymbol{\Theta})=\left[\begin{array}{l}
0.5 \\
0.4 \\
0.5 \\
0.3 \\
0.6 \\
0.4
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{Cov}(\boldsymbol{\eta}, \boldsymbol{y}) & =\operatorname{Cov}(\boldsymbol{\eta}, \boldsymbol{\Lambda} \boldsymbol{\eta}+\boldsymbol{\varepsilon}) \\
& =\operatorname{Var}(\boldsymbol{\eta}) \boldsymbol{\Lambda}^{\top} \\
& =(\boldsymbol{I}-\boldsymbol{B})^{-1} \boldsymbol{\Psi}(\boldsymbol{I}-\boldsymbol{B})^{-1 \top} \boldsymbol{\Lambda}^{\top} \\
& =\left[\begin{array}{llllll}
0.40 & 0.60 & -0.18 & 0.24 & 0.09 & 0.07 \\
0.24 & 0.36 & -0.41 & 0.54 & 0.20 & 0.16 \\
0.07 & 0.11 & -0.12 & 0.16 & 0.56 & 0.45
\end{array}\right]
\end{aligned}
$$

What is $\operatorname{Cov}\left(y_{1}, y_{6} \mid \eta_{2}\right)$?

What is $\operatorname{Cov}\left(y_{1}, y_{6} \mid \eta_{2}\right)$?

$$
\begin{aligned}
\operatorname{Cov}\left(y_{1}, y_{6} \mid \eta_{2}\right) & =\operatorname{Cov}\left(y_{1}, y_{6}\right)-\frac{\operatorname{Cov}\left(y_{1}, \eta_{2}\right) \operatorname{Cov}\left(\eta_{2}, y_{6}\right)}{\operatorname{Var}\left(\eta_{2}\right)} \\
& =0.03-\frac{0.24 \times 0.16}{1.36}=0
\end{aligned}
$$

What is $\mathcal{E}\left(y_{6} \mid \operatorname{See}\left(y_{1}=0.5\right)\right)$?

What is $\mathcal{E}\left(y_{6} \mid \operatorname{See}\left(y_{1}=0.5\right)\right)$?

$$
\begin{aligned}
\mathcal{E}\left(y_{6} \mid \operatorname{See}\left(y_{1}=0.5\right)\right) & =\frac{\operatorname{Cov}\left(y_{1}, y_{6}\right)}{\operatorname{Var}\left(y_{1}\right)} \times 0.5 \\
& =\frac{0.03}{0.66} \times 0.5=0.02
\end{aligned}
$$

What is $\mathcal{E}\left(y_{6} \mid \operatorname{Do}\left(y_{1}=0.5\right)\right)$?

What is $\mathcal{E}\left(y_{6} \mid \operatorname{Do}\left(y_{1}=0.5\right)\right)$?

$$
\mathcal{E}\left(y_{6} \mid \operatorname{Do}\left(y_{1}=0.5\right)\right)=0
$$

What is $\mathcal{E}\left(y_{6} \mid \operatorname{Do}\left(\eta_{2}=0.5\right)\right)$?

What is $\mathcal{E}\left(y_{6} \mid \operatorname{Do}\left(\eta_{2}=0.5\right)\right)$?

$$
\mathcal{E}\left(y_{6} \mid \operatorname{Do}\left(y_{1}=0.5\right)\right)=\frac{0.4 \times 0.6 \times 1.36}{1.36} \times 0.5=0.12
$$

