SEM 2: Structural Equation Modeling
Week 3 - Partial covariance

Sacha Epskamp
If multivariate normality holds, then the Schur complement shows that any partial covariance can be expressed solely in terms of variances and covariances:

\[
\text{Cov}(y_i, y_j | x) = \text{Cov}(y_i, y_j) - \text{Cov}(y_i, x) \text{Var}(x)^{-1} \text{Cov}(x, y_j)
\]

in the multivariate case and:

\[
\text{Cov}(y_i, y_j | x) = \text{Cov}(y_i, y_j) - \frac{\text{Cov}(y_i, x) \text{Cov}(x, y_j)}{\text{Var}(x)}
\]

in the univariate case.
If multivariate normality holds, then the Schur complement shows that any partial covariance can be expressed solely in terms of variances and covariances:

\[
\text{Cov} (y_i, y_j | x) = \text{Cov} (y_i, y_j) - \text{Cov} (y_i, x) \text{Var} (x)^{-1} \text{Cov} (x, y_j)
\]

in the multivariate case and:

\[
\text{Cov} (y_i, y_j | x) = \text{Cov} (y_i, y_j) - \frac{\text{Cov} (y_i, x) \text{Cov} (x, y_j)}{\text{Var} (x)}
\]

in the univariate case.

- All conditional relationships can be expressed in terms of \(\Sigma \)!
- If we know \(\Sigma \), we know everything we can about the relationships between variables.
- Fitting a SEM model equals simultaneously testing all conditional independence relationships implied by the model!
Now using the Schur compliment:

\[
\text{Cov}(y_1, y_2 | \eta_1) = \text{Cov}(y_1, y_2) - \text{Cov}(y_1, \eta_1) \cdot \text{Var}(\eta_1) - \text{Cov}(\eta_1, y_2) = \psi_{11} \lambda_{21} - \psi_{11} \psi_{11} - 1 \lambda_{21} \psi_{11} = 0
\]

\[
\text{Cov}(y_1, y_2) = \psi_{11} \lambda_{21}
\]

\[
\text{Cov}(y_1, \eta_1) = \psi_{11}
\]

\[
\text{Cov}(y_2, \eta_1) = \lambda_{21} \psi_{11}
\]

\[
\text{Var}(\eta_1) = \psi_{11}
\]
Cov\((y_1, y_2) = \psi_{11} \lambda_{21} \)
Cov\((y_1, \eta_1) = \psi_{11} \)
Cov\((y_2, \eta_1) = \lambda_{21} \psi_{11} \)
Var\((\eta_1) = \psi_{11} \)

Now using the Schur compliment:
\[
\text{Cov} (y_1, y_2 \mid \eta_1) = \text{Cov} (y_1, y_2) - \\
\text{Cov} (y_1, \eta_1) \text{ Var} (\eta_1)^{-1} \text{Cov} (\eta_1, y_2) \]
\[
= \psi_{11} \lambda_{21} - \psi_{11} \psi_{11}^{-1} \lambda_{21} \psi_{11} \]
\[
= \psi_{11} \lambda_{21} - \psi_{11} \psi_{11}^{-1} \lambda_{21} \psi_{11} \]
\[
= \psi_{11} \lambda_{21} - \lambda_{21} \psi_{11} \]
\[
= 0 \]
\[
\begin{align*}
\text{Cov}(x, y_2) &= \beta_2 \beta_1 \text{Var}(x) \\
\text{Cov}(x, y_1) &= \beta_1 \text{Var}(x) \\
\text{Cov}(y_1, y_2) &= \beta_2 \beta_1^2 \text{Var}(x) + \beta_2 \theta_1 \\
\text{Var}(y_1) &= \beta_1^2 \text{Var}(x) + \theta_1
\end{align*}
\]
Cov(x, y_2) = \beta_2 \beta_1 \text{Var}(x) \\
Cov(x, y_1) = \beta_1 \text{Var}(x) \\
Cov(y_1, y_2) = \beta_2 \beta_1^2 \text{Var}(x) + \beta_2 \theta_1 \\
\text{Var}(y_1) = \beta_1^2 \text{Var}(x) + \theta_1

Now using the Schur compliment:

\begin{align*}
\text{Cov}(x, y_2 \mid y_1) &= \text{Cov}(x, y_2) - \\
&= \beta_2 \beta_1 \text{Var}(x) - \frac{\beta_1 \text{Var}(x)(\beta_2 \beta_1^2 \text{Var}(x) + \beta_2 \theta_1)}{\beta_1^2 \text{Var}(x) + \theta_1} \\
&= \beta_2 \beta_1 \text{Var}(x) - \beta_2 \beta_1 \text{Var}(x) \frac{\beta_1^2 \text{Var}(x) + \theta_1}{\beta_1^2 \text{Var}(x) + \theta_1} \\
&= \beta_2 \beta_1 \text{Var}(x) - \beta_2 \beta_1 \text{Var}(x) \\
&= 0
\end{align*}
\[\text{Cov}(x_1, x_2) = 0 \]
\[\text{Cov}(x_1, y) = \beta_1 \text{Var}(x_1) \]
\[\text{Cov}(x_2, y) = \beta_2 \text{Var}(x_2) \]
\[\text{Var}(y) = \theta + \beta_1^2 \text{Var}(x_1) + \beta_2^2 \text{Var}(x_2) \]
\[\text{Cov}(x_1, x_2) = 0 \]
\[\text{Cov}(x_1, y) = \beta_1 \text{Var}(x_1) \]
\[\text{Cov}(x_2, y) = \beta_2 \text{Var}(x_2) \]
\[\text{Var}(y) = \theta + \beta_1^2 \text{Var}(x_1) + \beta_2^2 \text{Var}(x_2) \]

Now using the Schur compliment:

\[\text{Cov}(x_1, x_2 \mid y) = \text{Cov}(x_1, x_2) - \text{Cov}(x_1, y) \text{Var}(y)^{-1} \text{Cov}(x_2, y) \]
\[= 0 - \frac{\beta_1 \text{Var}(x_1) \beta_2 \text{Var}(x_2)}{\theta + \beta_1^2 \text{Var}(x_1) + \beta_2^2 \text{Var}(x_2)} \]
\[= \begin{cases} < 0 & \text{if sign}(\beta_1) = \text{sign}(\beta_2) \\ > 0 & \text{if sign}(\beta_1) \neq \text{sign}(\beta_2) \end{cases} \]
Psychological Networks in Clinical Populations: A tutorial on the consequences of Berkson's Bias

AUTHORS
Jill de Roe, Elko Fried, Sacha Epkskamp

DATE
CREATED ON January 15, 2019
LAST EDITED January 15, 2019

ABSTRACT
In clinical research, populations are often selected on the sum-score of diagnostic criteria, i.e., symptoms. Estimating statistical models where a subset of the data is selected based on a function of the analyzed variables introduces Berkson's bias, which presents a potential threat to the validity of findings in the clinical literature. The aim ...