SEM 2: Structural Equation Modeling Week 3 - Causality & DAGs

Sacha Epskamp

Given the following causal statement:

Exercising leads to a higher heart rate

Given the following causal statement:

Exercising leads to a higher heart rate

Which of the below statements are plausible?

► If you are not exercising, your heart rate must be low

Given the following causal statement:

Exercising leads to a higher heart rate

- ▶ If you are not exercising, your heart rate must be low
 - ▶ If you are exercising, your heart rate must be high

Exercising leads to a higher heart rate

- ▶ If you are not exercising, your heart rate must be low
- ▶ If you are exercising, your heart rate must be high
- ▶ If you are exercising, your heart rate is likely to be higher than if you are not exercising

Exercising leads to a higher heart rate

- ▶ If you are not exercising, your heart rate must be low
- ▶ If you are exercising, your heart rate must be high
- ▶ If you are exercising, your heart rate is likely to be higher than if you are not exercising
- If your heart rate is high, you must be exercising

Exercising leads to a higher heart rate

- ▶ If you are not exercising, your heart rate must be low
- ▶ If you are exercising, your heart rate must be high
- ▶ If you are exercising, your heart rate is likely to be higher than if you are not exercising
- ▶ If your heart rate is high, you must be exercising
- ▶ If we see that you are exercising, we can predict your heart rate to be higher than average

Exercising leads to a higher heart rate

- ▶ If you are not exercising, your heart rate must be low
- ▶ If you are exercising, your heart rate must be high
- ▶ If you are exercising, your heart rate is likely to be higher than if you are not exercising
- ▶ If your heart rate is high, you must be exercising
- ▶ If we see that you are exercising, we can predict your heart rate to be higher than average
- If we see that you have a high heart rate, we can predict that you are exercising

Implies:

- Observing that you are exercising makes it more likely that you have a higher heart rate
 - \triangleright $\mathcal{E}(\text{heart rate} \mid \text{See}(\text{exercising})) > \mathcal{E}(\text{heart rate})$

Implies:

- Observing that you are exercising makes it more likely that you have a higher heart rate
 - \triangleright $\mathcal{E}(\text{heart rate} \mid \text{See}(\text{exercising})) > \mathcal{E}(\text{heart rate})$
- Observing that you have a high heartrate makes it more likely you are exercising a lot
 - \triangleright $\mathcal{E}(\text{exercising} \mid \text{See}(\text{high heart rate})) > \mathcal{E}(\text{exercising})$

Implies:

- Observing that you are exercising makes it more likely that you have a higher heart rate
 - \triangleright $\mathcal{E}(\text{heart rate} \mid \text{See}(\text{exercising})) > \mathcal{E}(\text{heart rate})$
- ► Observing that you have a high heartrate makes it more likely you are exercising a lot
 - $\mathcal{E}(\text{exercising} \mid \text{See}(\text{high heart rate})) > \mathcal{E}(\text{exercising})$
- ▶ But *making* your heart rate high does not make you exercise!
 - $ightharpoonup \mathcal{E}(\mathsf{exercising} \mid \mathsf{Do}(\mathsf{high} \; \mathsf{heart} \; \mathsf{rate})) = \mathcal{E}(\mathsf{exercising})$

Implies:

- Observing that you are exercising makes it more likely that you have a higher heart rate
 - \triangleright $\mathcal{E}(\text{heart rate} \mid \text{See}(\text{exercising})) > \mathcal{E}(\text{heart rate})$
- Observing that you have a high heartrate makes it more likely you are exercising a lot
 - \triangleright $\mathcal{E}(\text{exercising} \mid \text{See}(\text{high heart rate})) > \mathcal{E}(\text{exercising})$
- ▶ But making your heart rate high does not make you exercise!
 - $ightharpoonup \mathcal{E}(\mathsf{exercising} \mid \mathsf{Do}(\mathsf{high} \; \mathsf{heart} \; \mathsf{rate})) = \mathcal{E}(\mathsf{exercising})$

Unfortunately, in observational data (especially without temporal ordering), we can only investigate what happens if we see one variable (conditioning)...

Implies:

- Observing that you are exercising makes it more likely that you have a higher heart rate
 - \triangleright $\mathcal{E}(\text{heart rate} \mid \text{See}(\text{exercising})) > \mathcal{E}(\text{heart rate})$
- Observing that you have a high heartrate makes it more likely you are exercising a lot
 - \triangleright $\mathcal{E}(\text{exercising} \mid \text{See}(\text{high heart rate})) > \mathcal{E}(\text{exercising})$
- ▶ But making your heart rate high does not make you exercise!
 - $ightharpoonup \mathcal{E}(\mathsf{exercising} \mid \mathsf{Do}(\mathsf{high} \; \mathsf{heart} \; \mathsf{rate})) = \mathcal{E}(\mathsf{exercising})$

Unfortunately, in observational data (especially without temporal ordering), we can only investigate what happens if we see one variable (conditioning)...

Solution: More variables and more advanced causal models imply more testable hypotheses (conditional independence relations)!

Directed Acyclic Graphs

Building blocks of a DAG

Common Cause

Example: Disease (B) causes two symptoms (A and C).

$$A \perp \!\!\! \perp C$$

 $A \perp \!\!\! \perp C \mid B$

Chain

Example: Insomnia (A) causes fatigue (B), which in turn causes concentration problems (C)

$$A \perp \!\!\! \perp C$$

 $A \perp \!\!\! \perp C \mid B$

Collider

Example: Difficulty of class (A) and motivation of student (C) cause grade on a test (B)

$$A \perp \!\!\! \perp C$$

 $A \perp \!\!\! \perp C \mid B$

- ► A ⊥⊥ B
- ► A ⊥⊥ D | C
- ▶ *B* ⊥⊥ *G* | *C*, *E*
- **.**..

Testing this causal model involves testing if all these conditional independence relations hold