SEM 1: Confirmatory Factor Analysis
Week 4 - Missing data

Sacha Epskamp

2020
Why are data missing? In a general X predicts Y case:

- **Missing completely at random (MCAR)**
 - Missingness is independent of Y or X
 - Everything is fine!

- **Missing at random (MAR)**
 - Missingness is independent of Y, but not of X
 - Example: Men less willing to respond to mental health questionnaire
 - Not a big problem

- **Missing not at random (MNAR)**
 - Missingness depends on Y
 - Example: People with severe mental health problems fill in less questionnaires
 - This is bad :(

Unfortunately, there is no way to know exactly how your data is missing.
Missing completely at random (MCAR)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Regression based on observed data

Regression based on all data
Missing at random (MAR)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Regression based on observed data
Regression based on all data
Missing not at random (MNAR)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Regression based on observed data
Regression based on all data
“Older” methods of handling missing data:

- **Compute SSS using listwise deletion**
 - Assumes MCAR
 - Delete all rows with a missing value
 - Downside: deletes observed data

- **Compute SSS using pairwise estimation**
 - Assumes MAR
 - Estimate each element of SSS using all available data
 - Downside: Each covariance is based on different n and variance–covariance matrix might not be positive definite

- **(Multiple) inputations**
 - Assumes MAR
 - Inpute missingness using mean scores or regression models
 - Downside: complicated, can increase bias if MNAR
“Older” methods of handling missing data:

- Compute S using listwise deletion
 - Assumes MCAR
 - Delete all rows with a missing value
 - Downside: deletes observed data

- (Multiple) inputations
 - Assumes MAR
 - Inpute missingness using mean scores or regression models
 - Downside: can increase bias if MNAR
“Older” methods of handling missing data:

- Compute S using **listwise** deletion
 - Assumes MCAR
 - Delete all rows with a missing value
 - Downside: deletes observed data

- Compute S using **pairwise** estimation
 - Assumes MAR
 - Estimate each element of S using all available data
 - Downside: Each covariance is based on different n and variance–covariance matrix might not be positive definite
“Older” methods of handling missing data:

- **Compute S using listwise deletion**
 - Assumes MCAR
 - Delete all rows with a missing value
 - Downside: deletes observed data

- **Compute S using pairwise estimation**
 - Assumes MAR
 - Estimate each element of S using all available data
 - Downside: Each covariance is based on different n and variance–covariance matrix might not be positive definite

- **(Multiple) inputations**
 - Assumes MAR
 - Inpute missingness using mean scores or regression models
 - Downside: complicated, can increase bias if MNAR
Full-information maximum likelihood (FIML):

- Compute likelihood for each person or each data subset with the same missingness pattern
- Assumes MAR
- Uses the full data set and all observations
- Downside: full data needed (analysis can not be done using covariance matrix)
- Implemented in most software (e.g., lavaan, Mplus, psychonetrics)
 - Use missing = "FIML" in lavaan or estimator = "FIML" in psychonetrics
FIML estimator in *psychonetrics* for every subset of data \(i \) with same missingness pattern:

\[
F_{\text{FIML}} = \frac{1}{n} \sum_i n_i \left(\text{trace} \left(S_i \Sigma_i^{-1} \right) + (\bar{y}_i - \mu_i)^\top \Sigma_i^{-1} (\bar{y}_i - \mu_i) - \ln |\Sigma_i^{-1}| \right)
\]

- \(n_i \): sample size of subset \(i \)
- \(S_i \): sample covariances (ML) of subset \(i \) (note, \(S_i = O \) if \(n_i = 1 \))
- \(\bar{y}_i \): sample means of of subset \(i \) (note, same as the observed score if \(n_i = 1 \))
- \(\Sigma_i \): Subset of \(\Sigma \) containing only elements of observed data in subset \(i \)
- \(\mu_i \): Subset of \(\mu \) containing only elements of observed data in subset \(i \)

Downside: saturated model needs to be computed as well.
Assumptions of maximum likelihood estimation

1. Independence: Observations are a simple random sample from some population
 ▶ Consequence: underestimated standard errors, inflated Type-I error rates
 ▶ Solution 1: use SE correction for dependence structure
 ▶ Solution 2: multilevel SEM

2. Multivariate Normality: Variables are univariate normally distributed at levels of all other variables, residuals are normal and homoscedastic, latent variables are normal, bivariate relations are linear
 ▶ Consequence: standard errors are incorrect (probably too low), \(\chi^2 \) test value is not accurate (probably too high)
 ▶ Solution 1: use “robust” standard errors (estimator = 'MLM', with complete data; estimator = 'MLR' with incomplete data)
 ▶ Solution 2: use bootstrapped standard errors & test statistic