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Mean structure

ΣΣΣ = ΛΛΛΨΨΨΛΛΛ> + ΘΘΘ

µµµ = τττ + ΛΛΛααα

• τττ can cancel ααα out, hence we need to identify ααα = 000

• Number of parameters: p(p + 1)/2 variances and covariances
and p means!

• Number of parameters: p intercepts in τττ

• p more observations, and p more parameters. This is why we
normally ignore means!
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Steps to assess measurement invariance:

• Configural invariance: Is the configuration of the model the
same?

• Weak Invariance: Are factor loadings the same?

• Strong Invariance: Are the intercepts the same?

• Strict Invariance: Are the residual variances the same?
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Sample Size

How big is ‘big enough’?

• n : q ratio should be high
• Theory: to efficiently estimate lots of parameters, a larger

sample is needed (5-10 per parameter)
• There’s very little evidence that it matters (Jackson, 2003)
• This ratio is less important than absolute sample size

• n ≈ 200 people
• This is median SEM sample size (Shah & Goldstein, 2006)
• Appropriate for an average model with ML estimation
• Other recommendations: 100-200 people minimum

• Use larger n if:
• Assumptions are violated (e.g., data are nonnormal)
• Model is complex (e.g., latent interactions, multilevel

structure)
• Indicators have low reliability (factor loadings are low)
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Power for Test of (Not-)Close Fit

• RMSEA estimates a population value
• Its sampling distribution has been worked out
• So we can put a confidence interval around it
• This confidence interval allows us to ask whether RMSEA is

significantly different from a specified value

• If the population model fit is NOT CLOSE, what is power to
reject H0 by the test of close fit?

• If the population model fit is CLOSE, what is power to reject
H0 by the test of not-close fit?

• Method described in MacCallum et al. (1996) is implemented
in online calculators:

• Power and minimum sample size for RMSEA:
http://quantpsy.org/rmsea/rmsea.htm

• Power curves for RMSEA:
http://quantpsy.org/rmsea/rmseaplot.htm

• See also findRMSEAsamplesize in semTools

http://quantpsy.org/rmsea/rmsea.htm
http://quantpsy.org/rmsea/rmseaplot.htm
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• Sample size required to reject a null hypothesis with
probability β = 0.8 can be computed

• Sample size required to reject RMSEA < 0.05 if the true
RMSEA = 0.8 and DF = 20

• Test for close fit, which we wish to reject if true RMSEA is high

library("semTools")

findRMSEAsamplesize(rmsea0=.05, rmseaA=.08, df=20, power=0.80)

## [1] 434

• Sample size required to reject RMSEA > 0.05 if the true
RMSEA = 0.1 and DF = 20

• Test for not-close fit, which we wish to reject if true RMSEA is
low

findRMSEAsamplesize(rmsea0=.05, rmseaA=.01, df=20, power=0.80)

## [1] 474
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Ordinal data

• If data is ordinal and consists of only a few levels of
measurement data cannot be assumed normal

• Roughly less than five categories. Rhemtulla, M.,
Brosseau-Liard, P. É., & Savalei, V. (2012). When can
categorical variables be treated as continuous? A comparison
of robust continuous and categorical SEM estimation methods
under suboptimal conditions. Psychological methods, 17(3),
354–373.

• In this case threshold models should be used

• Then, it is assumed that underlying the response is a latent
item that is normally distributed

• The covariance between this latent items and other such
latent items or other continuous items can be estimated

• Polychoric correlation if both variables are ordinal
• Polyserial correlation if one item is ordinal and the other is

continuous
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I see myself as someone who is talkative
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0 1 2 3
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set.seed(1)

# Setup:

sampleSize <- 1000

cor <- 0.5

thresh1 <- c(-2,0,2)

thresh2 <- c(-1,0.5,1.6)

# Generate data:

library("mvtnorm")

corMat <- matrix(c(1,0.5,0.5,1),2,2)

Data <- as.data.frame(rmvnorm(sampleSize, sigma = corMat))

# Make catagorical:

Data[,1] <- as.numeric(cut(Data[,1],breaks = c(-Inf,thresh1,Inf)))

Data[,2] <- as.numeric(cut(Data[,2],breaks = c(-Inf,thresh2,Inf)))
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# Pearson correlation:

cor(Data[,1], Data[,2])

## [1] 0.4076942

# Polychoric correlation:

library("lavaan")

DataOrdered <- Data

DataOrdered[,1] <- ordered(Data[,1])

DataOrdered[,2] <- ordered(Data[,2])

lavCor(DataOrdered)

## V1 V2

## V1 1.000

## V2 0.499 1.000
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Polychoric correlations

• Lavaan will automatically treat variables that are made
ordered factors via ordered() as ordinal variables and will
include thresholds

• Alternatively, the | operator can be used to define thresholds

• Polychoric and polyserial correlations relax the assumption of
normality. However, they can sometimes go wrong!

• The crosstable should not have zero elements!

• When testing measurement invariance, now the thresholds
need to be equated instead of intercepts
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No thresholds:

table(Data)

## V2

## V1 1 2 3 4

## 1 17 16 2 0

## 2 123 266 77 8

## 3 20 233 168 42

## 4 2 6 13 7

Zeroes.. So a bit dangerous!
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No thresholds:

Model <- '

Fa =~ a

fb =~ b

Fa ~~ fb

'

names(Data) <- c("a","b")

fit <- cfa(Model, Data, std.lv = TRUE)

parameterEstimates(fit)

## lhs op rhs est se z pvalue ci.lower ci.upper

## 1 Fa =~ a 0.613 0.014 44.721 0 0.586 0.640

## 2 fb =~ b 0.778 0.017 44.721 0 0.744 0.812

## 3 Fa ~~ fb 0.408 0.026 15.463 0 0.356 0.459

## 4 a ~~ a 0.000 0.000 NA NA 0.000 0.000

## 5 b ~~ b 0.000 0.000 NA NA 0.000 0.000

## 6 Fa ~~ Fa 1.000 0.000 NA NA 1.000 1.000

## 7 fb ~~ fb 1.000 0.000 NA NA 1.000 1.000
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Thresholds:

Model <- '

a ~~ b

a | t1 + t2 + t3

b | t1 + t2 + t3

'

names(Data) <- c("a","b")

fit <- cfa(Model, Data)

parameterEstimates(fit)

## lhs op rhs est se z pvalue ci.lower ci.upper

## 1 a ~~ b 0.499 0.029 17.143 0.000 0.442 0.556

## 2 a | t1 -1.812 0.075 -24.079 0.000 -1.959 -1.664

## 3 a | t2 0.023 0.040 0.569 0.569 -0.055 0.100

## 4 a | t3 1.911 0.081 23.524 0.000 1.752 2.070

## 5 b | t1 -0.986 0.048 -20.753 0.000 -1.079 -0.893

## 6 b | t2 0.476 0.041 11.519 0.000 0.395 0.557

## 7 b | t3 1.580 0.064 24.653 0.000 1.455 1.706

## 8 a ~~ a 1.000 0.000 NA NA 1.000 1.000

## 9 b ~~ b 1.000 0.000 NA NA 1.000 1.000

## 10 a ~*~ a 1.000 0.000 NA NA 1.000 1.000

## 11 b ~*~ b 1.000 0.000 NA NA 1.000 1.000

## 12 a ~1 0.000 0.000 NA NA 0.000 0.000

## 13 b ~1 0.000 0.000 NA NA 0.000 0.000
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Or use data with ordered columns:

Model <- '

a ~~ b

'

names(DataOrdered) <- c("a","b")

fit <- cfa(Model, DataOrdered)

parameterEstimates(fit)

## lhs op rhs est se z pvalue ci.lower ci.upper

## 1 a ~~ b 0.499 0.029 17.143 0.000 0.442 0.556

## 2 a | t1 -1.812 0.075 -24.079 0.000 -1.959 -1.664

## 3 a | t2 0.023 0.040 0.569 0.569 -0.055 0.100

## 4 a | t3 1.911 0.081 23.524 0.000 1.752 2.070

## 5 b | t1 -0.986 0.048 -20.753 0.000 -1.079 -0.893

## 6 b | t2 0.476 0.041 11.519 0.000 0.395 0.557

## 7 b | t3 1.580 0.064 24.653 0.000 1.455 1.706

## 8 a ~~ a 1.000 0.000 NA NA 1.000 1.000

## 9 b ~~ b 1.000 0.000 NA NA 1.000 1.000

## 10 a ~*~ a 1.000 0.000 NA NA 1.000 1.000

## 11 b ~*~ b 1.000 0.000 NA NA 1.000 1.000

## 12 a ~1 0.000 0.000 NA NA 0.000 0.000

## 13 b ~1 0.000 0.000 NA NA 0.000 0.000
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Why are data missing? In a general X predicts Y case:

• Missing completely at random (MCAR)
• Missingness is independent of Y or X
• Everything is fine!

• Missing at random (MAR)
• Missingness is independent of Y , but not of X
• Example: Men less willing to respond to mental health

questionnaire
• Not a big problem

• Missing not at random (MNAR)
• Missingness depends on Y
• Example: People with severe mental health problems fill in less

questionnaires
• This is bad :(

Unfortunatly, there is no way to know how your data is
missing.
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A dataset:

X Y

5 5
6 5
5 6
8 5
6 7
7 7
6 9
9 8
9 9

12 9
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A larger dataset:
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Missing completely at random (MCAR):

X Y

5 5
6 5
5 6
8 5
6 7
7 7
6 9
9 8
9 9

12 9
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MCAR
A larger dataset:
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Missing at random (MAR):

X Y

5 5
6 5
5 6
8 5
6 7
7 7
6 9
9 8
9 9

12 9
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MAR
A larger dataset:
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Missing not at random (MNAR):

X Y

5 5
6 5
5 6
8 5
6 7
7 7
6 9
9 8
9 9

12 9
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MNAR

−2 −1 0 1 2

−
2

−
1

0
1

2

X

Y

Blue = observed



Recap Ordinal data Missing data Higher order factor models Exploratory factor analysis Conclusion

Missing data

• Best case: no missings

• MCAR or MAR: this is ok

• MNAR: This is not ok

• Unfortunatly, no real statistical way to checking if missings are
MNAR

• Thus, MAR needs to be assumed to continue
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Old ways of handling missing data

• Compute SSS using list-wise deletion
• Delete all rows with a missing value
• Downside: deletes observed data

• Compute SSS using pair-wise estimation
• Estimate each element of SSS using all available data
• Downside: Each covariance is based on different n

• (multiple) inputations
• Inpute missingness using mean scores or regression models
• Downside: complicated, can increase bias if MNAR
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Modern way: full-information maximum likelihood (FIML)

• Uses the full data set and all observations

• Downside: full data needed (analysis can not be done using
covariance matrix)

• Assumes MAR

fit <- cfa(model, data, missing = "FIML")
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Assumptions of ML

1. Independence: Observations are a simple random sample from
some population

• Consequence: underestimated standard errors, inflated Type-I
error rates

• Solution 1: use SE correction for dependence structure
• Solution 2: multilevel SEM

2. Multivariate Normality: Variables are univariate normally
distributed at levels of all other variables, residuals are normal
and homoscedastic, latent variables are normal, bivariate
relations are linear

• Consequence: standard errors are incorrect (probably too low),
Type-I error rate is not accurate (probably too high)

• Solution 1: use robust standard errors (estimator = 'MLM',
with complete data; estimator = 'MLR' with incomplete
data

• Solution 2: use bootstrapped standard errors & test statistic
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Higher order models
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Higher order models

Mathematically, simply a second factor model on the latent
variable variance–covariance matrix:

ΨΨΨ = ΛΛΛ∗ΨΨΨ∗ΛΛΛ∗> + ΘΘΘ∗

Same rules of identification apply:

• The higher order factor must be scaled (one factor loading or
the variance fixed to 1)

• The number of variances and covariances in ΨΨΨ must be at
least as much as the number of parameters used to model ΨΨΨ
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Bi-factor models

• Uncorrelated factors in combination with an uncorrelated
bifactor

• Higher order model is nested in the bi-factor model

• Increasingly popular, but hard to interpret
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Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H.,
Israel, S., ... & Moffitt, T. E. (2014). The p factor: one general
psychopathology factor in the structure of psychiatric disorders?. Clinical
Psychological Science, 2(2), 119-137.
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Latent growth models
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Latent growth models
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Exploratory Factor Analysis (EFA)

Exploratorily estimate ΛΛΛ (no free elements in ΛΛΛ):

ΣΣΣ = ΛΛΛΨΨΨΛΛΛ> + ΘΘΘ

Very close, but not the same (!!) as principal component analysis
(PCA):

ΣΣΣ = ΛΛΛΨΨΨΛΛΛ>

Very different interpretation. EFA measures latents (there is
measurement error), PCA only summarizes the data.
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y1

y2

y3

y4

y5

y6

η

Formative (PCA)

y1

y2

y3

y4

y5

y6

η

Reflective (EFA)
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Exploratory Factor Analysis (EFA)

If ΛΛΛ is not somehow constrained, latent variable variance is not
identified. We can arbitrarily add rotation matrices TTT and not
change the decomposition:

ΣΣΣ = ΛΛΛTTTTTT−1ΨΨΨTTT−1>TTT>ΛΛΛ> + ΘΘΘ

Can be seen as a different factor model with ΛΛΛ∗ = ΛΛΛTTT and
ΨΨΨ∗ = TTT−1ΨΨΨTTT−1>. To this end, in estimation one can assume
uncorrelated factors, ΨΨΨ = III . Afterwards, rotation methods can be
used to obtain simple structure for ΛΛΛ while possibly allowing
factors to correlate:

• orthogonal (varimax): axes remain orthogonal, independent

• oblique (promax/oblimin): axes become correlated

I always use promax.
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Choosing the number of Factors is a bit more involved than PCA

• One method involves checking how many eigenvalues in
SSS − Θ̂ΘΘ are above 0

• Θ̂ΘΘ is then estimated using a 1-factor model

• Parallel analysis takes sampling variation into account, and
checks how many eigenvalues are statistically above what can
be expected given an independence model
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BFI example

library("psych")

##

## Attaching package: ’psych’

## The following object is masked from ’package:semTools’:

##

## skew

## The following object is masked from ’package:lavaan’:

##

## cor2cov

# Load data:

data(bfi)

bfiSub <- bfi[,1:25]

# Correlations:

corMat <- cor(bfiSub, use = "pairwise.complete.obs")

N <- nrow(bfiSub)
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fa.parallel(corMat, N, fa = "fa")

## Parallel analysis suggests that the number of factors = 6 and the number of components = NA
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## Loading required namespace: GPArotation
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• When data are ordinal, polychoric and polyserial correlations
can be computed

• Missing data needs assumption of missing at random (MAR)

• Advanced CFA models:
• Higher-order models
• Bi-factor models
• Latent growth models

• Exploratory factor analysis can be used when no prior theory is
available
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