Assignment 1

SEM 1: Confirmatory Factor Analysis

Please hand in a .pdf file containing your answers and, if applicable, a .R, .Rmd (compile to PDF) or Rnw file containing your codes. The deadline of this assignment is Wednesday April 12 11:00.

Questions

Given the general CFA framework:

$$y_i = \Lambda \eta_i + \varepsilon_i$$

$$y \sim N(\mathbf{0}, \boldsymbol{\Sigma})$$

$$\eta \sim N(\mathbf{0}, \boldsymbol{\Psi})$$

$$\varepsilon \sim N(\mathbf{0}, \boldsymbol{\Theta}),$$

Let:

$$\mathbf{\Lambda} = \begin{bmatrix} 0.7\\0.7\\0.7\\0.7 \end{bmatrix}, \mathbf{\Theta} = \begin{bmatrix} 0.51\\0&0.51\\0&0&0.51 \end{bmatrix}$$

(note that upper-triangular elements of Θ are also zero, but not shown for notational clarity because Θ is symmetrical).

Question 1 (1 point) Compute $\Lambda\Lambda^{\top}$ by hand. Verify your work in R.

Suppose the implied variance-covariance matrix equals:

$$\Sigma = \Lambda \Lambda^{+} + \Theta$$

Question 2 (1 point) Compute Σ by hand. Verify your work in R.

Question 3 (1 point) What is the value of the implied variance, Ψ , of the single latent variable in this model? To what form of *scaling* does this value relate?

Question 4 (1 point) How much variance is explained by the latent variable in the first variable y_1 ?

Now let:

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_{11} \\ \lambda_{21} \\ \lambda_{31} \\ \lambda_{41} \end{bmatrix}$$
$$\mathbf{\Theta} = \begin{bmatrix} \theta_{11} \\ 0 \\ \theta_{22} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\mathbf{\Theta} = \begin{bmatrix} \theta_{13} \\ 0 \\ \theta_{22} \\ \theta_{33} \\ 0 \\ 0 \end{bmatrix}$$

 Question 5 (1 point)
 Draw a path diagram for this model.

 Question 6 (2 points)
 Derive an expression for each element of Σ.

 Question 7 (1 point)
 How many degrees of freedom does this model have? Is it identified?

Now let:

$$\mathbf{\Lambda} = \begin{bmatrix} 0.7 & 0 \\ 0.7 & 0 \\ 0.7 & 0 \\ 0 & 0.7 \\ 0 & 0.7 \end{bmatrix}$$
$$\mathbf{\Psi} = \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}$$
$$\mathbf{\Theta} = \begin{bmatrix} 0.51 & & & \\ 0 & 0.51 & & \\ 0 & 0 & 0.51 \\ 0 & 0 & 0 & 0.51 \\ 0 & 0 & 0 & 0 & 0.51 \\ 0 & 0 & 0 & 0 & 0.51 \end{bmatrix}$$
$$\mathbf{\Sigma} = \mathbf{\Lambda} \mathbf{\Psi} \mathbf{\Lambda}^{\top} + \mathbf{\Theta}$$

Question 8 (1 point) Compute Σ .

Now let:

$$\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{\Psi} = \begin{bmatrix} 0.490 & 0.147 \\ 0.147 & 0.490 \end{bmatrix}$$
$$\mathbf{\Theta} = \begin{bmatrix} 0.51 & & & \\ 0 & 0.51 & & \\ 0 & 0 & 0.51 & & \\ 0 & 0 & 0 & 0.51 & \\ 0 & 0 & 0 & 0 & 0.51 \\ 0 & 0 & 0 & 0 & 0.51 \end{bmatrix}$$
$$\mathbf{\Sigma} = \mathbf{\Lambda} \mathbf{\Psi} \mathbf{\Lambda}^{\top} + \mathbf{\Theta}$$

Suppose we observe:

 $\boldsymbol{S} = \begin{bmatrix} 1.03 \\ 0.49 & 1.02 \\ 0.52 & 0.49 & 1.05 \\ 0.63 & 0.14 & 0.15 & 0.97 \\ 0.10 & 0.18 & 0.13 & 0.45 & 0.97 \\ 0.15 & 0.18 & 0.13 & 0.49 & 0.50 & 1.02 \end{bmatrix}$

Question 10 (2 points) Compute F_{ML} . Tips: In is the natural logarithm operator. In R, log(x) gives the natural logarithm of x, det(x) gives the determinent of x and sum(diag(x)) gives the trace of x.

3

Question 11 (2 points) Compare your computed Σ to the observed S. Do you think the model fits well? Is there a parameter you can think of to add to improve model fit?

Given the following path diagram:

Challenge Question

This question is **bonus**, and can lead to one bonus point! Consider the following model:

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_{11} \\ \lambda_{21} \\ \lambda_{31} \end{bmatrix}$$
$$\mathbf{\Psi} = \begin{bmatrix} 1 \end{bmatrix}$$
$$\mathbf{\Theta} = \begin{bmatrix} \theta_{11} \\ 0 & \theta_{22} \\ 0 & 0 & \theta_{33} \end{bmatrix}$$
$$\mathbf{\Sigma} = \mathbf{\Lambda}\mathbf{\Lambda}^{\top} + \mathbf{\Theta}$$

This model is already identified. Suppose we observed the *maximum likelihood estimator* sample variance–covariance matrix *S*:

$$\boldsymbol{S} = \begin{bmatrix} 1.01 & 0.50 & 0.50 \\ 0.50 & 1.01 & 0.47 \\ 0.50 & 0.47 & 0.95 \end{bmatrix}$$

Question 15 (1 point) Use optim() in R to estimate the Λ and Θ matrices by minimizing F_{ML} . You can assume all parameters are positive. Lavaan gives the following solution to the parameters:

lhs	ор	rhs	est	se	z	pvalue	<pre>ci.lower</pre>	ci.upper
Eta	=~	Y1	0.730	0.034	21.490	0	0.663	0.796
Eta	=~	Y2	0.685	0.034	20.347	0	0.619	0.751
Eta	=~	Y3	0.690	0.033	20.963	0	0.625	0.754
Y1	~~	Y1	0.477	0.036	13.086	0	0.406	0.548
Y2	~~	Y2	0.538	0.035	15.169	0	0.468	0.607
Y3	~~	Y3	0.478	0.034	14.081	0	0.412	0.545
Eta	~~	Eta	1.000	0.000	NA	NA	1.000	1.000

But Lavaan uses a different optimizer, so your results should be comparable, but may not be identical.