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2. Research proposal 

 
2a. Proposed research 
 
Subject and aim of the research 
 
The aim of this project is to combine three lines of research in network psychometrics: 
(1) generalized network psychometrics (GNP; [27]), allowing for combining network 
models with latent variable models, (2) multi-level network estimation, allowing for sepa-
rating intra-individual and inter-individual network structures, and (3) bootstrap stability 
measures, allowing to assess the accuracy and stability of results. The project will com-
bine these lines of research in two ways: (I) multi-level GNP for intra-individual models, 
and (II) accuracy standards for interpreting GNP results. 
 
 
Current state of knowledge in the field 
 

The network perspective on psychology conceptualizes observed variables (e.g., 
attitudes, symptoms, and moods) as causal agents in a complex interplay of psychologi-
cal, biological, sociological and other components [4,5,14]. The field of network psycho-
metrics aims to estimate network models from psychological datasets in an attempt to 
map out this complex interplay [26]. These network models visualize observed variables 
as nodes and the strength of conditional association between two variables after control-
ling for all other variables as links [22]. Network models are powerful tools to discover 
psychological dynamics, map out multicollinearity and predictive effects [29], approxi-
mate the joint likelihood of observed variables [26,47], and to extend latent variable 
modeling [27,37,52]. Several software packages have been developed to facilitate re-
search in estimating these models, assessing their accuracy and visualizing the results 
[23,22,18,19,24,39,60]. Network Psychometrics is utilized in different research fields 
[36], such as depression [9,35,56], post-traumatic stress [1,33,48,49], schizophrenia 
[2,41,40,51,59], comorbidity [3,7,53], autism [17,54], personality [11,12,13], attitude 
formation [15,16], intelligence research [42,57,58], health sciences [43,45], and clinical 
practice [28,30,44]. 

When data are continuous, the most commonly used network model is the Gauss-
ian graphical model [25,46], a network of partial correlation coefficients (Figure 1). For a 
set of variables, y, that are assumed normally distributed with mean vector ! and vari-
ance-covariance matrix !: 

 
! ~ !(!,!) 

 
the GGM can be modelled using the following psychometric model [27]: 
 

! = !(! −  !)!!!, 
 
in which ! is a diagonal scaling matrix, and ! is a square and symmetrical model-matrix 
including zeroes on the off-diagonal and partial correlation coefficients (encoding the 
network structure) on the off-diagonal elements. Degrees of freedom can be obtained by 
constraining elements of ! to zero; model-search algorithms or regularization techniques 
can be used to exploratively determine which elements of ! can be set to zero. Of note, 
the expression above is identical to inverting !, standardizing the result, and multiplying 
all off-diagonal elements by -1 [29].  
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 Several researchers have criticized the estimation of GGM models (and related 
network models) from data: 
 

1. Network models rely on the assumption that all causally interacting variables are 
observed without error. In psychological data, however, we may always assume a 
certain level of measurement error [31,55]. Network models currently cannot deal 
with this measurement error. 

2. While network modeling has been proposed as an alternative to latent variable 
modeling (i.e., covariation is caused by one or more unobserved common caus-
es), it has been suggested that the complete omission of latent variables may be 
one step too far [8,34,38]; it is well plausible that some unobserved common 
causes underlie the data even though a network structure also explains covaria-
tion. 

3. Network models are now often estimated from cross-sectional data. However, it 
has been suggested that such results are not reflective of within-person dynamics 
over time [6,50]. 

4. Network models, and especially derived descriptives such as centrality measures, 
may be unstable and poorly replicable in new samples [21,32,33]. 

 
In prior work, I have proposed solutions to all above-mentioned problems. The aim of 
this project is to bring these solutions together.  
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Figure 1. Estimated Gaussian graphical model ([20], chapter 1). Blue (red) links 
indicate positive (negative) partial correlations.  
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Solution 1: Generalized network psychometrics. Problems 1 and 2 can be overcome 
by combining network models with latent variable models (Figure 2). Suppose the ob-
served variables ! are reflective of a set unobserved causes ! (not including subject sub-
scripts for notational clarity): 
 

! =  !" +  !;  ! ~ ! !,! ;  ! ∼ ! !,! , 
 
in which ! denotes a factor-loadings matrix, ! a (typically fully populated) variance—
covariance matrix of latent variables that may be further modeled using structural effects 
(structural equation modeling; SEM) and ! a (typically diagonal) variance—covariance 
matrix of residuals. This expression is well known as a factor model. The GNP framework 
[27] suggests this framework can be extended in two ways. First, by modeling ! as a 
GGM: 
 

! = !!(! −  !!)!!!!, 
 
also termed latent network modeling (LNM). Second, by modeling ! as a GGM: 
 

! = !!(! −  !!)!!!!, 
 
also termed residual network modeling (RNM). The LNM framework offers a solution to 
problem 1 (measurement error), by modeling a network structure between latent varia-
bles. The RNM framework offers a solution to problem 2 (no latent variables), by allowing 
the inclusion of common causes and exploratory estimation of a sparse (many elements 
equal to zero) residual network !!. Of note, both frameworks also solve problems in la-
tent variable modeling: LNM allows for explorative structure estimation between latent 
variables, and RNM allows for the estimation of latent variable models where local inde-
pendence is structurally violated (a sparse !! may lead to a fully populated ! leading to 
all residuals to be correlated). Furthermore, GNP allows for confirmatory modeling of 
GGMs by not including a latent variable structure in the RNM. 

 
(a) Latent network model    (b) Residual network model 

 
Figure 2. Examples of generalized network psychometrics (GNP) models. 



Rubicon:  
Grant application form 2017  
(deadline 29 March 2018, 14.00 hrs. (2 PM) CE(S)T)  
 

Submit the application through:  
http://www.nwo.nl/en/funding/our-funding-instruments/nwo/rubicon/index.html Page 15 of 27 

 
Figure 3. Estimated network structures from time-series data of multiple subjects [29].  

 
Solution 2: Multi-level network modeling. To study general within-person dynamics 
in the population, a possible course of action is to gather time-series data of multiple 
subjects. The vector-autoregression (VAR) framework is now routinely applied to capture 
within-person dynamics over time in temporal network. Multi-level routines allow for es-
timating such models in multiple subjects, in order to gain insight in average effects in 
the population as well as individual differences in the network structures [10]. Recently, 
multi-level VAR estimation has been generalized to include GGMs at the contemporane-
ous and between-subject levels ([29]; figure 2). 
 
Solution 3: Bootstrapped stability and accuracy checks. Bootstrapping methods 
have been proposed, and are now commonly used, to assess the stability and accuracy of 
network structures [21], and derived descriptive statistics such as centrality indices 
quantifying the importance of nodes. While the GNP framework allows for confirmatory 
fit-indices of network models, these are typically good in explorative network studies and 
may not reflect instability of results. It has been shown that typical non-parametric boot-
strap routines are not suitable for centrality indices [21]. To this end, the correlation-
stability coefficient has been suggested as a measure for assessing the stability of indices 
while dropping cases from the analysis.  
  
Advancements in current state of knowledge 
 
While solutions to problems in network modelling have been proposed separately, the 
aim of this proposal is to bring these solutions together. This will advance the current 
state of knowledge in two separate projects: (I) developing multi-level GNP models, and 
(II) implementing bootstrapping methods for GNP models and deriving accuracy and sta-
bility standards using simulation studies.  
 
Project I1: Multi-level GNP Models. The first project will combine GNP models with 
multi-level SEM to obtain multi-level GNP models. This will allow researchers to disentan-
gle within- and between-subject variance in GNP models. Furthermore, multi-level mod-
elling allows one to estimate individual models per person, while borrowing information 
from other persons [29]. Extending GNP to multi-level modelling can be seen as a natu-
ral generalization of multi-level SEM in which not marginal (residual or latent) covari-
ances are modelled, but rather partial covariances are modelled. In this project, large-
scale simulation studies will be performed to assess the performance of multi-level GNP 
and to provide guidelines for empirical researchers in terms of sample size and number of 
variables needed to perform such an analysis.  
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Project II: Stability and accuracy standards for GNP models. The second project 
will focus on determining stability and accuracy standards for GNP models (both regular 
and multi-level). The advancements of this project will mostly be practical: current soft-
ware for estimating GNP models is slow and does not lend itself easily for bootstrapping 
methods. In addition, feasibility standards, such as the suggested correlation-stability 
coefficient levels for regular network models [21], need to be determined for the stability 
and accuracy of GNP models. In this project, software to estimate GNP models will be 
improved to estimate GNP models faster, and bootstrapping routines will be implemented 
to assess the accuracy and stability of GNP models. Large-scale simulation studies will be 
used to determine standards for interpreting results from GNP models to be stable.  
 
Innovative aspect of research proposal 
 
This Rubicon project proposes innovative applications of an already novel modelling 
framework. Both the multi-level extensions as well as the bootstrapping methods for as-
sessing stability will prove valuable in further fleshing out GNP methodology and making 
this promising framework readily useable to answer questions researchers are interested 
in.  
 
 
Research method(s) to be used 
 
The proposed projects are methodological studies to extend a methodological framework. 
To this end, the projects will mainly use technical derivations to derive the mathematical 
background of the proposed modelling framework, programming to implement the pro-
posed methods in accessible software packages, and simulation studies to assess the 
performance of proposed methods in practice.  
 
 
Means of publication/dissemination of research results 
 
Project I will result in a technical paper aimed at psychometricians and methodologists 
and project II will result in a non-technical paper aimed at empirical researchers: 
 

I. A paper describing multi-level GNP models and how these can be estimated. 
II. A paper describing simulation studies to provide guidelines for the accuracy and 

stability of GNP models using bootstrapping methods. 
 

The applicant has been awarded the prestigious Psychometric Society dissertation 
prize 2018, which includes an invitation to submit an article to the flagship journal in 
psychometrics: Psychometrika. The deadline for this invitation is July 31, 2019, and the 
subject of the invited article is the dissertation of the applicant. This invited article is nat-
urally suited for the results from Project I, and will form the target publication for its re-
sults. Project II is aimed to be submitted to the well-known methodological journal Be-
havorial research methods by December 2019.  

In addition to the two papers, results will also be implemented in updates to existing 
R packages: the lvnet package for GNP models [19], and the bootnet package for boot-
strapping methods [24]. Finally, results will be presented at the International Meeting of 
the Psychometric Society (IMPS) in 2018 as well as through presentations at the Univer-
sity of California, Berkeley (UC:Berkeley) and University of California, Davis (UC:Davis). 
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Plan of activities (including research timetable and phasing) 
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