Psychological Networks

Should Probabilistic Graphical Models Be Analyzed as Networks?
Sacha Epskamp
University of Amsterdam

Why?
- Macroscopic psychological behavior not due to latent common causes
- Emergent behavior in a network of psychological, biological and sociological components\(^1,2\)

How?
- Networks need to be estimated from data!
- Current state-of-the-art: LASSO regularization or multi-level modeling
 - Markov random fields\(^3\) and vector auto-regression\(^4\)

Examples
- Personality\(^6\)
- Clinical Practice\(^5\)
- Psychopathology\(^6\)
- Psychiatry\(^7\)

Analyses
- Shortest paths\(^8\)
- Centrality\(^9\)
 - Networks show potential causal pathways\(^4\)
 - Directly applicable in exploratory data analysis
 - Hypothesis-generating
 - Subsequent analysis of network structures via graph theory
 - Centrality
 - Connectivity
 - Clustering

Challenges
- Networks are estimated from data, and thus subject to sampling variation
 - A network estimated on a new dataset might lead to different results
 - Current best solution: bootstrapping\(^10\)
- These models are probabilistic graphical models, not networks!
 - \("(...) this piece is not about networks; rather, it is about independence graphs, long a topic for statistics and statistical journals, not network science journals. There is nothing new here about networks.\)\) — Editor of Network Science
- Should these models be analyzed as networks?
 - Instead of shortest path length, one can use mutual information
 - Instead of centrality, one can use information between one node and all other nodes

Should I be at this conference?
References

Special thanks to Rick Quax for working on information based centrality indices and Adela M. Isvoranu for providing the layout of this poster!

Contact
Sacha Epskamp
Department of Psychological Methods
University of Amsterdam
Sacha.epskamp@gmail.com