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Markov random fields

Markov random fields are undirected networks, of which the edges
can be interpreted in several ways:

1. A representation of conditional independence relationships
Pairwise interactions

Highlight potential causal pathways

Highlights latent variables as clusters

Predictive effects

ok wn

Genuine symmetric relationships between nodes

= Ising Model
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Replicability

Gaussian graphical models and Ising models

We discussed two main types of MRFs:

= Gaussian graphical model
= Continuous (normal) variables
= Edge-weights equal to partial correlation coefficients
= Obtained from:

= Inverting and standardizing the variance—covariance matrix
= Multiple regression models for each variable

= Ising Model
= Binary variables
= Edge-weights also indicate conditional association

= Obtained from multiple logistic regression models for each
variable

Conclusion



Recap Introduction Regularization Stability Replicability ~ Non-normal data Codes  Conclusion
00@00000000000 OO00O 00000000 000000000 00000000 0000 000 [o]e]

Gausian Graphical Model
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Gausian Graphical Model

12

Y1 ="T1+712y2 +713y3 + V1aya + €1
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Gausian Graphical Model

21

Y23

Y2 = T2 +721y1 + V23y3 + Yeaya + €2
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Gausian Graphical Model

Y32

Y3 =73+ 731y1 + V322 + Y34Ya + €3
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Gausian Graphical Model

41

43

Ya = Ta + Ya1y1 + va2y2 + va3y3 + €4
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Gausian Graphical Model

Y14 21

43 Y32

34 23
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Gausian Graphical Model

P14 12

P34 P23

v5SD (&) _ 7;iSD (&;) Kij

PIT7SD(er)  SD()  eiyAg
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Ising Model
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Ising Model

Pr(Xi =1) o exp (71 + wi2x2 + wiaxa)
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Ising Model

Pr(Xz = 1) ox exp (12 + wi2x1 + w23x3)
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Ising Model

W23

Pr(Xs =1) o exp (73 + wozxo + w3axa)
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Ising Model

W14

Pr(Xs =1) oc exp (72 + wiax1 + w3ax3)
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Today

Control for spurious connections

= LASSO regularization
= EBIC model selection

Assess stability and accuracy of results

= Bootstrap
Compare networks

= Permutation test (NetworkComparisonTest)
Handle non-normal data

= Non-normal continuous data
= Ordinal data
= Categorical data
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Non-normal data Codes
0000 000
Agreeableness

Al: Am indifferent to the feelings of others.
A2: Inquire about others' well-being.

A3: Know how to comfort others.

Ad4: Love children.

A5: Make people feel at ease.

Conscientiousness

C1: Am exacting in my work.

C2: Continue until everything is perfect.
C3: Do things according to a plan.

C4: Do things in a half-way manner.
C5: Waste my time.

Extraversion

EL: Don't talk a lot.

E2: Find it difficult to approach others.
E3: Know how to captivate people.
E4: Make friends easily.

E5: Take charge.

Neuroticism

N1: Get angry easily.

N2: Get irritated easily.

N3: Have frequent mood swings.
N4: Often feel blue.

N5: Panic easily.

Openness

O1: Am full of ideas.

02: Avoid difficult reading material.

03: Carry the conversation to a higher level.
04: Spend time reflecting on things.

05: Will not probe deeply into a subject.

Conclusion
[o]e]
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Not hard in R...

Console  Compile PDF » 7 Files Plots Packages Help Viewer =0
~ /Dropbox/Work2/R/SummerSchool2017/ & £ zom  Eogpon- @ % publish ~ | @

VVVoYVoYy

> # Load bootnet:

> library("bootnet™)

> # Estimate network:

> Results <- estimateNetwork(Data, default = "EBICglasso"

Estimating Network. Using package::function:
- qgraph::EBICglasso for EBIC model selection
- using glasso::glasso
- qgraph::cor_auto for correlation computation
- using lavaan: :lavCor
Variables detected as ordinal: Al; A2; A3; A4; AS; (1; (2
; C3; C4; C5; E1; E2; E3; E4; ES; N1; N2; N3; N4; N5; O1;
02; 03; 04; 05
> # Plot network:
> plot(Results, cut = @, theme = "colorblind", layout = "
spring")
>
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And becoming easier in Jasp! (see jasp-stats.org/)

eve bfi*
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~ | Analysis options
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[ee]e]e] ]
Bootnet estimation
Default Model Data Estimation Penalty Selection Package
pcor GGM Continuous, Inverse None None, sig, qgraph
ordinal FDR
EBICglasso GGM Continuous, Inverse glasso EBIC qgraph
ordinal
IsingFit Ising Binary Nodewise LASSO EBIC IsingFit
IsingSampler Ising Binary Nodewise, None None IsingSampler
MLE
adalasso GGM Continuous Nodewise Adaptive CV parcor
LASSO
huge GGM Continuous Inverse glasso EBIC huge
mgm MGM Continuous, Nodewise LASSO EBIC, CV mgm
count, binary,
categorical

CV = Cross validation; Inverse = Inverse covariance matrix; MLE = Maximum (pseudo) likelihood
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How to select the best model?
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A well accepted approach for jointly model selection and parameter
estimation is the least absolute shrinkage and selection operator
(LASSO)

Limits the sum of absolute regression weights, which causes
insignificant edges to shrink to zero

= Regularization
Useful in generalized linear regression model!
= Multiple linear regression
= Multiple logistic regression
Even usable when you have more variables then measures!

Requires a tuning parameter, A that specifies the sparsity,
which need to be selected carefully
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LASSO Estimation
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LASSO estimation

= Nodewise estimation
= Perform regularized (logistic) regressions for each node
= Two (non-identical) estimates per edge, average to obtain

single estimate
= AND-rule or OR-rule: include edge if one or both estimates are

nonzero
= The GGM can also be estimated in a single model using the
graphical LASSO (glasso)
= Directly penalizes elements of inverse variance—covariance
matrix
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Lambda: 0.04
Enic (gamma =0y 7107
029 7502

0517897

Lambda: 0.113 Lambda: 0.188

EBIC (gamma = 0): 702.8 enic gamma =0y 7111
O, EB\C (gamma = 0.25): 729.8

EBIC (gamma = 0.5): 7485

= Varying A leads to a range of networks: model selection
needed
= Minimize cross-validation prediction error
= Minimize an information criterion

= We often minimize the extended BIC (EBIC)

= Hyperparameter v needed to set between 0 (err on side of
discovery) or 0.5 (err on side of caution). Commonly set to
0.25 or 0.5.
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arXiv.org > stat > ar} 607.01367

Statistics > Applications

A Tutorial on Regularized Partial Correlation Networks

Sacha Epskamp, Eiko I. Fried
(Submitted on 5 Jul 2016 (v1), last revised 3 Oct 2016 (this version, v4))

Recent years have seen an emergence of network modeling applied to moods, attitudes, and problems in the realm of psychology. In
this framework, psychological variables are understood to directly interact with each other rather than being caused by an unobserved
latent entity. In this tutorial, we introduce the reader to estimating the most popularly used network model for psychological data: the
partial correlation network. We describe how regularization techniques can be used to efficiently estimate a parsimonious and
interpretable network structure on cross-sectional data. We show how to perform these analyses in R and demonstrate the method in
an empirical example on post-traumatic stress disorder data. In addition, we discuss the effect of the hyperparameter that needs to be
manually set by the researcher and provide a checklist with potential solutions for problems often arise when estimating regularized
partial correlation networks.

Comments: Submitted for publication to journal Psychological Methods
Subjects:  Applications (statAP); Methodology (stat.ME)
Citeas:  arXiv:1607.01367 [statAP]

(or arXiv:1607.01367v4 [stat.AP] for this version)

= https://arxiv.org/abs/1607.01367

Non-normal data
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Conclusion


https://arxiv.org/abs/1607.01367
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More on LASSO estimation

Monographs on Statistics and Applied Probability 143

Statistical Learning
with Sparsity

The Lasso and
Generalizations

https://web.stanford.edu/
~hastie/StatLearnSparsity/

Trevor Hastie
Robert Tibshirani
Martin Wainwright

Conclusion


https://web.stanford.edu/~hastie/StatLearnSparsity/
https://web.stanford.edu/~hastie/StatLearnSparsity/
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The bet on Sparsity

The optimal Markov random field describing the data can be
sparse

= Contain elements that are zero
Thus, estimating a sparse simplifies the model

In high-dimensional cases, a variance—covariance matrix can
not be inverted, but a sparse inverse can be obtained!
This is crucial for many high-dimensional computations

Likewise, high-dimensional Ising models allow for a powerful
characterization of the joint likelihood of binary variables
without evoking latent variables

LASSO searches such a sparse model, but relies on an
assumption that the true model is sparse: the bet on sparsity
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True model:

Bewenness Closeness Sivengin

s 025 0 02 o0 025 000 025 o -o2s o 02 o
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Based on sample of N = 500:

Betweemess Gloseness Steengin

-io -5 oo o5 10 o -ds oo o5 1o A [) i
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Accuracy and Stability

Estimated network structures are subject to sampling variation

Thus, care needs to be taken in interpreting differences
between edges or descriptive measures (e.g., centrality)

We propose bootstrapping methods to gain insight in the
stability of parameter estimates
= Epskamp, S., Borsboom, D., & Fried, E. I. (2017). Estimating
psychological networks and their accuracy: A tutorial paper.
Behavior Research Methods. doi:10.3758/s13428

Two bootstraps
= Nonparametric bootstrap (re-sampling datasets of same N
with replacement)
= Subset bootstrap (sampling subsets of cases without
replacement)
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Non-parametric bootstrap

The non-parametric bootstrap is a well-known data-driven
approach to investigate sampling variation

= Efron, B. (1992). Bootstrap methods: another look at the
jackknife. In Breakthroughs in statistics (pp. 569-593). Springer,
New York, NY.

1. Compute some statistic from your data (e.g., edge-weight)

2. Generate a new dataset by sampling cases from your
original data with replacement

3. Use these new datasets to estimate a range of the statistic
4. Use these ranges to draw confidence intervals

The bootstrap samples can also be used to test for differences
between parameters
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Confidence-intervals

edge
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Differences

svengh

Strength 1.20
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Case-drop bootstrap

= Cls cannot be formed for centrality indices using the
nonparametric bootstrap
= We proposed case-dropping bootstrap:
= Drop x% of the cases (people) at random
= Compute a network and derive centrality indices
= Correlate obtained centrality indices with the original centrality
indices
= |deally, we would want centrality to remain comparable to the
original network even after dropping many cases from the
dataset!
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Stability
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CS-coefficient

= The correlation stability
coefficient (CS-coefficient)
can be used to quantify the

case-drop bootstrap r\\\\

= the proportion of data that \_\
can be dropped to retain

with 95% certainty a
correlation of at least 0.7
with the original centrality
coefficients

= Preferably above 0.5, and
should not be below 0.25

= Although these
recommendations are just
as arbitrary as a < 0.05

type

Average correlation with original sample

0% 0% s0%  40%
Sampled people
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Network Comparison

subsample 1 subsample 2

Do these networks differ?
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Comparing networks

Steps to assessing if networks differ:
= Step 1: visually inspect the networks
= Make sure the layouts are equal! (e.g., use averageLayout)

from qggraph
= Keep differences in sample size in mind, the less n the sparser

the network!
= Step 2: correlate the weights matrices

= Step 3: permutation test
= NetworkComparisonTest R package
= Van Borkulo, C. D., Boschloo, L., Kossakowski, J., Tio, P.,
Schoevers, R., Borsboom, D., & Waldorp, L. (2016). Comparing
network structures on three aspects: A permutation test.
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Permutation Test

= A permutation test can be used to test if statistics from two
groups differ

1.

Compute a statistic of interest in both groups

2. Pool all cases in one large dataset
3. Randomly create new groups by re-distributing the cases
4. Compute the statistic in each new pair of groups to obtain a
null-distribution
5. Test if the observed difference is in the null-distribution
= https:

//www.researchgate.net/publication/314750838_Comparing_
network_structures_on_three_aspects_A_permutation_test


https://www.researchgate.net/publication/314750838_Comparing_network_structures_on_three_aspects_A_permutation_test
https://www.researchgate.net/publication/314750838_Comparing_network_structures_on_three_aspects_A_permutation_test
https://www.researchgate.net/publication/314750838_Comparing_network_structures_on_three_aspects_A_permutation_test

Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

00080000 0000 000 [o]e]

Network Comparison Test

1. Network structure invariance hypothesis

= Structure is completely identical across subpopulations
2. Global strength invariance hypothesis

= Overall level of connectivity is identical across subpopulations
3. Edge strength invariance hypothesis

= A specific edge is identical across subpopulations
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Replicability

Miriam K. Forbes Aidan G. C. Wright
University of Minnesota University of Pittsburgh
Kristian E. Markon Robert F. Krueger

University of lowa University of Minnesota

Network analysis is quickly gaining popularity in psychopathology research as a method that aims to
reveal causal relationships among individual symptoms. To date, 4 main types of psychopathology
networks have been proposed: (a) iation networks, (b) ion networks, (c)
relative importance networks, and (d) directed acyclic graphs. The authors examined the replicability of
these analyses based on symptoms of major depression and generalized anxiety between and within 2
highly similar epidemiological samples (i.e., the National Comorbidity Survey—Replication [n = 9282]
and the National Survey of Mental Health and Wellbeing [n = 8841]). Although association networks
were stable, the 3 other types of network analysis (i.e., the conditional independence networks) had poor
replicability between and within methods and samples. The detailed aspects of the models—such as the
estimation of specific edges and the centrality of individual nodes—were particularly unstable. For
example, 44% of the symptoms were estimated as the “most influential” on at least 1 centrality index
across the 6 conditional independence networks in the full samples, and only 13-21% of the edges were
consistently esumaled across these networks. One of the likely reasons for the instability of the networks
is the error in the of individual symptoms. The authors discuss
the implications of these findings for the growing field of psychopathology network research, and
conclude that novel results originating from psychopathology networks should be held to higher
standards of evidence before they are ready for dissemination or implementation in the field.

osf.io/xcfdq/
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Evidence That Psychopathology Symptom Networks Have Limited

Conclusion
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osf.io/xcfdq/
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Weights matrices correlate 0.95

NetworkComparisonTest revealed no statistical differences
between global network structure and individual edges
Borsboom, D., Fried, E. |., Epskamp, S., Waldorp, L. J., Van Borkulo, C.
D., Van der Maas, H. L. J., & Cramer, A. O. J. (in press). False Alarm?
A comprehensive reanalysis of “Evidence that psychopathology symptom
networks have limited replicability” by Forbes, Wright, Markon, and
Krueger. Journal of Abnormal Psychology.

* psyarxiv.com/z49tk


psyarxiv.com/z49tk
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N SYCH NETWORKS

Organized Incoherence by Eiko Fried

= Read the full story on Eiko’s blog
= http://psych-networks.com/
network-models-do-not-replicate-not/
= Eiko also wrote a great paper that actually investigates
network replicability!
= https://osf.io/2t7qp/


http://psych-networks.com/network-models-do-not-replicate-not/
http://psych-networks.com/network-models-do-not-replicate-not/
https://osf.io/2t7qp/
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Non-normal non-binary data

For categorical or count variables: mixed graphical models. For
non-normal continuous and ordinal: transformation of GGM.

=
@ @
O—

Conclusion
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Non-normal continuous data

/TN M

—

ﬁve Density

/

Non-paranormal transformation (huge.npn in huge package).
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Ordinal data

Polychoric correlations as input to GGM (1lavCor in lavaan
package).
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Frequent questions

= Network is *very* dense or contains ridiculously strong
(possibly negative) edge weights
= Check if polychoric correlation matrix is positive definite
= Negative edges where you expect positive ones

= Could be real! Colliders in the data can make edges negative
= Could also be spurious, did you condition on a function of the
data? For example, do not split the data on the sumscore!

= Does a pretty network mean that the latent variable model is
false?

= No, especially clusters in a network can arise due to latents!

arxiv.org/abs/1607.01367


arxiv.org/abs/1607.01367
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Estimation

= GGM can be computed using qgraph
= Ordinal data
= Use polychoric correlations (cor_auto in ggraph) as input
= Non-normal continuous data
= Transform variables first (huge.npn in huge)
= Binary data
= Use IsingFit
= Mixed variables (Gaussian, Poisson, binary or categorical)
= Use mgm

The bootnet function contains a wrapper function,
estimateNetwork for these packages.
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Estimating a MRF using estimateNetwork from bootnet:

# Load bootnet:
library("bootnet")

# Estimate network (see Z?estimateNetwork) :
Results <- estimateNetwork(Data, default = "...")

# Obtain weights matriz:
Results$graph

# Plot network (same arguments as qgraph):
plot (Results, layout = "spring")

# Centrality:
library("qgraph")
centralityPlot (Results)



Bootnet estimation
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Default Model Data Estimation Penalty Selection Package

pcor GGM Continuous, Inverse None None, sig, qgraph
ordinal FDR

EBICglasso GGM Continuous, Inverse glasso EBIC qgraph
ordinal

IsingFit Ising Binary Nodewise LASSO EBIC IsingFit

IsingSampler Ising Binary Nodewise, None None IsingSampler

MLE
adalasso GGM Continuous Nodewise Adaptive CV parcor
LASSO

huge GGM Continuous Inverse glasso EBIC huge

mgm MGM Continuous, Nodewise LASSO EBIC, CV mgm
count, binary,
categorical

CV = Cross validation; Inverse = Inverse covariance matrix; MLE = Maximum (pseudo) likelihood




Conclusion
e0

Take-home message

Regularization controls for spurious connection
= LASSO regularization
= EBIC model selection
Bootstrap methods assess accuracy and stability of results
= Non-parametric bootstrap
= Case-drop bootstrap
Comparing networks takes three steps

= Visually inspect; Correlate weights; Permutation test
(NetworkComparisonTest)

Non-normal data

= Non-paranormal transformation
= Polychoric correlations
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Thank you for your attention!
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