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Markov random fields

Markov random fields are undirected networks, of which the edges
can be interpreted in several ways:

1. A representation of conditional independence relationships
2. Pairwise interactions
3. Highlight potential causal pathways
4. Highlights latent variables as clusters
5. Predictive effects
6. Genuine symmetric relationships between nodes

• Ising Model



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

Gaussian graphical models and Ising models

We discussed two main types of MRFs:
• Gaussian graphical model

• Continuous (normal) variables
• Edge-weights equal to partial correlation coefficients
• Obtained from:

• Inverting and standardizing the variance–covariance matrix
• Multiple regression models for each variable

• Ising Model
• Binary variables
• Edge-weights also indicate conditional association
• Obtained from multiple logistic regression models for each

variable
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Gausian Graphical Model

Y1

Y2

Y3

Y4



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

Gausian Graphical Model
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y1 = τ1 + γ12y2 + γ13y3 + γ14y4 + ε1
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Gausian Graphical Model
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Gausian Graphical Model

γ13γ24

γ31

γ12

γ21

γ34 γ23

γ32

γ14

Y1

Y2

Y3

Y4

y3 = τ3 + γ31y1 + γ32y2 + γ34y4 + ε3



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

Gausian Graphical Model
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Gausian Graphical Model
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Gausian Graphical Model
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Ising Model
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Ising Model
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Pr (X1 = 1) ∝ exp (τ1 + ω12x2 + ω14x4)
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Ising Model
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Ising Model
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Ising Model
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Today

• Control for spurious connections
• LASSO regularization
• EBIC model selection

• Assess stability and accuracy of results
• Bootstrap

• Compare networks
• Permutation test (NetworkComparisonTest)

• Handle non-normal data
• Non-normal continuous data
• Ordinal data
• Categorical data



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

A1

A2

A3

A4

A5

C1

C2

C3

C4

C5

E1
E2

E3

E4

E5

N1

N2

N3

N4

N5

O1

O2

O3

O4

O5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Agreeableness
A1: Am indifferent to the feelings of others.
A2: Inquire about others' well−being.
A3: Know how to comfort others.
A4: Love children.
A5: Make people feel at ease.

Conscientiousness
C1: Am exacting in my work.
C2: Continue until everything is perfect.
C3: Do things according to a plan.
C4: Do things in a half−way manner.
C5: Waste my time.

Extraversion
E1: Don't talk a lot.
E2: Find it difficult to approach others.
E3: Know how to captivate people.
E4: Make friends easily.
E5: Take charge.

Neuroticism
N1: Get angry easily.
N2: Get irritated easily.
N3: Have frequent mood swings.
N4: Often feel blue.
N5: Panic easily.

Openness
O1: Am full of ideas.
O2: Avoid difficult reading material.
O3: Carry the conversation to a higher level.
O4: Spend time reflecting on things.
O5: Will not probe deeply into a subject.
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Agreeableness
A1: Am indifferent to the feelings of others.
A2: Inquire about others' well−being.
A3: Know how to comfort others.
A4: Love children.
A5: Make people feel at ease.

Conscientiousness
C1: Am exacting in my work.
C2: Continue until everything is perfect.
C3: Do things according to a plan.
C4: Do things in a half−way manner.
C5: Waste my time.

Extraversion
E1: Don't talk a lot.
E2: Find it difficult to approach others.
E3: Know how to captivate people.
E4: Make friends easily.
E5: Take charge.

Neuroticism
N1: Get angry easily.
N2: Get irritated easily.
N3: Have frequent mood swings.
N4: Often feel blue.
N5: Panic easily.

Openness
O1: Am full of ideas.
O2: Avoid difficult reading material.
O3: Carry the conversation to a higher level.
O4: Spend time reflecting on things.
O5: Will not probe deeply into a subject.
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Not hard in R...



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

And becoming easier in Jasp! (see jasp-stats.org/)

jasp-stats.org/
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Bootnet estimation
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• How to select the best model?



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

A well accepted approach for jointly model selection and parameter
estimation is the least absolute shrinkage and selection operator
(LASSO)

• Limits the sum of absolute regression weights, which causes
insignificant edges to shrink to zero

• Regularization
• Useful in generalized linear regression model!

• Multiple linear regression
• Multiple logistic regression

• Even usable when you have more variables then measures!
• Requires a tuning parameter, λ that specifies the sparsity,

which need to be selected carefully
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LASSO Estimation

Y = β1x1 + β2x2 + εY
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LASSO estimation

• Nodewise estimation
• Perform regularized (logistic) regressions for each node
• Two (non-identical) estimates per edge, average to obtain

single estimate
• AND-rule or OR-rule: include edge if one or both estimates are

nonzero
• The GGM can also be estimated in a single model using the

graphical LASSO (glasso)
• Directly penalizes elements of inverse variance–covariance

matrix



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

A

B

C

D

E

F

G

H

Lambda: 0.005
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A

B

C

D

E

F

G

H
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EBIC (gamma = 0): 712.3

EBIC (gamma = 0.25): 753.9

EBIC (gamma = 0.5): 795.4
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EBIC (gamma = 0): 710.7

EBIC (gamma = 0.25): 750.2
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EBIC (gamma = 0.25): 736.7

EBIC (gamma = 0.5): 770
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EBIC (gamma = 0): 800

EBIC (gamma = 0.25): 800

EBIC (gamma = 0.5): 800

• Varying λ leads to a range of networks: model selection
needed

• Minimize cross-validation prediction error
• Minimize an information criterion

• We often minimize the extended BIC (EBIC)
• Hyperparameter γ needed to set between 0 (err on side of

discovery) or 0.5 (err on side of caution). Commonly set to
0.25 or 0.5.



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

• https://arxiv.org/abs/1607.01367

https://arxiv.org/abs/1607.01367
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More on LASSO estimation

https://web.stanford.edu/

˜hastie/StatLearnSparsity/

https://web.stanford.edu/~hastie/StatLearnSparsity/
https://web.stanford.edu/~hastie/StatLearnSparsity/
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The bet on Sparsity

• The optimal Markov random field describing the data can be
sparse

• Contain elements that are zero
• Thus, estimating a sparse simplifies the model
• In high-dimensional cases, a variance–covariance matrix can

not be inverted, but a sparse inverse can be obtained!
• This is crucial for many high-dimensional computations
• Likewise, high-dimensional Ising models allow for a powerful

characterization of the joint likelihood of binary variables
without evoking latent variables

• LASSO searches such a sparse model, but relies on an
assumption that the true model is sparse: the bet on sparsity
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True model:

0.2

−0.2

−0.2

0.2
−0.2

−0.2

0.2

0.2

A

B

C

D

E

F

G

H

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Betweenness Closeness Strength

−0.50 −0.25 0.00 0.25 0.50−0.50 −0.25 0.00 0.25 0.50−0.50 −0.25 0.00 0.25 0.50

A

B

C

D

E

F

G

H



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

Based on sample of N = 500:
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Accuracy and Stability

• Estimated network structures are subject to sampling variation
• Thus, care needs to be taken in interpreting differences

between edges or descriptive measures (e.g., centrality)
• We propose bootstrapping methods to gain insight in the

stability of parameter estimates
• Epskamp, S., Borsboom, D., & Fried, E. I. (2017). Estimating

psychological networks and their accuracy: A tutorial paper.
Behavior Research Methods. doi:10.3758/s13428

• Two bootstraps
• Nonparametric bootstrap (re-sampling datasets of same N

with replacement)
• Subset bootstrap (sampling subsets of cases without

replacement)
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Non-parametric bootstrap

• The non-parametric bootstrap is a well-known data-driven
approach to investigate sampling variation

• Efron, B. (1992). Bootstrap methods: another look at the
jackknife. In Breakthroughs in statistics (pp. 569-593). Springer,
New York, NY.

• 1. Compute some statistic from your data (e.g., edge-weight)
• 2. Generate a new dataset by sampling cases from your

original data with replacement
• 3. Use these new datasets to estimate a range of the statistic
• 4. Use these ranges to draw confidence intervals
• The bootstrap samples can also be used to test for differences

between parameters
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Differences



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

Case-drop bootstrap

• CIs cannot be formed for centrality indices using the
nonparametric bootstrap

• We proposed case-dropping bootstrap:
• Drop x% of the cases (people) at random
• Compute a network and derive centrality indices
• Correlate obtained centrality indices with the original centrality

indices
• Ideally, we would want centrality to remain comparable to the

original network even after dropping many cases from the
dataset!
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Stability
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CS-coefficient

• The correlation stability
coefficient (CS-coefficient)
can be used to quantify the
case-drop bootstrap

• the proportion of data that
can be dropped to retain
with 95% certainty a
correlation of at least 0.7
with the original centrality
coefficients

• Preferably above 0.5, and
should not be below 0.25

• Although these
recommendations are just
as arbitrary as α < 0.05
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Network Comparison

Do these networks differ?
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Comparing networks

Steps to assessing if networks differ:
• Step 1: visually inspect the networks

• Make sure the layouts are equal! (e.g., use averageLayout)
from qgraph

• Keep differences in sample size in mind, the less n the sparser
the network!

• Step 2: correlate the weights matrices
• Step 3: permutation test

• NetworkComparisonTest R package
• Van Borkulo, C. D., Boschloo, L., Kossakowski, J., Tio, P.,

Schoevers, R., Borsboom, D., & Waldorp, L. (2016). Comparing
network structures on three aspects: A permutation test.
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Permutation Test

• A permutation test can be used to test if statistics from two
groups differ

1. Compute a statistic of interest in both groups
2. Pool all cases in one large dataset
3. Randomly create new groups by re-distributing the cases
4. Compute the statistic in each new pair of groups to obtain a

null-distribution
5. Test if the observed difference is in the null-distribution

• https:
//www.researchgate.net/publication/314750838_Comparing_
network_structures_on_three_aspects_A_permutation_test

https://www.researchgate.net/publication/314750838_Comparing_network_structures_on_three_aspects_A_permutation_test
https://www.researchgate.net/publication/314750838_Comparing_network_structures_on_three_aspects_A_permutation_test
https://www.researchgate.net/publication/314750838_Comparing_network_structures_on_three_aspects_A_permutation_test
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Network Comparison Test

1. Network structure invariance hypothesis
• Structure is completely identical across subpopulations

2. Global strength invariance hypothesis
• Overall level of connectivity is identical across subpopulations

3. Edge strength invariance hypothesis
• A specific edge is identical across subpopulations
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osf.io/xcfdq/

osf.io/xcfdq/
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• Weights matrices correlate 0.95
• NetworkComparisonTest revealed no statistical differences

between global network structure and individual edges
• Borsboom, D., Fried, E. I., Epskamp, S., Waldorp, L. J., Van Borkulo, C.

D., Van der Maas, H. L. J., & Cramer, A. O. J. (in press). False Alarm?
A comprehensive reanalysis of “Evidence that psychopathology symptom
networks have limited replicability” by Forbes, Wright, Markon, and
Krueger. Journal of Abnormal Psychology.

• psyarxiv.com/z49tk

psyarxiv.com/z49tk
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• Read the full story on Eiko’s blog
• http://psych-networks.com/

network-models-do-not-replicate-not/
• Eiko also wrote a great paper that actually investigates

network replicability!
• https://osf.io/2t7qp/

http://psych-networks.com/network-models-do-not-replicate-not/
http://psych-networks.com/network-models-do-not-replicate-not/
https://osf.io/2t7qp/
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Non-normal non-binary data

For categorical or count variables: mixed graphical models. For
non-normal continuous and ordinal: transformation of GGM.
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Non-normal continuous data

X Y

Cumulative Density

Density

Non-paranormal transformation (huge.npn in huge package).
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Ordinal data

0 1 2 3

Polychoric correlations as input to GGM (lavCor in lavaan
package).
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Frequent questions

• Network is *very* dense or contains ridiculously strong
(possibly negative) edge weights

• Check if polychoric correlation matrix is positive definite
• Negative edges where you expect positive ones

• Could be real! Colliders in the data can make edges negative
• Could also be spurious, did you condition on a function of the

data? For example, do not split the data on the sumscore!
• Does a pretty network mean that the latent variable model is

false?
• No, especially clusters in a network can arise due to latents!

arxiv.org/abs/1607.01367

arxiv.org/abs/1607.01367
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Estimation

• GGM can be computed using qgraph
• Ordinal data

• Use polychoric correlations (cor_auto in qgraph) as input
• Non-normal continuous data

• Transform variables first (huge.npn in huge)
• Binary data

• Use IsingFit
• Mixed variables (Gaussian, Poisson, binary or categorical)

• Use mgm

The bootnet function contains a wrapper function,
estimateNetwork for these packages.
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Estimating a MRF using estimateNetwork from bootnet:

# Load bootnet:
library("bootnet")

# Estimate network (see ?estimateNetwork):
Results <- estimateNetwork(Data, default = "...")

# Obtain weights matrix:
Results$graph

# Plot network (same arguments as qgraph):
plot(Results, layout = "spring")

# Centrality:
library("qgraph")
centralityPlot(Results)
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Bootnet estimation



Recap Introduction Regularization Stability Replicability Non-normal data Codes Conclusion

Take-home message

• Regularization controls for spurious connection
• LASSO regularization
• EBIC model selection

• Bootstrap methods assess accuracy and stability of results
• Non-parametric bootstrap
• Case-drop bootstrap

• Comparing networks takes three steps
• Visually inspect; Correlate weights; Permutation test

(NetworkComparisonTest)
• Non-normal data

• Non-paranormal transformation
• Polychoric correlations
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Thank you for your attention!
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