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Notation

In these sheets we analyze mostly the unweighted, undirected
simple graph G:

G=(V,E)
With |N| nodes and |E| edges, encoded using |[N| x |N|
adjacency matrix A:

o a1 fvureE
T T 0 Otherwise



# Toy adjacency matrix:

A <- matrix (0, 11, 11)

All, 2:6] <=1

A[5, 7:11] <- 1

Al6, 7:11]1 <- 1

A <- pmax (A, t(A))

# Create graph in igraph:

library ("igraph")

G <- graph.adjacency (A, mode = "undirected")
# Or via ggraph:

library ("ggraph")

G <- as.igraph (qgraph (A, DoNotPlot = TRUE))






Shortest Path length
The shortest path length between nodes v and u, dist(v, u) is
defined in an unweighted graph as the minimum number of
steps you need to take from node v to node u:

dist(v, u) = min (@ + ... + ay)

» Can be computed using Dijkstra’s algorithm (Dijkstra,
1959) with weights fixed to 1.
» Commonly refered to as the shortest path length or
geodesic distance
The mean shortest path length is called the average shortest
path length (APL) and is an important measure for how well
connected a graph is:

ZW ydist(v, u)

APLLG) = INT(INT— 1) 2






shortest .paths (G)
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##
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Disorders usually first diagnosed in infancy, childhood or adolescence
Delirium, dementia, and amnesia and other cognitive disorders
Mental disorders due to a general medical condition
Substance-related disorders

‘Schizophrenia and other psychotic disorders.

Mood disorders

Anxiety disorders

‘Somatoform disorders

Factitious disorders

Dissociative disorders

‘Sexual and gender identity disorders

Eating disorders

Sleep disorders

Impulse control disorders not elsewhere classified

Adjustment disorders

Personality disorders

‘Symptom is featured equally in muliple chapters
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Vertex centrality

Centrality measures assign numeric values to the importance
of nodes in the graph and answer the question “what is the
most central node?”.

» Degree

» Closeness

» Betweenness

» Eigenvector centrality
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Degree

The degree of node v, Cp(v) is simply the number of edges
connected to node v, which we can compute by either
summing over row v or column v of A:

NI INI

Co(v) =Y av=> ay
i= j=1

In the book the notation used for the degree is d,.






degree (G)

## [1] 51116622222



Degree distribution

The degree distribution, fy, gives the probability that a node in
G has degree d:

fa =P (Cp(v) = d)
For a given graph the observed degree distribution can simply

be computed by dividing the number of nodes that have degree
d with the total number of nodes:

£ # of nodes with degree d
T N

and can easilly be repressented with an histogram.



table (degree (G) ) /vcount (G)

##
## 1 2 5 6
## 0.27273 0.45455 0.09091 0.18182



library ("ggplot2")
gplot (degree (G), geom = "histogram")
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Random graph

G2 <- erdos.renyi.game (100, 0.3)
plot (G2)




Random graph
gplot (degree (G2), geom = "histogram")
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Random graph

A random graph is a graph in which each edge is present with
probability p. The degree distribution of a random graph follows
a binomial distribution:

N| -1 _1-
fy = <‘ ‘d >pd(1 _p)|N| 1—-d

Or Poisson for large graphs:

where p = |N|p



High School dating




scale-free networks

» Many natural networks do not have a binomial or poisson
degree distribution

» These graphs usually have many nodes with a very low
degree and few nodes with a very high degree

» These are termed scale-free networks, and for these
networks a power-law holds approximatly true at least in
part.

fg X d™*



Preferential Attachment
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G3 <- barabasi.game (50, 1.2, directed = FALSE)
plot (G3)




gplot (degree (G3),
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Fig. 4.1 Degree distributions. Left: the router-level Internet network graph described in Sec-
tion 3.5.2. Right: the network of measured interactions among proteins in S. cerevisiae (yeast),
as of January 2007. In each plot, both x- and y-axes are in base-2 logarithmic scale.



Degree correlation

logz(Degree)

log,(Degree)

log,s(Degree)

log,(Degree)



Degree correlation

assortativity.degree (G)

## [1] -0.75



Closeness

Closeness C¢(v) defines that a node is central if it is ‘close’ to
other nodes. This can be computed by taking the inverse of the
sum of all path lengths going from node v to all other nodes:

1
M dist(v, i)

This is only an interesting measure for fully connected graphs
or components.

Ce(v)






closeness (G)

## [1] 0.06667 0.04167 0.04167 0.04167 0.07143 0.07143 0.0476
## [8] 0.04762 0.04762 0.04762 0.04762



Betweenness

Betweenness of node v is defined as the sum of proportions of
the number of shortest paths between all pairs of nodes that go
through node v:

, N o(ij|v)
Ca(i) = —l
? i;s/;k:ev o(f.J)

Where o (i,j) is the total number of shortest paths between any
two nodes and o(i,j | v) the amount of those paths that go
through v.






betweenness (G)

## [1] 24.1667 0.0000 0.0000 0.0000 15.0000 15.0000 0.166
## [8] 0.1667 0.1667 0.1667 0.1667



Eigenvector centrality

Eigenvector centrality states that a node if central if its
neighboors are central, and is recursive:

Ca(v)=a Y  Cgu
{u,v}€E

Since A contains only zeroes and ones we can write this as:

IN|
Ce(v) =a Z ajy Cei(f)

Which we can write as a matrix equation:

Cei = aACEg



Eigenvector centrality

Rearanging this previous matrix eqation leads to a familliar
Eigenvalue problem:

1
ACg = ECEI

And shows Cg(v) to be the vth element of an eigenvector.
Since centrality measures are positive, Perron-Frobenius
theorem dictates that this should be the eigenvector
corresponding to the largest eigenvalue \ = a~1.






evcent (G)

## Svector
#4# [1] 0.7384 0.2078 0.2078 0.2078 1.0000 1.0000 0.5629 0.562
## [9] 0.5629 0.5629 0.5629

##

## Svalue

## [1] 3.553
4+

## Soptions
## SoptionsS$bmat

## [1] "I

##

## Soptions$n

## [1] 11

##

## Soptions$which
## [1] "LA"

##

## SoptionsSnev
# [1] 1

##

## SoptionsS$tol Lg.l

## 1171 O
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Closeness
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Betweenness
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Eigenvector Centrality
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(2) (b)

(©) (d)

Fig. 4.4 Tllustration of (b) closeness, (c) betweenness, and (d) eigenvector centrality measures on
the graph in (a). Example and figures courtesy of Ulrik Brandes.



What is the most central node?
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What is the most central node?



What is the most central node?



What is the most central node?



Weighted Graphs

A weighted graph is a network in which the strength of
connections can vary. For a graph of n nodes the network
structure is defined by the n x n adjacency matrix A such that:

2 — 1 if there is an edge from node / to node j
710  otherwise

Its weights are defined by the n x n weights matrix W such that:

=0 if a,-j =0
W,‘j .
eR otherwise

The diagonal of both A and W is set to zero.



Weighted Graphs

A graph is undirected only if A and W are symmetric:

A=A"
w=w'

A graph is unweighted only if A is equal to W multiplied by
some scalar c:

A=cW

Note that both these cases do not imply that a graph is
undirected or unweighted.



Finally we define the length of an edge from node i to node j as
the inverse of the absolute weight:

L 7|V1V/j| if i £ j
i = v
0 ifi=j

Because the denumerator is always positve, we will take the
limit in the case of a weight of 0:

. 1
lim =
W,'j—>0 ’le’




Weighted graphs
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Node centrality

» Node centrality is the identification of which nodes are the
most central, and thus the most important

» For example, if the most central node is infected with a
contagious disease, the disease will spread the fastest to
other nodes

» In psychopathological modelling the most central node is
the symptom which can most easilly affect other symptoms

» In unweighted graphs these are well defined

» In weighted graphs this is less the case. There is a lot of
debate on whether the structure (adjacency matrix) or the
weights (weights matrix) are the most important

» Clasically only the weights matrix is analyzed
» Opsahl, Agneessens, and Skvoretz (2010) proposes a set
of centrality measures with a tuning parameter, a, to
manually assign importance to both matrices
» « of 0 only regards the structure, and « of 1 only regards
the weights



Degree
Of node i the in-degree k( " is the number of incomming edges

and the out-degree k,-("“t) the number of outgoing edges:

n
ki(m) = Z aji
out) Z aj

out)

In weighted graphs often the node strengths sfi") and s,( are

used:

n
in) _ Z W
(out Z w;



Degree

Opsahl et al. (2010) propose the following combination:

) ] (in)\
Co(i) = K™ x (:u)

]

(out) \ ¢
), t S;
CE (i) = k1 x (kl(out))
i

Note that for both:



The shortest path length between nodes i and j, d(i,j) is
defined in an unweighted graph as the minimum number of
steps you need to take from node i to node j:

d(i,j) = min (a,-h +...+ ahj)

which can be obtained through Dijkstra’s algorithm (Dijkstra,
1959) with weights fixed to 1. Simalary, for weighted graphs the
shortest path length is defined as the minimum number of
distance needed to cross on the graph to reach node i from
node j:

d(i,j):min( ! +.o.+—

—_— =min (lip+ ...+ I
|Wip| |Whj|> (I )



Opsahl et al. (2010) propose the following combination:
d(i,j) = min (/,-3; T /;;;.)

Which again generalizes to the unweighted form near o = 0
and the weighted form if « = 1.

Note that for any number y:
y =1

Including co. Therefore, setting o = 0 will not give proper
results.



Closeness is defined as the inverse of the total shortest
distance from node i to all other nodes in the graph, which is
only defined for connected clusters:

—1
Celi) = {E d(/}j)]
=

Here the o« parameter is already used in computing the shortest
path lengths.



Betweenness of node i is defined as the sum of proportions of
the number of shortest paths between all pairs of nodes that go

through node /:
Z g/k
gjk

I#j#k

Where gj is the total number of shortest paths between any
two nodes and gj (/) the amount of those paths that go through
I



Centrality

Degree How well connected is a node?

Closeness How easy is it to reach all other nodes from a
node?

Betweenness How well does a node connect other nodes?



What is the most central node?

}\/




What is the most central node?




What is the most central node?



What is the most central node?




What is the most central node?



What is the most central node?



What is the most central node?



What is the most central node?



Computing Centrality Measures in gqgraph

» In qgraph these centrality measures are included in the
function centrality (see ?centrality)
» This uses the output of ggraph () as input
» Note that this function automatically removes diagonal
elements of the weights matrix
» The default of the o parameter is 1, which corresponds to
the classical interpretation of weighted centrality measures.



Computing Centrality Measures in gqgraph

In the current version of qgraph (1.0.1) the function will fail
if o = 0. This will be fixed in the next version. For now, set
« arbitrarily low to circomvent this.



Return Values of centrality function
List with following elements:
OutDegree A vector containing the outward degree of each
node.

InDegree A vector containing the inward degree of each
node.

Closeness A vector containing the closeness of each node.

Betweenness A vector containing the betweenness of each
node

ShortestPathLengths A matrix containing the shortest path
lengths of each pairs of nodes. These path
lenghts are based on the inverse of the edge
weights raised to the power lambda.

ShortestPaths A matrix of lists containing all shortest path
lengths between all pairs of nodes. Use double
square brackets to index. E.g., if the list is called

res’, res$ShortestPaths][i,j]] gives a list containing

all shortest paths between node i and j.



Example (o = 1)

set.seed (1)

E <- data.frame/(
from = ¢(1,2,2,3,4,5,
to = c¢(2,3,4,5,6,7,7
weight = runif(9,1,3

Q <- ggraph (E,

gray=TRUE,
asize=0.3)

Cent <- centrality(Q)

V + +V + + + VoV




Centrality measures

> as.data.frame (Cent[1:4])

OutDegree

O J o U > W DN
DN RN W

1.
.889955
.816416
.403364
.796779
.889351
.321596
.258228

531017

InDegree
.258228
.531017
. 744248
.145707
.816416
.403364
.686130
.321596

N OO R, DD RPN

O O O O O o o o

Closeness Betweenness

.09327425
.12035952
.08223756
.06920048
.08242626
.08473412
.08275217
.08732845

25
25
12

6
12

6
25
25



Shortest path-Length between 1 and 8

> Cent$ShortestPathLengths|[1
[1] 2.369827




Shortest paths between 1 and 8

> CentSShortestPaths([[1,8]]

([1]]
[1] 1 23578




Example (a ~ 0)

Q <- ggraph(E,
gray=ITRUE,
asize=0.3)

Cent <- centrality(Q,le—lé

v + + Vv



Centrality measures

> as.data.frame (Cent[1:4])

OutDegree InDegree

1

w J oy Ul W N
e e = =

N gt

O O O O O o o o

Closeness Betweenness

.05000000
.05555556
.03571429
.03571429
.03846154
.03846154
.04166667
.04545455

25
25
9
9
9
9
25
25



Shortest path-Length between 1 and 8

> Cent$ShortestPathLengths|[1
[11 5




Shortest paths between 1 and 8

> CentSShortestPaths/[[1,8]]

([1]]
[1] 1 2 357 8

[([2]]
[1] 1 2 4 6 7 8




Connectivity and Clustering



The diameter of a graph is its longest shortest path length:

diameter(G) = max(dist(u, v))






diameter (G)

## [11 3



The density of a graph is the proportion of the present number
of edges to the total possible amount of edges:

|E|

4en(G) = N[N = 1)/2






graph.density (G)

## [1] 0.2727



Clustering

Are two connected nodes also connected to each other? Or
more general, does a graph exhibit cliques?



Local clustering

The local clustering coefficient, cl(v), gives for node n the
proportion that the neighboors of v are also connected to each
other.

This corresponds for dividing the amount of “triangles” of which
node v is part, 7a(v) to the amount of possible triangles of
which v could be part: 73(v):

Ta(v) ;
(v = Ti(v) if CD(v). >2
0 or NaN Otherwise




Local clustering




Local clustering






Local clustering

A clustering coefficient for the whole graph can be obtained by
averaging all the local clustering coefficients:

L
c(G) = W ;cl(i)

Although this being an average of averages, the appropriate
weighted average is more informative:

M ra(i)el(d)
B 73(/)

B 37a(G)

-~ 1(G)

clr(G)






A <- matrix (0, 9, 9)

A[l:5, 1:5] <=1

A[5:9, 5:9] <=1

library ("igraph")

G4 <- graph.adjacency (A, mode = "undirected")
transitivity (G4, "local")

## [1] 1.0000 1.0000 1.0000 1.0000 0.4286 1.0000 1.0000 1.0000
## [9] 1.0000

transitivity (G4, "global")
## [1] 0.7895
transitivity (G4, "average")

## [1] 0.9365



Small world

The famous paper of ? (?)—already cited 20453
times—describes the “small world” principle that frequently
occurs in natural graphs.

» “Six degrees of separation”
» High clustering and low average path length
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Small World

Regular Small-world Random

Increasing randomness
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Small world

A graph exhibits a small world if it has a much higher clustering
than a random graph of the same dimensions while still having
a low APL.



Small world

# Simulate a graph:
set .seed (1)
G5 <- watts.strogatz.game (1,

plot (G5)

100, 5, 0.05)

-
s
Tl

Z




Small world

Function to compute average path length of random graph:

APLr <- function (x) {
if ("ggraph" %$in% class(x))
x <- as.igraph (x)

if ("igraph" %in% class(x))
x <- get.adjacency (x)
N = nrow (x)

p = sum(x/2)/sum(lower.tri (x))

eulers_constant <- 0.57721566490153

1 = (log(N) - eulers_constant)/log(p * (N — 1))
1

+ 0.5



Small world

Function to compute clustering of random graph:

Cr <- function(x) {

if ("ggraph" %in% class(x))

x <- as.igraph (x)
if ("igraph" %in% class(x))
x <- get.adjacency (x)

= nrow (x)
sum(x/2) /sum(lower.tri (x))
= (p » (N - 1)/N)

& T =
Il



Small world
Is there a small world?

transitivity (G5)

## [1] 0.5402

Cr (G5)

## Loading required package: Matrix
## Loading required package: lattice

average.path.length (G5)

## [1]1 2.867

APLr (G5)



Small world

Small world index:

(transitivity (G5) / Cr(G5)) /
(average.path.length(G5) / APLr (G5))

## [1] 4.237

Higher than 37 There is a Small world!
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