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Chapter 1

Introduction: Psychological Networks

1.1 Introduction

There are over 7 billion people in the world, each with a di↵erent brain contain-
ing 15 to 33 billion neurons. These people are intelligent entities who develop and
change over time and who interact with each other in complicated social structures.
Consequently, human behavior is likely to be complex. In recent years, research on
dynamical systems in psychology has emerged, which is analogous to other fields
such as biology and physics. One popular and promising line of research involves
the modeling of psychological systems as causal systems or networks of cellular
automata (Van Der Maas et al., 2006; Borsboom, 2008; Cramer, Waldorp, van der
Maas, & Borsboom, 2010; Borsboom, Cramer, Schmittmann, Epskamp, & Wal-
dorp, 2011). The general hypothesis is that noticeable macroscopic behavior—the
co-occurrence of aspects of psychology such as cognitive abilities, psychopatholog-
ical symptoms, or behavior—is not due to the influence of unobserved common
causes, such as general intelligence, psychopathological disorders, or personality
traits, but rather to emergent behavior in a network of interacting psycholog-
ical, sociological, biological, and other components. I will term such networks
psychological networks to distinguish these models from other networks used in
psychology, such as social networks and neural networks.

Figure 1.1 shows an example of such a psychological network, estimated on
the bfi dataset from the psych R package (Revelle, 2010). This dataset contains
the responses of 2,800 people on 25 items designed to measure the Big Five per-
sonality traits (McCrae & Costa, 1997). The network shows many meaningful
connections, such as “make friends easily” being linked to “make people feel at
ease,” “don’t talk a lot” being linked to “find it difficult to approach others,” and
“carry the conversation to a higher level” being linked to “know how to captivate

Parts of this chapter have been adapted from: Epskamp, S., Borsboom, D., and Fried, E.I.
(in press). Estimating Psychological Networks and their Accuracy: A Tutorial Paper. Behavior
Research Methods.
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1. Introduction: Psychological Networks

people.” A more detailed description on how to interpret such networks is in-
cluded below and is discussed further (with respect to personality) in Chapter 10.
Psychological networks are strikingly di↵erent to network models typically used in
complexity research. These are networks between variables (nodes can take one of
multiple states) rather than between concrete entities, such as people, computers,
cities, and so forth. Furthermore, we do not know the structure of psychological
networks. Due to the nascent status of this field, we do not yet know basic prop-
erties of psychological networks such as connectivity and clustering, which forces
researchers to estimate network structures from data.

This dissertation addresses the problem of how to estimate network models
from psychological data, and how such models should consequently be analyzed
and interpreted. This is the first dissertation fully devoted to estimating and in-
terpreting psychological networks. Some of the methods discussed (most notably
the qgraph package; Chapter 9) have already grown to be commonly used psycho-
logical research. As a result, the number of researchers working on the estimation
of psychological networks has grown substantively during the course of this PhD
project. We can now speak of a new field of research: network psychometrics. The
goal of this dissertation is to start of researchers in this field on the right foot.

Because most chapters of this dissertation utilize a certain class of network
models, pairwise Markov random fields (PMRF; Lauritzen, 1996; Murphy, 2012),
this introduction is followed by a general introduction to interpreting such models
(adapted from Epskamp, Borsboom, & Fried, 2016, which is further used in Chap-
ter 3). The introduction will conclude with a general outline of the dissertation.

1.2 Psychological Networks

A psychological network is a model in which nodes represent observed psycho-
logical variables, usually psychometric test items such as responses to questions
about whether a person su↵ered from insomnia or fatigue in past weeks. These
nodes are connected by edges which indicate some statistical relationship between
them. These models are conceptually di↵erent from commonly used reflective la-
tent variable models that explain the co-occurrence among symptoms (e.g., the
fact that individuals often su↵er from sadness, insomnia, fatigue, and concentra-
tion problems at the same time) by invoking an underlying unobserved latent
trait (e.g., depression) as the common cause of all the symptoms. Psychological
networks o↵er a di↵erent conceptual interpretation of the data and explain such
co-occurrences via direct relationships between symptoms; for example, someone
who sleeps poorly will be tired, and someone who is tired will not concentrate
well (Fried et al., 2015; Schmittmann et al., 2013). Such relationships can then be
more easily interpreted when drawn as a network structure where edges indicate
pathways on which nodes can a↵ect each other. The edges can di↵er in strength
of connection, also termed edge weight, indicating if a relationship is strong (com-
monly visualized with thick edges) or weak (thin, less saturated edges) and positive
(green edges) or negative (red edges). After a network structure is estimated, the
visualization of the graph itself tells the researcher a detailed story of the mul-
tivariate dependencies in the data. Additionally, many inference methods from

2
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Figure 1.1: Example of a network model estimated the BFI personality dataset
from the psych package in R. Nodes represent variables (in this case, personality
inventory items) and links between the nodes (also termed edges) represent partial
correlation coefficients. Green edges indicate positive partial correlations, red
edges indicate negative partial correlations, and the width and saturation of an
edge corresponds to the absolute value of the partial correlation. Estimation
technique as outlined in Chapter 2 was used.

graph theory can be used to assess which nodes are the most important in the
network, termed the most central nodes.

Directed and Undirected Networks

In general, there are two types of edges that can be present in a network: an edge
can be directed, in which case one head of the edge has an arrowhead indicating a
one-way e↵ect, or an edge can be undirected, indicating some mutual relationship.
A network that contains only directed edges is termed a directed network, whereas
a network that contains only undirected edges is termed an undirected network
(Newman, 2010). Many fields of science consider directed networks interesting
because they can be used to encode causal structures (Pearl, 2000). For exam-
ple, the edge insomnia ! fatigue can be taken to indicate that insomnia causes
fatigue. The work of Pearl describes that such causal structures can be tested
using only observational cross-sectional data and can even be estimated to a cer-
tain extent (Kalisch, Mächler, Colombo, Maathuis, & Bühlmann, 2012; Scutari,

3



1. Introduction: Psychological Networks

2010). However, when temporal information is lacking, there is only limited in-
formation present in cross-sectional observational data. Such estimation methods
typically only work under two very strict assumptions (a) that all entities which
play a causal role have been measured and (b) that the causal chain of cause and
e↵ect is not cyclic (i.e., a variable cannot cause itself via any path). Both assump-
tions are not very plausible in psychological systems. Furthermore, such directed
networks su↵er from the problem that many equivalent models can exist that fea-
ture the same relationships found in the data (MacCallum, Wegener, Uchino, &
Fabrigar, 1993); this makes the interpretation of structures difficult. For example,
the structure insomnia ! fatigue ! concentration is statistically equivalent to the
structure insomnia  fatigue ! concentration as well as the structure insomnia 
fatigue  concentration: All three only indicate that insomnia and concentration
problems are conditionally independent after controlling for fatigue.

For the reasons outlined above, psychological networks estimated on cross-
sectional data are typically undirected networks. The current state-of-the-art
method for estimating undirected psychological network structures involves the
estimation of PMRFs. A PMRF is a network model in which edges indicate the
full conditional association between two nodes after conditioning on all other nodes
in the network. This means when two nodes are connected, there is a relation-
ship between these two nodes that cannot be explained by any other node in the
network. Simplified, it can be understood as a partial correlation controlling for
all other connections. The absence of an edge between two nodes indicates that
these nodes are conditionally independent of each other given the other nodes in
the network. Thus, a completely equivalent undirected structure (compared to the
structures described above) would be insomnia — fatigue — concentration, indi-
cating that insomnia and concentration problems are conditionally independent
after controlling for fatigue.

Figure 1.2 shows a PMRF similar to the example described above. In this
network, there is a positive relationship between insomnia and fatigue and a neg-
ative relationship between fatigue and concentration. The positive edge is thicker
and more saturated than the negative edge, indicating that this interaction e↵ect
is stronger than that of the negative edge. This network shows that insomnia
and concentration do not directly interact with each other in any way other than
through their common connection with fatigue. Therefore, fatigue is the most
important node in this network—a concept we will later quantify as centrality.
These edges can be interpreted in several di↵erent ways.1 First, as shown above,
the model is in line with causal interpretations of associations among the symp-
toms. Second, this model implies that insomnia and fatigue predict each other
after controlling for concentration; even when we know someone is concentrat-
ing poorly, that person is more likely to su↵er from insomnia when we observe
that person su↵ering from fatigue. Similarly, fatigue and concentration predict
each other after controlling for insomnia. After controlling for fatigue, there is no
longer any predictive quality between insomnia and concentration, even though
these variables are correlated; fatigue now mediates the prediction between these

1A more detailed description of the interpretation of such models can be found in Chapter 6
and Chapter 8.
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1.2. Psychological Networks

A

B

C

Figure 1.2: Example of a pairwise Markov random field. Node A positively inter-
acts with node B, and node B negatively interacts with node C. Nodes A and C
are conditionally independent given node B.

two symptoms. Finally, these edges can represent genuine symmetric causal inter-
actions between symptoms (e.g., in statistical physics, a PRMF called the Ising
model is used to model particles that cause neighboring particles to be aligned).

Network Inference

In the first step of network analysis, the obtained network is typically presented
graphically to show the structure of the data. Afterwards, inference methods
derived from graph theory can be applied to the network structure. The estimated
PRMF is always a weighted network, which means that we not only look at the
structure of the network (e.g., are two nodes connected or not) but also at the
strength of connection between pairs of nodes. Because of this, many typical
inference methods that concern the global structure of the network (e.g., small-
worldness, density, and global clustering; Kolaczyk, 2009; Newman, 2010; Watts
& Strogatz, 1998) are less useful in the context of psychological networks because
they only take into account whether nodes are connected or not and not the
strength of association among nodes. Because the global inference methods for
weighted networks and PRMFs are still in development and no consensus has been
reached, the network inference section focuses on local network properties: How
are two nodes related, and what is the influence of a single node?

Relationship between two nodes. The relationship between two nodes can
be assessed in two ways. First, we can directly assess the edge weight. This is

5



1. Introduction: Psychological Networks

always a number that is nonzero because an edge weight of zero would indicate
there is no edge. The sign of the edge weight (positive or negative) indicates the
type of interaction, and the absolute value of the edge weight indicates the strength
of the e↵ect. For example, a positive edge weight of 0.5 is equal in strength to a
negative edge weight of −0.5 and both are stronger than an edge weight of 0.2.
Two strongly connected nodes influence each other more easily than two weakly
connected nodes. This is similar to how two persons standing closer to each other
can communicate more easily (via talking) than two people standing far away
from each other (via shouting)—two strongly connected nodes are closer to each
other. As such, the length of an edge is defined as the inverse of the edge strength.
Finally, the distance between two nodes is equal to the sum of the lengths of all
edges on the shortest path between two nodes (Newman, 2010).

Node centrality. The importance of individual nodes in the network can be
assessed by investigating the node centrality. A visualization of a network, such
as the one shown in Figure 1.2, is an abstract rendition of a high-dimensional
space in two dimensions. Although visualizations of network models often aim
to place highly connected nodes into the center of the graph, for instance us-
ing the Fruchterman-Reingold algorithm (Fruchterman & Reingold, 1991), the
two-dimensional visualization cannot properly reflect the true space of the model.
Thus, the metric distance between the placement of nodes in the two-dimensional
space has no direct interpretation as it has in multidimensional scaling, for in-
stance. Therefore, graph theory has developed several methods to more objec-
tively quantify which node is most central in a network. Three such centrality
measures have appropriate weighted generalizations that can be used with psy-
chological networks (Opsahl, Agneessens, & Skvoretz, 2010). First, node strength,
also called degree in unweighted networks (Newman, 2010), simply adds up the
strength of all connected edges to a node; if the network is made up of partial
correlation coefficients, the node strength equals the sum of absolute partial cor-
relation coefficients between a node and all other nodes. Second, closeness takes
the inverse of the sum of all the shortest paths between one node and all other
nodes in the network. Thus, where node strength investigates how strongly a
node is directly connected to other nodes in the network, closeness investigates
how strongly a node is indirectly connected to other nodes in the network. Fi-
nally, betweenness looks at how many of the shortest paths between two nodes go
through the node in question; the higher the betweenness, the more important a
node is in connecting other nodes.

1.3 Outline

The above describes, in short, the basis of the methodology introduced in this
dissertation. Although the methods and software discussed in this dissertation are
applicable to many fields both in and outside of psychology2, it is in three fields

2In recent literature, the methodology has been applied to diverse fields, such as attitude
formation (Dalege et al., 2016), test validity (Ziegler, Booth, & Bensch, 2013), dog personality
(Goold, Vas, Olsen, & Newberry, 2015), plant breeding (da Silva, Cecon, & Puiatti, 2015; Silva,
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1.3. Outline

where the method has been most applied: clinical psychology, psychometrics, and
personality research. As a result of this diversity, the audience of contributions in
network psychometrics varies as well between empirical researchers without much
programming knowledge, researchers with strong technical skills, and researchers
that are familiar with programming in R. To this end, the dissertation is split
in three parts: Part I is aimed at empirical researchers with an emphasis on
clinical psychology, Part II is aimed at technical researchers with an emphasis on
psychometrics, and Part III is aimed at R users with an emphasis on personality
research.

Network models have gained extensive footing in clinical psychology for their
ability to highlight the dynamics that may lead to someone developing or maintain-
ing mental illness (Cramer et al., 2010; Borsboom & Cramer, 2013; Borsboom, in
press). For this reason, Part I of this dissertation is aimed at empirical researchers,
with an emphasis on clinical psychology. Chapter 2 will introduce the reader to the
network estimation technique we now most often employ on cross-sectional data:
model selection on a series of regularized networks. Chapter 3 continues on this
topic and presents methods for assessing the accuracy of the network estimated as
well as the stability of inferences made on the network structure after observing
only subsets of people. Chapter 4 continuous discussing network estimation using
regularization and provides a more critical note to argue that results from the
methods described in this part are not without problems and certain conclusions
cannot be drawn. Finally, Chapter 5 gives a conceptual introduction to time-series
modeling on the data of a single patient in clinical practice.

Part II, on the other hand, is aimed at psychometricians and researchers with
strong technical skills. Simply stated, these chapters contain equations. Chap-
ter 6 will further outline the modeling of time-series data. This chapter will give
the theoretical justification for the model described in Chapter 5 and extends this
modeling framework to situations where time-series data is available from multiple
people. Rather than contrasting network modeling to the latent variable modeling
of classical psychometrics, Chapter 7 and Chapter 8 outline how these frameworks
can be combined. Chapter 7 will introduce the network model for multivari-
ate normal data as a formal psychometric model and will cast this model in the
well-known structural equation modeling (SEM) framework. Combining network
models into SEM allows for two new modeling frameworks, both of which show
promise in psychometrics. Finally, Chapter 8 will outline the relationship between
the best known network model for binary data, the Ising model, to well-known
psychometric modeling frameworks such as logistic regression, loglinear modeling,
and item-response theory.

Part III continues the combination of using networks to augment classical psy-
chometrics in three tutorial papers aimed at empirical researchers familiar with
programming in R. Two of these chapters are aimed at the third field in which
network modeling has grown prominent: personality research (Cramer, Sluis, et
al., 2012). These chapters are not technical and are all tutorials using R. Chap-
ter 9 will outline how network-based visualizations can be used to gain insight

Rêgo, Pessoa, & Rêgo, 2016), and ecology (Wilkins, Shizuka, Joseph, Hubbard, & Safran, 2015;
Gsell, Özkundakci, Hébert, & Adrian, 2016).
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1. Introduction: Psychological Networks

into high-dimensional correlational structures as well as large exploratory factor
analysis results. Chapter 10 introduces the network perspective to personality
researchers. Both Chapter 9 and Chapter 10 will show the use of these methods
in personality inventory datasets. Finally, Chapter 11 will introduce an R package
that can be used to draw path diagrams and to visualize correlational structures
directly from SEM software output.
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Chapter 2

Regularized Partial Correlation

Networks

Abstract

Recent years have seen an emergence of network modeling applied to
moods, attitudes, and problems in the realm of psychology. In this frame-
work, psychological variables are understood to directly interact with each
other rather than being caused by an unobserved latent entity. In this tuto-
rial, we introduce the reader to estimating the most popularly used network
model for psychological data: the partial correlation network. We describe
how regularization techniques can be used to efficiently estimate a parsi-
monious and interpretable network structure on cross-sectional data. We
show how to perform these analyses in R and demonstrate the method in an
empirical example on post-traumatic stress disorder data. In addition, we
discuss the e↵ect of the hyperparameter that needs to be manually set by the
researcher and provide a checklist with potential solutions for problems often
arise when estimating regularized partial correlation networks. The chap-
ter concludes with a simulation study that shows the performance of the
discussed methodology using a plausible psychological network structure.

2.1 Introduction

Recent years have seen the emergence of the use of network modeling for ex-
ploratory studies of psychological behavior as an alternative to latent-variable
modeling (Borsboom & Cramer, 2013; Schmittmann et al., 2013). In these so-
called psychological networks (Epskamp, Borsboom, & Fried, 2016), nodes rep-
resent psychological variables such as mood states, symptoms or attitudes, and

This chapter has been adapted from: Epskamp, S., and Fried, E.I. (2016). A Tutorial on
Regularized Partial Correlation Networks. arXiv preprint, arXiv:1607.01367, and: Epskamp,
S. (2016). Regularized Gaussian Psychological Networks: Brief Report on the Performance of
Extended BIC Model Selection. arXiv preprint, arXiv:1606.05771.
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2. Regularized Partial Correlation Networks

links between the nodes represent unknown statistical relationships that need to
be estimated. As a result, this class of network models is strikingly di↵erent
from e.g., social networks in which links are known (Wasserman & Faust, 1994),
and poses novel problems of statistical inference. A great body of technical lit-
erature exists on the estimation of such network models (e.g., Meinshausen &
Bühlmann, 2006; Friedman, Hastie, & Tibshirani, 2008; Hastie, Tibshirani, &
Friedman, 2001; Hastie, Tibshirani, & Wainwright, 2015; Foygel & Drton, 2010).
However, this line of literature often requires a more technical background than
can be expected from psychological researchers and does not focus on the unique
problems that come with analyzing psychological data, such as the handling of or-
dinal data, interpretability of networks based on di↵erent samples and attempting
to find evidence for an underlying causal mechanism. While this tutorial is aimed
at empirical researchers in psychology, it should be noted that the methodology
can readily be applied to other fields of research as well.

The main type of model used to estimate psychological methods are so-called
pairwise Markov random fields (PMRF; Lauritzen, 1996; Murphy, 2012). The
present chapter will focus on the most common PMRF for continuous data: partial
correlation networks. Partial correlation networks are usually estimated using
regularization, an important statistical procedure that helps to recover the true
network structure of the data. In this chapter, we present a tutorial on estimating
such regularized partial correlation networks, using a methodology implemented
in the qgraph package (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom,
2012) for the statistical programming language R (R Core Team, 2016). This
methodology has already been used in a substantive number of publications in
diverse fields, such as psychology, psychiatry, health sciences and more (e.g., Fried,
Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016; Isvoranu, van Borkulo, et al.,
2016; Isvoranu, Borsboom, van Os, & Guloksuz, 2016; Knefel, Tran, & Lueger-
Schuster, 2016; Levine & Leucht, 2016; Jaya, Hillmann, Reininger, Gollwitzer,
& Lincoln, 2016; Deserno, Borsboom, Begeer, & Geurts, 2016; McNally, 2016;
Kossakowski et al., 2016; Langley, Wijn, Epskamp, & Van Bork, 2015; van Borkulo
et al., 2015). However, the methodology itself has not yet been introduced in
psychological literature. In addition, because of the novelty of regularized partial
correlation networks in psychological research, we are not aware of concise and
clear introductions aimed at empirical researchers that explain regularization. The
goal of this chapter is thus (1) to provide a short introduction to regularization
partial correlation networks, (2) to outline the commands used in R to perform this
procedure, and (3) to present a checklist for identifying the most common problems
and questions arising from regularized networks. In addition, this chapter will
present simulation results that show the described estimation method works well
with plausible psychological networks on both continuous and ordinal data.
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2.2. Partial Correlation Networks

2.2 Partial Correlation Networks

The most commonly used framework for constructing a psychological network on
data that can be assumed to be multivariate normal1 is to estimate a network of
partial correlation coefficients (McNally et al., 2015; Borsboom & Cramer, 2013).
Such networks can also be termed concentration graphs (Cox & Wermuth, 1994)
or Gaussian graphical models (Lauritzen, 1996). Each link in the network rep-
resents a partial correlation coefficient between two variables after conditioning
on all other variables in the dataset. These coefficients range from −1 to 1 and
encode the remaining association between two nodes after controlling for all other
information possible, also known as conditional independence associations. Typ-
ically, the connections are visualized using red lines indicating negative partial
correlations, green lines indicating positive partial correlations, and wider and
more saturated connections indicate partial correlations that are far from zero
(see Chapter 9). Whenever the partial correlation is exactly zero, no connection
is drawn between two nodes, indicating that two variables are independent after
controlling for all other variables in the network. This is of particular interest
since such a missing connection indicates one of the two variables could not have
caused the other (Pearl, 2000). As such, whenever there is a connection present, it
highlights a potential causal pathway between two variables (see also Chapter 6).

Due to sampling variation, we do not obtain partial correlations that are ex-
actly zero when estimating a partial correlation network. Instead, even when in
reality two variables are conditionally independent, we still obtain partial correla-
tions that are very small and are represented as very weak edges in the network.
These connections are called spurious (Costantini, Epskamp, et al., 2015), as they
represent relationships that are not true in reality. We wish to control for such spu-
rious connections, especially considering the fact that we estimate a large number
of parameters in partial correlation networks that can also lead to false positive
associations. One way to do so is to test all partial correlations for statistical
significance and remove all connections that fail to reach significance (Drton &
Perlman, 2004). However, this poses a problem of multiple testing, and control-
ling for this problem (e.g., by using a Bonferroni correction) results in a loss of
power (Costantini, Epskamp, et al., 2015).

2.3 LASSO Regularization

An increasingly popular method for controlling for spurious connections—as well
as to obtain easier interpretable networks that may perform better in cross-
validation prediction—is to use statistical regularization techniques originating
in the field of machine learning. The goal here is to obtain a network structure
in which as few connections as possible are required to parsimoniously explain
the covariance among variables in the data. Especially prominent is to use of
the ‘least absolute shrinkage and selection operator’ (LASSO; Tibshirani, 1996).

1The assumption of normality can be relaxed by applying a transformation when data are
continuous but not normal (Liu, La↵erty, & Wasserman, 2009), or by basing the network esti-
mation on polychoric correlations when the data are ordinal.
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2. Regularized Partial Correlation Networks

In essence, the LASSO shrinks partial correlation coefficients when estimating a
network model, which means that small coefficients are estimated to be exactly
zero. This results in fewer connections in the network, or in other words, a sparse
network in which likely spurious connections are removed. The LASSO utilizes
a tuning parameter λ (lambda) that needs to be set, controlling this level of
sparsity. When the tuning parameter is low, only few connections are removed,
likely resulting in too many spurious connections. When the tuning parameter
is high, many connections are removed, likely resulting in too many true connec-
tions to be removed in addition to all spurious connections. More broadly, when
λ equals zero every connection remains in the network and when λ is substan-
tively high no connection remains in the network. As such, the tuning parameter
needs to be carefully selected to result in a network structure that minimizes the
number of spurious connections while maximizing the number of true connections
(Foygel Barber & Drton, 2015; Foygel & Drton, 2010).

Typically, a range of networks is estimated under di↵erent values of λ (Zhao &
Yu, 2006). The value for λ under which no edges are retained (the empty network),
λ
max

, is set to the largest absolute correlation (Zhao et al., 2015). A minimum
value can be chosen by multiplying some ratio R with this maximum value2:

λ
min

= Rλ
max

.

A logarithmically spaced range of tuning parameters (typically 100 di↵erent val-
ues), ranging from λ

min

to λ
max

, can be used to estimate di↵erent networks. To
summarize, the LASSO can be used to estimate a range of networks rather than
a single network, ranging from a fully connected network to a fully disconnected
network. Next, one needs to select the best network out of this range of networks.
This selection can be done by optimizing the fit of the network to the data (i.e. by
minimizing some information criterion). Minimizing the Extended Bayesian Infor-
mation Criterion (EBIC; Chen & Chen, 2008) has been shown to work particularly
well in retrieving the true network structure (Foygel Barber & Drton, 2015; Foygel
& Drton, 2010; van Borkulo et al., 2014), especially when the generating network
is sparse (i.e., does not contain many edges). LASSO regularization with EBIC
model selection has been shown to have high specificity all-around (i.e., does not
estimate edges that are not in the true network) but a varying sensitivity (i.e.,
estimates edges that are in the true network) based on the true network structure
and sample size. For example, sensitivity typically is less when the true network
is dense (contains many connections) or features some nodes with many edges
(hubs).

Many variants of the LASSO with di↵erent methods for selecting the LASSO
tuning parameter have been implemented in open-source software (e.g., Krämer,
Schäfer, & Boulesteix, 2009; Zhao et al., 2015). We suggest to use the variant
termed the ‘graphical LASSO’ (glasso; Friedman et al., 2008), which is a fast vari-
ant of the LASSO specifically aimed at estimating partial correlation networks.
The glasso algorithm has been implemented in the glasso package (Friedman,
Hastie, & Tibshirani, 2014) for the statistical programming language R (R Core
Team, 2016). An automatic function that uses this package in combination with

2The qgraph package uses R = 0.01 by default.
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Figure 2.1: True network structure used in simulation example. The network
represents a partial correlation network : nodes represent observed variables and
links represent partial correlations between two variables after conditioning on all
other variables. The simulated structure is a chain graph in which all absolute
partial correlation coefficients were drawn randomly between 0.3 and 0.4.

EBIC model selection as described by Foygel and Drton (2010) has been imple-
mented in the R package qgraph (Epskamp et al., 2012). We suggest using this
routine because—in addition to simple input commands—it only requires an es-
timate of the covariance matrix and not the raw data, allowing one to use, e.g.,
polychoric correlation matrices when the data are ordinal.

The EBIC uses a hyperparameter γ (gamma) that controls how much the EBIC
prefers simpler models (fewer connections). This hyperparameter γ should not be
confused with the LASSO tuning parameter λ, and needs to be set manually. It
typically is set between 0 and 0.5 (Foygel & Drton, 2010, suggest to use 0.5),
with higher values indicating that simpler models (more parsimonious models
with fewer connections) are preferred. Setting the hyperparameter to 0 errs on
the side of discovery: more connections are estimated, including possible spurious
ones (the network has a higher specificity). Setting the hyperparameter to 0.5, on
the other hand, errs on the side of caution or parsimony: fewer connections are
obtained including hardly any spurious connections but also less true connections
(the network has a higher sensitivity). It is important to mention that even when
setting the hyperparameter to 0, the network will still be sparser compared to
a partial correlation network that does not employ any form of regularization;
setting γ to 0 indicates that the EBIC reduces to the standard BIC, which is still
a criterion that prefers simple models.

To exemplify the above-described method of selecting a best fitting regular-
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2. Regularized Partial Correlation Networks

ized partial correlation network, we simulated a dataset of 100 people and 8 nodes
based on the chain graph shown in Figure 2.1. Such graphs are particularly suit-
able for our example because the true network (the one we want to recover with
our statistical analysis) only features connections among neighboring nodes vi-
sualized in a circle. This makes spurious connections—any edge that connects
non-neighboring nodes—easy to identify visually. We used the qgraph package
to estimate 100 di↵erent network structures, based on di↵erent values for λ, and
compute the EBIC under di↵erent values of γ. Figure 2.2 depicts a representative
sample of 10 of these networks. As can be seen, networks 1 through 7 feature
spurious connections and err on the side of discovery, while networks 9 and 10
recover too few connections and err on the side of caution. For each network, we
computed the EBIC based on γ of 0, 0.25 and 0.5 (the parameter the researchers
needs to set manually). The boldface values show the best fitting models, indi-
cating which models would be selected using a certain value of γ. When γ = 0
was used, network 7 was selected that featured three weak spurious connections.
When γ was set to 0.25 or 0.5 (the default in qgraph) respectively, network 8 was
selected, which has the same structure as the true network shown in Figure 2.1.
These results show that in our case, varying γ changed the results only slightly.
Importantly, this simulation does not imply that γ = 0.5 always leads to the true
model; simulation work has shown that 0.5 is fairly conservative and may result in
omitting true edges from the network, while it is very unlikely that spurious ones
are obtained (Foygel & Drton, 2010). In sum, the choice of the hyperparameter
is somewhat arbitrary and up to the researcher, and depending on the relative
importance assigned to caution or discovery (Dziak, Co↵man, Lanza, & Li, 2012).
Which of these γ values work best is a complex function of the (usually unknown)
true network structure.

A note on sparsity. It is important to note that both thresholding networks
based on significance of edges or using LASSO regularization will lead to edges
being removed from the network (termed a sparse network), but do not present
evidence that these edges are, in fact, zero (see Chapter 4). This is because these
methods seek to maximize specificity ; that is, they all aim to include as few false
positives (edges that are not in the true model) as possible. All these methods will
return empty network structures when there is not enough data. It is important
to note that observing a structure with missing edges, or even an empty network,
is in no way evidence that there are, in fact, missing edges. This is because these
methods do not try to keep the number of false negatives low, that is, the number
of edges that are not present in the estimated network but are present in the true
network. This is related to a well-known problem of null hypothesis testing (to
which, roughly, all these methods correspond): Not rejecting the null-hypothesis
is not evidence that the null hypothesis is true (Wagenmakers, 2007). That is,
we might not include an edge because the data are too noisy or because the null
hypothesis is true; classical tests and LASSO regularization cannot di↵erentiate
between these two reasons. Quantifying evidence for edge weights being zero is
still a topic of future research (see Chapter 12).
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2. Regularized Partial Correlation Networks

2.4 Example

In this paragraph, we use an example dataset to estimate a network on data of 221
people with a sub-threshold post-traumatic stress disorder (PTSD) diagnosis; the
network features 20 PTSD symptoms. A detailed description of the dataset can
be found elsewhere (Armour et al., 2016), and the full R codes for this analysis
can be found in the supplementary materials.

The following R codes perform regularized estimation of a partial correlation
network using EBIC selection (Foygel & Drton, 2010). These codes make use
of the qgraph package (Epskamp et al., 2012), which in turns utilizes the glasso
package for the glasso algorithm (Friedman et al., 2014). These codes assume data
is present in R under the object name Data.

library("qgraph")

corMat <- cor_auto(Data)

graph <- qgraph(corMat,

graph = "glasso",

sampleSize = nrow(Data),

layout = "spring",

tuning = 0.5)

In these codes, library("qgraph") loads the package into R and the cor auto

function detects ordinal variables (variables with up to 7 unique integer values)
and uses the lavaan package (Rosseel, 2012) to estimate polychoric, polyserial
and Pearson correlations. The qgraph function estimates and plots the network
structure. The argument graph specified that we want to use the glasso algorithm
with EBIC model selection, the argument sampleSize specifies the sample size
of the data, the argument layout specifies the node placement and the argument
tuning specified the EBIC hyperparameter. The hyperparameter is here set to 0.5,
which is also the current default value used in qgraph. For more control on the
estimation procedure, one can use the EBICglasso function, which is automati-
cally called when using qgraph(..., graph = "glasso"). Finally, the estimated
weights matrix can be obtained either directly using EBICglasso or by using the
getWmat function on the output of qgraph:

getWmat(graph)

Figure 2.3 shows the resulting network estimated under three di↵erent values
of the hyperparameter 0, 0.25, and 0.5. Table 2.1 shows the description of the
nodes. If we investigate the number of edges, we would expect that the network
with the largest hyperparameter of 0.5 has the fewest connections. This is indeed
the case: the network features 105 edges with γ = 0, 95 edges with γ = 0.25, and
87 edges with γ = 0.5.

We can further investigate properties of the network structures by investigating
how important nodes are in the network using measures called centrality indices.
A plot of these indices can be obtained as followed:

centralityPlot(graph)
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2. Regularized Partial Correlation Networks

Table 2.1: Description of nodes shown in Figure 2.3

Node Description
1 Intrusive Thoughts
2 Nightmares
3 Flashbacks
4 Emotional cue reactivity
5 Psychological cue reactivity
6 Avoidance of thoughts
7 Avoidance of reminders
8 Trauma-related amnesia
9 Negative beliefs
10 Blame of self or others
11 Negative trauma-related emotions
12 Loss of interest
13 Detachment
14 Restricted a↵ect
15 Irritability/anger
16 Self-destructive/reckless behavior
17 Hypervigilance
18 Exaggerated startle response
19 Difficulty concentrating
20 Sleep disturbance

An overview of these measures and their interpretation can be found in Chapter 1
and Chapter 10. All measures indicate how important nodes are in a network, with
higher values indicating that nodes are more important. Figure 2.4 was made using
centralityPlot and shows the resulting centrality of all three networks shown in
Figure 2.3. For a substantive interpretation of the network model obtained from
this dataset we refer the reader to Armour et al. (2016).

2.5 Common Problems and Questions

The estimation of regularized networks is not always without problems and can
sometimes lead to network structures that are hard to interpret. Here, we list sev-
eral common problems and questions encountered when estimating these models.

1. The estimated network has no or very few edges. This can occur in the
unlikely case when variables of interest do not exhibit partial correlations.
More likely, it occurs when the sample size is too low for the number of nodes
in the network. The EBIC penalizes edge weights based on sample size to
avoid false positive associations, which means that with increasing sample
size, the partial correlation network will be more and more similar to the
regularized partial correlation network. The smaller the sample, however,
the stronger the impact of the regularization on the network in terms of
parsimony. Figure 2.5 (panel A) shows a network estimated on the same data
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Figure 2.4: Closeness, betweenness, and degree centrality of the three networks
described in Figure 2.3 with increasing levels of the LASSO hyperparameter γ.
Values are standardized to z-scores.
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as Figure 2.3, but this time with only 50 instead of the 221 participants. A
way to remediate this problem is by setting the hyperparameter lower (e.g.,
0; see Figure 2.5 panel B). Note that this likely leads to spurious connections.
An alternative solution is to make a selection of the variables of interest and
estimate a network based only on a subset of variables, as less nodes in the
network leads to less edges to be estimated, resulting in more observations
per parameter to be estimated.

2. The network is densely connected (i.e., many edges) including many unex-
pected negative connections and, in particular, including many implausibly
high partial correlations (e.g., higher than 0.8). As the LASSO aims to
remove connections and return a relatively sparse network, we would not
expect densely connected networks. In addition, we would not expect many
partial correlations to be so high, as (partial) correlations above 0.8 indi-
cate near-perfect collinearity between variables. These structures can occur
when the correlation matrix used as input is not positive definite, which in
turn can be a result of a too small sample size, or of the estimation of poly-
choric correlations. In the case of a non-positive definite correlation matrix,
cor auto will warn the user and attempt to correct for this by searching
for a nearest positive definite matrix. This matrix, however, can still lead
to wildly unstable results. When the network looks very strongly connected
with few (if any) missing connections and partial correlations near 1 and −1,
the network structure is likely resulting from such a problem and should not
be interpreted. We suggest that researchers always compare networks based
on polychoric correlations with networks based on Spearman correlations
(they should look somewhat similar) to rule out if estimating the polychoric
correlations are the source of this problem.

3. While in general the graph looks as expected (i.e., relatively sparse), some
connections are extremely high and/or unexpectedly extremely negative.
This problem is related to the previous problem. The estimation of poly-
choric correlations relies on the pairwise cross-tables of variables in the
dataset. When the sample size is relatively low, some cells in the cross-
tables could be zero (e.g., nobody was observed that scored a 2 on one item
and a 1 on another item). This can lead to unstable estimated polychoric
correlations, and in turn to unstable partial correlations. Again, the network
based on polychoric correlations should be compared to a network based on
Spearman correlations. Obtaining very di↵erent networks indicates that the
estimation of the polychoric correlations may not be trustworthy.

4. Negative connections are found between variables where one would expect
positive connections. For example, two symptoms of the same disorder could,
unexpectedly, feature a negative partial correlation rather than a positive
one. This can occur artificially when one conditions on a common e↵ect
(Pearl, 2000). Suppose one measures students’ grades of a recent test, their
motivation, and the easiness of that test (Koller & Friedman, 2009). We
expect the grade to be positively influenced by the easiness of the test and
the motivation of the student, and we do not expect any correlation between
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Figure 2.5: Network of 20 PTSD symptoms. Instead of the full data like in
Figure 2.3 (221 subjects), only 50 subjects were used. Panel A: LASSO hyperpa-
rameter γ set to the default of 0.5; panel B: γ set to 0 for discovery.

motivation and easiness: knowing a student is motivated does not help us
predict the easiness of a test. However, if we only look at students who
obtained an A for the test (i.e., conditioning on grades), we now can predict
that if the student is not at all motivated, the test must have been very
easy. By conditioning on the common e↵ect (grade) we artificially created
a negative partial correlation between test easiness and student motivation.
Because partial correlation networks indicate such conditional relationships,
these negative relationships can occur when common e↵ect relationships are
present, and unexpected negative relationships might indicate common ef-
fect structures. Another way these relationships can occur is if the network
is based on a subsample of the population, and that subsample is a com-
mon e↵ect of the nodes in the network. For example, when one splits the
sample based on the sum score of variables used also in the network, neg-
ative relationships could be induced. We recommend results based on such
subsamples to be interpreted with care.

In addition to the above-mentioned problems, some questions are often en-
countered in network analysis:

1. How large does my sample have to be for a given number of nodes? Or in
other words, how stable are the estimated network structures and centrality
indices to sampling size? This topic goes beyond the scope of this chapter,
and is further discussed in Chapter 3. In summary, networks are compli-
cated models using many parameters, which can be unstable given relatively
low sample sizes. The LASSO remedies this problem somewhat, and stable
networks can be obtained with much smaller samples compared to unregu-
larized networks. Nonetheless, network models estimate a large number of
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parameters, implying that even when the LASSO is used, the models need
considerable power to obtain stable parameter estimates. It is therefore ad-
visable to always check for the accuracy and stability of edge weights and
centrality measures when these are reported and substantively interpreted
(c.f., Chapter 3).

2. Can we compare two di↵erent groups of people (e.g., clinical patients and
healthy controls) regarding the connectivity or density of their networks
(i.e. the number of connections)? The answer depends on the di↵erences in
sample size. As mentioned before, the EBIC is a function of the sample size:
the lower the sample size, the more parsimonious the network structure.
This means that comparing the connectivity of two networks is meaningful
if they were estimated on roughly the same sample size, but that di↵erences
should not be compared if this assumption is not met (e.g., see Rhemtulla
et al., 2016). A statistical test for comparing networks based on di↵erent
sample sizes is currently being developed (Van Borkulo et al., 2016)3.

3. Does the network structure provide evidence that the data are indeed causally
interacting and derive from a true network model, and not from a com-
mon cause model where the covariance of symptoms is explained by one
or more underlying latent variables (Schmittmann et al., 2013)? The short
answer is no. While psychological networks have been introduced as an al-
ternative modeling framework to latent variable modeling, and are capable
of strongly changing the point of focus from the common shared variance
to unique variance between variables (Costantini, Epskamp, et al., 2015),
they do not necessarily disprove the latent variable model. There is a di-
rect equivalence between network models and latent variable models (see
Chapter 7 and Chapter 8), and if we generate data based on a true latent
variable model, the corresponding network model will be fully connected.
However, this does not mean that when the resulting network is not fully
connected, the latent variable model must be false. LASSO estimation will
always return a sparse network with at least some missing connections. As
such, observing that there are missing connections does not indicate that
the true model was a model without missing connections. Because of the
equivalence stated above, observing a model with missing connections can-
not be taken for evidence that a latent variable model was not true. A more
detailed discussion on this topic can be found in Chapter 4 and a method-
ology on statistically comparing fit of a network model and latent variable
model is described in Chapter 7. In addition, statistical tests to distinguish
sparse networks from latent variable models are currently being developed
(Van Bork, 2015).

2.6 Simulation Study

While partial correlation network estimation using EBIC model selection has al-
ready been shown to work well in retrieving the GGM structure (Foygel & Drton,

3
github.com/cvborkulo/NetworkComparisonTest.
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Figure 2.6: True Gaussian graphical model used in simulation study. The network
was obtained by computing the (unregularized) sample partial correlation network
on the BFI personality dataset from the psych package in R, followed by removing
absolute edges below 0.05.

2010), it has not been validated in plausible scenarios for psychological networks.
In addition, no simulation study has assessed the performance of using a polychoric
correlation matrix in this methodology. To this end, this report presents a sim-
ulation study that assesses the performance in a plausible psychological network
structure. In addition, the simulation study varied R and γ in order to provide
recommendations of these parameters in estimating psychological networks. The
simulation study makes use of the qgraph package, using the R codes described
above.

Methods

To obtain a representative psychological network structure, the bfi dataset from
the psych package (Revelle, 2010) was used on the Big 5 personality traits (Benet-
Martinez & John, 1998; Digman, 1989; Goldberg, 1990a, 1993; McCrae & Costa,
1997). The bfi dataset consists of 2,800 observations of 25 personality inven-
tory items. The network structure was obtained by computing the sample par-
tial correlation coefficients (negative standardized inverse of the sample variance–
covariance matrix; Lauritzen, 1996). Next, to create a sparse network all absolute
edge weights below 0.05 were set to zero, thus removing edges from the network.
Figure 2.6 shows the resulting network structure. In this network, 125 out of 300
possible edges were nonzero (41.6%). While this network is not the most appro-
priate network based on this dataset, it functions well as a proxy for psychological
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network structures as it is both sparse (has missing edges) and has parameter
values that are not shrunken by the LASSO.

In the simulation study, data was generated based on the network of Figure 2.6.
Following, the network was estimated using the the qgraph codes described above.
Sample size was varied between 50, 100, 250, 500, 1,000, and 2,500, γ was varied
between 0, 0.25, 0.5, 0.75, and 1, and R was varied between 0.001, 0.01 and
0.1. The data was either simulated to be multivariate normal, in which case
Pearson correlations were used in estimation, or ordinal, in which case polychoric
correlations were used in the estimation. Ordinal data was created by sampling
four thresholds for every variable from the standard normal distribution, and next
using these thresholds to cut each variable in five levels. To compute polychoric
correlations, the cor_auto function was used, which uses the lavCor function of
the lavaan package (Rosseel, 2012). The number of di↵erent λ values used in
generating networks was set to 100 (the default in qgraph).

For each simulation, in addition to the correlation between estimated and true
edge weights, the sensetivity and specificity were computed (van Borkulo et al.,
2014). The sensitivity, also termed the true-positive rate, indicates the proportion
of edges in the true network that were estimated to be nonzero:

sensitivity =
# true positives

# true positives + # of false negatives
.

Specificity, also termed the true negative rate, indicates the proportion of true
missing edges that were also estimated to be missing:

specificity =
# true negatives

# true negatives + # false positives
.

When specificity is high, there are not many false positives (edges detected to be
nonzero that are zero in the true network) in the estimated network.

Results

Each of the conditions was replicated 1,000 times, leading to 180,000 simulated
datasets. Figure 2.7 shows the sensitivity of the analyses. This figure shows that
sensitivity increases with sample size and is high for large sample sizes. When γ >
0, small sample sizes are likely to result in empty networks (no edges), indicating a
sensitivity of 0. When ordinal data is used, small sample sizes (50 and 100) resulted
in far too densely connected networks that are hard to interpret. Setting γ to be
higher remediated this by estimating empty networks. At higher sample sizes, γ
does not play a role and sensitivity is comparable in all conditions. Using R = 0.1
remediates the poor performance of polychoric correlations in lower sample sizes,
but also creates an upper bound to sensitivity at higher sample sizes.

Figure 2.8 shows the specificity of the analyses, which was all-around high
except for the lower sample sizes in ordinal data using R = 0.01 or R = 0.001.
Some outliers indicate that fully connected networks were estimated in ordinal
data even when setting γ = 0.25 in small sample sizes. In all other conditions
specificity was comparably high, with higher γ values only performing slightly
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2. Regularized Partial Correlation Networks
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2.6. Simulation Study
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2. Regularized Partial Correlation Networks

better. Figure 2.9 shows the correlation between true and estimated edge weights.
This figure shows a comparable good performance from sample sizes of 250 and
higher in all conditions, with γ values up to 0.5 outperforming the higher γ values.
It should be noted that the correlation was set to zero if the estimated network
had no edges (all edge weights were then zero).

2.7 Conclusion

This chapter presented tutorial on how to estimate psychological networks us-
ing a popular estimation technique: LASSO regularization with the EBIC model
selection. The resulting network is a network of partial correlation coefficients con-
trolled for spurious connections. One possibility to do so is provided by the qgraph
R package that allows the estimation of network structure based on the correla-
tion matrix of the data. The method also allows constructing partial correlation
networks of ordered-categorical data by estimating the appropriate (in this case,
polychoric) correlation matrix. The performance was assessed on 180,000 simu-
lated datasets using a plausible psychological network structure. Results indicate
that partial correlation networks could be well retrieved using either Pearson cor-
relations or polychoric correlations. The default setup of qgraph uses γ = 0.5 and
R = 0.01, which are shown to work well in all conditions. Setting γ = 0.25 im-
proved the detection rate, but sometimes led to poorly estimated networks based
on polychoric correlations. γ can be set to 0 to err more on the side of discov-
ery (Dziak et al., 2012), but should be done with care in low sample polychoric
correlation matrices. All conditions showed increasing sensitivity with sample size
and a high specificity all-around. This is comparable to other network estimation
techniques (van Borkulo et al., 2014), and shows that even though a network does
not contain all true edges, the edges that are returned can usually be expected
to be genuine. The high correlation furthermore indicated that the strongest true
edges are usually estimated to be strong as well.

Many other estimation techniques exist. Regularized estimation of partial
correlation networks can also be performed using the huge (Zhao et al., 2015)
and parcor (Krämer et al., 2009) packages. When all variables are binary, one
can estimate the Ising Model using, for instance, the IsingFit R package (van
Borkulo & Epskamp, 2014). The resulting network has a similar interpretation as
partial correlation networks, and is also estimated using LASSO with EBIC model
selection (van Borkulo et al., 2014). When the data consist of both categorical and
continuous variables, a state-of-the-art methodology is implemented in the mgm
package (Haslbeck & Waldorp, 2016a) also making use of LASSO estimation with
EBIC model selection. The bootnet package can subsequently be used to assess
the accuracy of the estimated network structure obtained via qgraph or any of the
other packages mentioned above (see also Chapter 3).

Important to note is that the methods described in this chapter are only ap-
propriate to use when the cases in the data (the rows of the spreadsheet) can
reasonably be assumed to be independent of one-another. Such is the case in cross-
sectional analysis—where cases represent people that are measured only once—but
not in longitudinal data where one person is measured on several occasions. In this
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2.7. Conclusion

case, temporal information needs to be taken into account when estimating net-
work structures. One way to do so is by using the graphical vector-autoregression
model (graphical VAR; Wild et al., 2010). LASSO regularization making use of
glasso in an iterative algorithm has been developed to estimate the network struc-
tures (Abegaz & Wit, 2013; Rothman, Levina, & Zhu, 2010). EBIC model selec-
tion using these routines has been implemented in the R packages sparseTSCGM
(Abegaz & Wit, 2015; aimed at estimating genetic networks) and graphicalVAR
(Epskamp, 2015; aimed at estimating n = 1 psychological networks).

In conclusion, while psychological network analysis is a novel field that is
rapidly changing and developing, we have not seen an accessible description of the
most commonly used estimation procedure in the literature: LASSO regulariza-
tion using EBIC model selection to estimate a sparse partial correlation network.
This chapter aimed to provide a short overview of this common and promising
method.
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Chapter 3

Accuracy of Psychological Networks

Abstract

The usage of psychological networks that conceptualize psychological be-
havior as a complex interplay of psychological and other components has
gained increasing popularity in various fields of psychology. While prior
publications have tackled the topics of estimating and interpreting such net-
works, little work has been conducted to check how accurate (i.e., prone to
sampling variation) networks are estimated, and how stable (i.e., interpre-
tation remains similar with less observations) inferences from the network
structure (such as centrality indices) are. In this chapter, we aim to in-
troduce the reader to this field and tackle the problem of accuracy under
sampling variation. We first introduce the current state-of-the-art of net-
work estimation. Second, we provide a rationale why researchers should
investigate the accuracy of psychological networks. Third, we describe how
bootstrap routines can be used to (A) assess the accuracy of estimated net-
work connections, (B) investigate the stability of centrality indices, and (C)
test whether network connections and centrality estimates for di↵erent vari-
ables di↵er from each other. We introduce two novel statistical methods: for
(B) the correlation stability coefficient, and for (C) the bootstrapped di↵er-

ence test for edge-weights and centrality indices. We conducted and present
simulation studies to assess the performance of both methods. Finally, we
developed the free R-package bootnet that allows for estimating psychological
networks in a generalized framework in addition to the proposed bootstrap
methods. We showcase bootnet in a tutorial, accompanied by R syntax, in
which we analyze a dataset of 359 women with posttraumatic stress disorder
available online.

This chapter has been adapted from: Epskamp, S., Borsboom, D., and Fried, E.I. (in press).
Estimating Psychological Networks and their Accuracy: A Tutorial Paper. Behavior Research
Methods.
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3. Accuracy of Psychological Networks

3.1 Introduction

In the last five years, network research has gained substantial attention in psy-
chological sciences (Borsboom & Cramer, 2013; Cramer et al., 2010). In this field
of research, psychological behavior is conceptualized as a complex interplay of
psychological and other components. To portray a potential structure in which
these components interact, researchers have made use of psychological networks.
Psychological networks consist of nodes representing observed variables, connected
by edges representing statistical relationships. This methodology has gained sub-
stantial footing and has been used in various di↵erent fields of psychology, such as
clinical psychology (e.g., Boschloo et al., 2015; Fried et al., 2015; McNally et al.,
2015; Forbush, Siew, & Vitevitch, 2016), psychiatry (e.g., Isvoranu, van Borkulo,
et al., 2016; Isvoranu, Borsboom, et al., 2016; van Borkulo et al., 2015), person-
ality research (e.g., Costantini, Epskamp, et al., 2015; Costantini, Richetin, et al.,
2015; Cramer, Sluis, et al., 2012), social psychology (e.g., Dalege et al., 2016), and
quality of life research (Kossakowski et al., 2016).

These analyses typically involve two steps: (1) estimate a statistical model
on data, from which some parameters can be represented as a weighted network
between observed variables, and (2), analyze the weighted network structure us-
ing measures taken from graph theory (Newman, 2010) to infer, for instance, the
most central nodes.1 Step 1 makes psychological networks strikingly di↵erent from
network structures typically used in graph theory, such as power grids (Watts &
Strogatz, 1998), social networks (Wasserman & Faust, 1994) or ecological networks
(Barzel & Biham, 2009) in which nodes represent entities (e.g., airports, people, or-
ganisms) and connections are generally observed and known (e.g., electricity lines,
friendships, mutualistic relationships). In psychological networks, the strength of
connection between two nodes is a parameter estimated from data. With increas-
ing sample size, the parameters will be more accurately estimated (close to the
true value). However, in the limited sample size psychological research typically
has to o↵er, the parameters may not be estimated accurately, and in such cases,
interpretation of the network and any measures derived from the network is ques-
tionable. Therefore, in estimating psychological networks, we suggest a third step
is crucial: (3) assessing the accuracy of the network parameters and measures.

To highlight the importance of accuracy analysis in psychological networks,
consider Figure 3.1 and Figure 3.2. Figure 3.1 (Panel A) shows a simulated net-
work structure of 8 nodes in which each node is connected to two others in a chain
network. The network model used is a Gaussian graphical model (Lauritzen, 1996),
in which nodes represent observed variables and edges represent partial correlation
coefficients between two variables after conditioning on all other variables in the
dataset. A typical way of assessing the importance of nodes in this network is to
compute centrality indices of the network structure (Costantini, Epskamp, et al.,
2015; Newman, 2010; Opsahl et al., 2010). Three such measures are node strength,
quantifying how well a node is directly connected to other nodes, closeness, quan-
tifying how well a node is indirectly connected to other nodes, and betweenness,

1An introduction on the interpretation and inference of network models has been included in
the online supplementary materials at http://sachaepskamp.com/files/bootnet Supplementary

.pdf.
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Figure 3.1: Simulated network structure (Panel A) and the importance of each
node quantified in centrality indices (Panel B). The simulated network is a chain
network in which each edge has the same absolute strength. The network model
used was a Gaussian graphical model in which each edge represents partial corre-
lation coefficients between two variables after conditioning on all other variables.
Centrality indices are shown as standardized z-scores, which leads to all centrality
indices to be equal to zero.

quantifying how important a node is in the average path between two other nodes.
Figure 3.1 (Panel B) shows the centrality indices of the true network: all indices
are exactly equal. We simulated a dataset of 500 individuals (typically regarded a
moderately large sample size in psychology) using the network in Figure 3.1 and
estimated a network structure based on the simulated data (as further described
below). Results are presented in Figure 3.2; this is the observed network structure
that researchers are usually faced with, without knowing the true network struc-
ture. Of note, this network closely resembles the true network structure.2 As can
be seen in Figure 3.2 (Panel B), however, centrality indices of the estimated net-
work do di↵er from each other. Without knowledge on how accurate the centrality
of these nodes are estimated, a researcher might in this case falsely conclude that
nodes B and C play a much more important role in the network than other nodes.

Only few analyses so far have taken accuracy into account (e.g., Fried, Ep-
skamp, et al., 2016), mainly because the methodology has not yet been worked
out. This problem of accuracy is omnipresent in statistics. Imagine researchers
employ a regression analysis to examine three predictors of depression severity,
and identify one strong, one weak, and one unrelated regressor. If removing one of
these three regressors, or adding a fourth one, substantially changes the regression

2Penalized maximum likelihood estimation used in this analysis typically leads to slightly
lower parameter estimates on average. As a result, the absolute edge-weights in Figure 3.2 are
all closer to zero than the absolute edge-weights in the true network in Figure 3.1.
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Figure 3.2: Estimated network structure based on a sample of 500 people simu-
lated using the true model shown in Figure 3.1 (Panel A) and computed centrality
indices (Panel B). Centrality indices are shown as standardized z-scores. Central-
ity indices show that nodes B and C are the most important nodes, even though
the true model does not di↵erentiate in importance between nodes.

coefficients of the other regressors, results are unstable and depend on specific
decisions the researchers make, implying a problem of accuracy. The same holds
for psychological networks. Imagine in a network of psychopathological symptoms
that we find that symptom A has a much higher node strength than symptom B
in a psychopathological network, leading to the clinical interpretation that A may
be a more relevant target for treatment than the peripheral symptom B (Fried,
Epskamp, et al., 2016). Clearly, this interpretation relies on the assumption that
the centrality estimates are indeed di↵erent from each other. Due to the current
uncertainty, there is the danger to obtain network structures sensitive to spe-
cific variables included, or sensitive to specific estimation methods. This poses
a major challenge, especially when substantive interpretations such as treatment
recommendations in the psychopathological literature, or the generalizability of
the findings, are important. The current replication crisis in psychology (Open
Science Collaboration, 2015) stresses the crucial importance of obtaining robust
results, and we want the emerging field of psychopathological networks to start
o↵ on the right foot.

The remainder of the article is structured into three sections. In the first sec-
tion, we give a brief overview of often used methods in estimating psychological
networks, including an overview of open-source software packages that implement
these methods available in the statistical programming environment R (R Core
Team, 2016). In the second section, we outline a methodology to assess the accu-
racy of psychological network structures that includes three steps: (A) estimate
confidence intervals (CIs) on the edge-weights, (B) assess the stability of central-
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3.2. Estimating Psychological Networks

ity indices under observing subsets of cases, and (C) test for significant di↵erences
between edge-weights and centrality indices. We introduce the freely available R
package, bootnet3, that can be used both as a generalized framework to estimate
various di↵erent network models as well as to conduct the accuracy tests we pro-
pose. We demonstrate the package’s functionality of both estimating networks and
checking their accuracy in a step-by-step tutorial using a dataset of 359 women
with post-traumatic stress disorder (PTSD; Hien et al., 2009) that can be down-
loaded from the Data Share Website of the National Institute on Drug Abuse.
Finally, in the last section, we show the performance of the proposed methods for
investigating accuracy in three simulations studies. It is important to note that
the focus of our tutorial is on cross-sectional network models that can readily be
applied to many current psychological datasets. Many sources have already out-
lined the interpretation of probabilistic network models (e.g., Koller & Friedman,
2009; Lauritzen, 1996), as well as network inference techniques, such as centrality
measures, that can be used once a network is obtained (e.g., Costantini, Epskamp,
et al., 2015; Kolaczyk, 2009; Newman, 2004; Sporns, Chialvo, Kaiser, & Hilgetag,
2004).

To make this tutorial stand-alone readable for psychological researchers, we
included a detailed description of how to interpret psychological network models
as well as an overview of network measures in the online supplementary materials4.
We hope that this tutorial will enable researchers to gauge the accuracy and
certainty of the results obtained from network models, and to provide editors,
reviewers, and readers of psychological network papers the possibility to better
judge whether substantive conclusions drawn from such analyses are defensible.

3.2 Estimating Psychological Networks

As described in more detail in Chapter 1 and Chapter 2, a popular network model
to use in estimating psychological networks is a pairwise Markov Random Field
(PMRF; Costantini, Epskamp, et al., 2015; van Borkulo et al., 2014), on which
the present chapter is focused. It should be noted, however, that the described
methodology could be applied to other network models as well. A PMRF is a
network in which nodes represent variables, connected by undirected edges (edges
with no arrowhead) indicating conditional dependence between two variables; two
variables that are not connected are independent after conditioning on all other
variables. When data are multivariate normal, such a conditional independence
would correspond to a partial correlation being equal to zero. Conditional inde-
pendencies are also to be expected in many causal structures (Pearl, 2000). In
cross-sectional observational data, causal networks (e.g. directed networks) are
hard to estimate without stringent assumptions (e.g., no feedback loops). In ad-
dition, directed networks su↵er from a problem of many equivalent models (e.g.,
a network A ! B is not statistically distuinghuisable from a network A  B;
MacCallum et al., 1993, but see Mooij, Peters, Janzing, Zscheischler, & Schölkopf,

3CRAN link: http://cran.r-project.org/package=bootnet
Github link (developmental): http://www.github.com/SachaEpskamp/bootnet

4Included in this dissertation as Section 1.2
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3. Accuracy of Psychological Networks

2016, when nonlinearities are included). PMRFs, however, are well defined and
have no equivalent models (i.e., for a given PMRF, there exists no other PMRF
that describes exactly the same statistical independence relationships for the set
of variables under consideration). Therefore, they facilitate a clear and unambigu-
ous interpretation of the edge-weight parameters as strength of unique associations
between variables, which in turn may highlight potential causal relationships.

When the data are binary, the appropriate PMRF model to use is called the
Ising model (van Borkulo et al., 2014), and requires binary data to be estimated.
When the data follow a multivariate normal density, the appropriate PMRF model
is called the Gaussian graphical model (GGM; Costantini, Epskamp, et al., 2015;
Lauritzen, 1996), in which edges can be interpreted as partial correlation coeffi-
cients. The GGM requires an estimate of the covariance matrix as input,5 for
which polychoric correlations can also be used in case the data are ordinal (see
Chapter 2). For continuous data that are not normally distributed, a transforma-
tion can be applied (e.g., by using the nonparanormal transformation; Liu, Han,
Yuan, La↵erty, & Wasserman, 2012) before estimating the GGM. Finally, mixed
graphical models can be used to estimate a PMRF containing both continuous
and categorical variables (Haslbeck & Waldorp, 2016b).

Dealing with the problem of small N in psychological data. Estimating
a PMRF features a severe limitation: the number of parameters to estimate grows
quickly with the size of the network. In a 10-node network, 55 parameters (10
threshold parameters and 10⇥ 9/2 = 45 pairwise association parameters) need be
estimated already. This number grows to 210 in a network with 20 nodes, and
to 1275 in a 50-node network. To reliably estimate that many parameters, the
number of observations needed typically exceeds the number available in charac-
teristic psychological data. To deal with the problem of relatively small datasets,
recent researchers using psychological networks have applied the ‘least absolute
shrinkage and selection operator’ (LASSO; Tibshirani, 1996). This technique is
a form of regularization. The LASSO employs such a regularizing penalty by
limiting the total sum of absolute parameter values—thus treating positive and
negative edge-weights equally—leading many edge estimates to shrink to exactly
zero and dropping out of the model. As such, the LASSO returns a sparse (or, in
substantive terms, conservative) network model: only a relatively small number
of edges are used to explain the covariation structure in the data. Because of this
sparsity, the estimated models become more interpretable. The LASSO utilizes a
tuning parameter to control the degree to which regularization is applied. This
tuning parameter can be selected by minimizing the Extended Bayesian Informa-
tion Criterion (EBIC; Chen & Chen, 2008). Model selection using the EBIC has
been shown to work well in both estimating the Ising model (Foygel Barber &
Drton, 2015; van Borkulo et al., 2014) and the GGM (Foygel & Drton, 2010).
The remainder of this chapter focuses on the GGM estimation method proposed

5While the GGM requires a covariance matrix as input, it is important to note that the
model itself is based on the (possibly sparse) inverse of the covariance matrix. Therefore, the
network shown does not show marginal correlations (regular correlation coefficients between two
variables). The inverse covariance matrix instead encodes partial correlations.
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by Foygel & Drton (2010; see also Chapter 2, for a detailed introduction of this
method for psychological researchers).

Estimating regularized networks in R is straightforward. For the Ising model,
LASSO estimation using EBIC has been implemented in the IsingFit package (van
Borkulo et al., 2014). For GGM networks, a well established and fast algorithm
for estimating LASSO regularization is the graphical LASSO (glasso; Friedman
et al., 2008), which is implemented in the package glasso (Friedman et al., 2014).
The qgraph package utilizes glasso in combination with EBIC model selection
to estimate a regularized GGM. Alternatively, the huge (Zhao et al., 2015) and
parcor (Krämer et al., 2009) packages implement several regularization methods—
including also glasso with EBIC model selection—to estimate a GGM. Finally,
mixed graphical models have been implemented in the mgm package (Haslbeck &
Waldorp, 2016a).

3.3 Network Accuracy

The above description is an overview of the current state of network estimation
in psychology. While network inference is typically performed by assessing edge
strengths and node centrality, little work has been done in investigating how accu-
rate these inferences are. In this section, we outline several methods that should
routinely be applied after a network has been estimated. These methods will
follow three steps: (A) estimation of the accuracy of edge-weights, by drawing
bootstrapped CIs; (B) investigating the stability of (the order of) centrality in-
dices after observing only portions of the data; and (C) performing bootstrapped
di↵erence tests between edge-weights and centrality indices to test whether these
di↵er significantly from each other. We introduced these methods in decreasing
order of importance: while (A) should always be performed, a researcher not inter-
ested in centrality indices might not perform other steps, whereas a researcher not
interested in testing for di↵erences might only perform (A) and (B). Simulation
studies have been conducted to assess the performance of these methods, which
are reported in a later section in the chapter.

Edge-weight Accuracy

To assess the variability of edge-weights, we can estimate a CI: in 95% of the
cases such a CI will contain the true value of the parameter. To construct a
CI, we need to know the sampling distribution of the statistic of interest. While
such sampling distributions can be difficult to obtain for complicated statistics
such as centrality measures, there is a straight-forward way of constructing CIs
many statistics: bootstrapping (Efron, 1979). Bootstrapping involves repeatedly
estimating a model under sampled or simulated data and estimating the statistic
of interest. Following the bootstrap, a 1 − ↵ CI can be approximated by taking
the interval between quantiles 1/2↵ and 1− 1/2↵ of the bootstrapped values. We
term such an interval a bootstrapped CI. Bootstrapping edge-weights can be done
in two ways: using non-parametric bootstrap and parametric bootstrap (Bollen
& Stine, 1992). In non-parametric bootstrapping, observations in the data are
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resampled with replacement to create new plausible datasets, whereas parametric
bootstrapping samples new observations from the parametric model that has been
estimated from the original data; this creates a series of values that can be used
to estimate the sampling distribution. Bootstrapping can be applied as well to
LASSO regularized statistics (Hastie et al., 2015).

Non-parametric bootstrapping can always be applied, whereas parametric boot-
strapping requires a parametric model of the data. When we estimate a GGM,
data can be sampled by sampling from the multivariate normal distribution through
the use of the R package mvtnorm (Genz et al., 2008); to sample from the Ising
model, we have developed the R package IsingSampler (Epskamp, 2014). Us-
ing the GGM model, the parametric bootstrap samples continuous multivariate
normal data—an important distinction from ordinal data if the GGM was esti-
mated using polychoric correlations. Therefore, we advise the researcher to use
the non-parametric bootstrap when handling ordinal data. Furthermore, when
LASSO regularization is used to estimate a network, the edge-weights are on av-
erage made smaller due to shrinkage, which biases the parametric bootstrap. The
non-parametric bootstrap is in addition fully data-driven, whereas the parametric
bootstrap is more theory driven. As such, we will only discuss the non-parametric
bootstrap in this chapter and advice the researcher to only use parametric boot-
strap when no regularization is used and if the non-parametric results prove un-
stable or to check for correspondence of bootstrapped CIs between both methods.

It is important to stress that the bootstrapped results should not be used
to test for significance of an edge being di↵erent from zero. While unreported
simulation studies showed that observing if zero is in the bootstrapped CI does
function as a valid null-hypothesis test (the null-hypothesis is rejected less than
↵ when it is true), the utility of testing for significance in LASSO regularized
edges is questionable. In the case of partial correlation coefficients, without using
LASSO the sampling distribution is well known and p-values are readily available.
LASSO regularization aims to estimate edges that are not needed to be exactly
zero. Therefore, observing that an edge is not set to zero already indicates that
the edge is sufficiently strong to be included in the model. In addition, as later
described in this chapter, applying a correction for multiple testing is not feasible,
In sum, the edge-weight bootstrapped CIs should not be interpreted as significance
tests to zero, but only to show the accuracy of regularized edge-weights and to
compare edges to one-another.

Centrality Stability

While the bootstrapped CIs of edge-weights can be constructed using the boot-
strap, we discovered in the process of this research that constructing CIs for cen-
trality indices is far from trivial. As discussed in more detail in the online sup-
plementary materials, both estimating centrality indices based on a sample and
bootstrapping centrality indices result in biased sampling distributions, and thus
the bootstrap cannot readily be used to construct true 95% CIs even without regu-
larization. To allow the researcher insight in the accuracy of the found centralities,
we suggest to investigate the stability of the order of centrality indices based on
subsets of the data. With stability, we indicate if the order of centrality indices re-
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mains the same after re-estimating the network with fewer cases or nodes. A case
indicates a single observation of all variables (e.g., a person in the dataset) and is
represented by rows of the dataset. Nodes, on the other hand, indicate columns
of the dataset. Taking subsets of cases in the dataset employs the so called m out
of n bootstrap, which is commonly used to remediate problems with the regular
bootstrap (Chernick, 2011). Applying this bootstrap for various proportions of
cases to drop can be used to assess the correlation between the original centrality
indices and those obtained from subsets. If this correlation completely changes
after dropping, say, 10% of the cases, then interpretations of centralities are prone
to error. We term this framework the case-dropping subset bootstrap. Similarly,
one can opt to investigate the stability of centrality indices after dropping nodes
from the network (node-dropping subset bootstrap; Costenbader & Valente, 2003),
which has also been implemented in bootnet but is harder to interpret (dropping
50% of the nodes leads to entirely di↵erent network structures). As such, we only
investigate stability under case-dropping, while noting that the below described
methods can also be applied to node-dropping.

To quantify the stability of centrality indices using subset bootstraps, we pro-
pose a measure we term the correlation stability coefficient, or short, the CS-
coefficient. Let CS(cor = 0.7) represent the maximum proportion of cases that
can be dropped, such that with 95% probability the correlation between original
centrality indices and centrality of networks based on subsets is 0.7 or higher.
The value of 0.7 can be changed according to the stability a researcher is inter-
ested in, but is set to 0.7 by default as this value has classically been interpreted
as indicating a very large e↵ect in the behavioral sciences (Cohen, 1977). The
simulation study below showed that to interpret centrality di↵erences the CS-
coefficient should not be below 0.25, and preferably above 0.5. While these cuto↵
scores emerge as recommendations from this simulation study, however, they are
somewhat arbitrary and should not be taken as definite guidelines.

Testing for Significant Di↵erences

In addition to investigating the accuracy of edge weights and the stability of the
order of centrality, researchers may wish to know whether a specific edge A–B is
significantly larger than another edge A–C, or whether the centrality of node A
is significantly larger than that of node B. To that end, the bootstrapped values
can be used to test if two edge-weights or centralities significantly di↵er from one-
another. This can be done by taking the di↵erence between bootstrap values of one
edge-weight or centrality and another edge-weight or centrality, and constructing a
bootstrapped CI around those di↵erence scores. This allows for a null-hypothesis
test if the edge-weights or centralities di↵er from one-another by checking if zero
is in the bootstrapped CI (Chernick, 2011). We term this test the bootstrapped
di↵erence test.

As the bootstraps are functions of complicated estimation methods, in this
case LASSO regularization of partial correlation networks based on polychoric
correlation matrices, we assessed the performance of the bootstrapped di↵erence
test for both edge-weights and centrality indices in two simulation studies below.
The edge-weight bootstrapped di↵erence test performs well with Type I error rate
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close to the significance level (↵), although the test is slightly conservative at low
sample sizes (i.e, due to edge-weights often being set to zero, the test has a Type I
error rate somewhat less than ↵). When comparing two centrality indices, the test
also performs as a valid, albeit somewhat conservative, null-hypothesis test with
Type I error rate close to or less than ↵. However, this test does feature a somewhat
lower level of power in rejecting the null-hypothesis when two centralities do di↵er
from one-another.

A null-hypothesis test, such as the bootstrapped di↵erence test, can only be
used as evidence that two values di↵er from one-another (and even then care
should be taken in interpreting its results; e.g., Cohen, 1994). Not rejecting the
null-hypothesis, however, does not necessarily constitute evidence for the null-
hypothesis being true (Wagenmakers, 2007). The slightly lower power of the
bootstrapped di↵erence test implies that, at typical sample sizes used in psycho-
logical research, the test will tend to find fewer significant di↵erences than actually
exist at the population level. Researchers should therefore not routinely take non-
significant centralities as evidence for centralities being equal to each other, or for
the centralities not being accurately estimated. Furthermore, as described below,
applying a correction for multiple testing is not feasible in practice. As such, we
advise care when interpreting the results of bootstrapped di↵erence tests.

A note on multiple testing. The problem of performing multiple significance
tests is well known in statistics. When one preforms two tests, both at ↵ = 0.05,
the probability of finding at least one false significant result (Type I error) is higher
than 5%. As a result, when performing a large number of significance tests, even
when the null-hypothesis is true in all tests one would likely find several significant
results purely by chance. To this end, researchers often apply a correction for
multiple testing. A common correction is the ‘Bonferroni correction’ (Bland &
Altman, 1995), in which ↵ is divided by the number of tests. To test, for example,
di↵erences between all edge-weights of a 20-node network requires 17,955 tests,
leading to a Bonferroni corrected significance level of 0.000003.6 Testing at such
a low significance level is not feasible with the proposed bootstrap methods, for
three reasons:

1. The distribution of such LASSO regularized parameters is far from normal
(Pötscher & Leeb, 2009), and as a result approximate p-values cannot be
obtained from the bootstraps. This is particularly important for extreme
significance levels that might be used when one wants to test using a cor-
rection for multiple testing. It is for this reason that this chapter does not
mention bootstrapping p-values and only investigates null-hypothesis tests
by using bootstrapped CIs.

2. When using bootstrapped CIs with NB bootstrap samples, the widest in-
terval that can be constructed is the interval between the two most extreme
bootstrap values, corresponding to ↵ = 2/NB . With 1,000 bootstrap sam-
ples, this corresponds to ↵ = 0.002. Clearly, this value is much higher than

6One might instead only test for di↵erence in edges that were estimated to be non-zero with
the LASSO. However, doing so still often leads to a large number of tests.
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0.000003 mentioned above. Taking the needed number of bootstrap sam-
ples for such small significance levels is computationally challenging and not
feasible in practice.

3. In significance testing there is always interplay of Type I and Type II error
rates: when one goes down, the other goes up. As such, reducing the Type
I error rate increases the Type II error rate (not rejecting the null when
the alternative hypothesis is true), and thus reduces statistical power. In
the case of ↵ = 0.000003, even if we could test at this significance level, we
would likely find no significant di↵erences due to the low statistical power.

As such, Bonferroni corrected di↵erence tests are still a topic of future research.

Summary

In sum, the non-parametric (resampling rows from the data with replacement)
bootstrap can be used to assess the accuracy of network estimation, by investi-
gating the sampling variability in edge-weights, as well as to test if edge-weights
and centrality indices significantly di↵er from one-another using the bootstrapped
di↵erence test. Case-dropping subset bootstrap (dropping rows from the data),
on the other hand, can be used to assess the stability of centrality indices, how
well the order of centralities are retained after observing only a subset of the data.
This stability can be quantified using the CS-coefficient. The R code in the on-
line supplementary materials show examples of these methods on the simulated
data in Figure 3.1 and Figure 3.2. As expected from Figure 3.1, showing that
the true centralities did not di↵er, bootstrapping reveals that none of the central-
ity indices in Figure 3.2 significantly di↵er from one-another. In addition, node
strength (CS(cor = 0.7) = 0.13), closeness (CS(cor = 0.7) = 0.05) and between-
ness (CS(cor = 0.7) = 0.05) were far below the thresholds that we would consider
stable. Thus, the novel bootstrapping methods proposed and implemented here
showed that the di↵erences in centrality indices presented in Figure 3.2 were not
interpretable as true di↵erences.

3.4 Tutorial

In this section, we showcase the functionality of the bootnet package for estimating
network structures and assessing their accuracy. We do so by analyzing a dataset
(N = 359) of women su↵ering from posttraumatic stress disorder (PTSD) or
sub-threshold PTSD. The bootnet package includes the bootstrapping methods,
CS-coefficient and bootstrapped di↵erence tests as described above. In addition,
bootnet o↵ers a wide range of plotting methods. After estimating nonparametric
bootstraps, bootnet produces plots that show the bootstrapped CIs of edge-weights
or which edges and centrality indices significantly di↵er from one-another. After
estimating subset bootstrap, bootnet produces plots that show the correlation
of centrality indices under di↵erent levels of subsetting (Costenbader & Valente,
2003). In addition to the correlation plot, bootnet can be used to plot the average
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Default set R chain

EBICglasso Data %>% qgraph::cor_auto %>% qgraph::EBICglasso

pcor Data %>% qgraph::cor_auto %>% corpcor::cor2pcor

IsingFit Data %>% bootnet::binarize %>% IsingFit::IsingFit

IsingLL Data %>% bootnet::binarize %>%

IsingSampler::EstimateIsing(method = \ll")

huge Data %>% as.matrix %>% na.omit %>% huge::huge.npn %>%

huge::huge(method = \glasso") %>%

huge::huge.select(criterion = \ebic")

adalasso Data %>% parcor::adalasso.net

Table 3.1: R chains to estimate network models from data. The default
sets "EBICglasso", "pcor", "huge" and "adalasso" estimate a Gaussian
graphical model and the default sets "IsingFit" and "IsingLL" estimate
the Ising model. The notation package::function indicates that the func-
tion after the colons comes from the package before the colons. Chains are
schematically represented using magrittr chains: Whatever is on the left of
%>% is used as first argument to the function on the right of this opera-
tor. Thus, the first chain corresponding to "EBICglasso" can also be read as
qgraph::EBICglasso(qgraph::cor_auto(Data)).

estimated centrality index for each node under di↵erent sampling levels, giving
more detail on the order of centrality under di↵erent subsetting levels.

With bootnet, users can not only perform accuracy and stability tests, but also
flexibly estimate a wide variety of network models in R. The estimation technique
can be specified as a chain of R commands, taking the data as input and returning
a network as output. In bootnet, this chain is broken in several phases: data
preparation (e.g., correlating or binarizing), model estimation (e.g., glasso) and
network selection. The bootnet package has several default sets, which can be
assigned using the default argument in several functions. These default sets can
be used to easily specify the most commonly used network estimation procedures.
Table 3.1 gives an overview of the default sets and the corresponding R functions
called.7

Example: Post-traumatic Stress Disorder

To exemplify the usage of bootnet in both estimating and investigating network
structures, we use a dataset of 359 women enrolled in community-based sub-
stance abuse treatment programs across the United States (study title: Women’s
Treatment for Trauma and Substance Use Disorders; study number: NIDA-CTN-
0015).8 All participants met the criteria for either PTSD or sub-threshold PTSD,
according to the DSM-IV-TR (American Psychiatric Association, 2000). Details
of the sample, such as inclusion and exclusion criteria as well as demographic
variables, can be found elsewhere (Hien et al., 2009). We estimate the network

7The notation makes use of notation introduced by the magrittr R package (Bache & Wick-
ham, 2014)

8
https://datashare.nida.nih.gov/protocol/nida-ctn-0015
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using the 17 PTSD symptoms from the PTSD Symptom Scale-Self Report (PSS-
SR; Foa, Riggs, Dancu, & Rothbaum, 1993). Participants rated the frequency of
endorsing these symptoms on a scale ranging from 0 (not at all) to 3 (at least 4
or 5 times a week).

Network estimation. Following the steps in the online supplementary materi-
als, the data can be loaded into R in a data frame called Data, which contains the
frequency ratings at the baseline measurement point. We will estimate a Gaussian
graphical model, using the graphical LASSO in combination with EBIC model se-
lection as described above (Foygel & Drton, 2010). This procedure requires an
estimate of the variance-covariance matrix and returns a parsimonious network of
partial correlation coefficients. Since the PTSD symptoms are ordinal, we need
to compute a polychoric correlation matrix as input. We can do so using the
cor auto function from the qgraph package, which automatically detects ordinal
variables and utilizes the R-package lavaan (Rosseel, 2012) to compute polychoric
(or, if needed, polyserial and Pearson) correlations. Next, the EBICglasso func-
tion from the qgraph package can be used to estimate the network structure, which
uses the glasso package for the actual computation (Friedman et al., 2014). In
bootnet, as can be seen in Table 3.1, the "EBICglasso" default set automates this
procedure. To estimate the network structure, one can use the estimateNetwork
function:

library("bootnet")

Network <- estimateNetwork(Data, default = "EBICglasso")

Next, we can plot the network using the plot method:

plot(Network, layout = "spring", labels = TRUE)

The plot method uses qgraph to plot the network. Figure 3.3 (Panel A) shows the
resulting network structure, which is parsimonious due to the LASSO estimation;
the network only has 78 non-zero edges out of 136 possible edges. A description
of the node labels can be seen in Table 3.2. Especially strong connections emerge
among Node 3 (being jumpy) and Node 4 (being alert), Node 5 (cut o↵ from
people) and Node 11 (interest loss), and Node 16 (upset when reminded of the
trauma) and Node 17 (upsetting thoughts/images). Other connections are absent,
for instance between Node 7 (irritability) and Node 15 (reliving the trauma); this
implies that these symptoms can be statistically independent when conditioning
on all other symptoms (their partial correlation is zero) or that there was not
sufficient power to detect an edge between these symptoms.

Computing centrality indices. To investigate centrality indices in the net-
work, we can use the centralityPlot function from the qgraph package:

library("qgraph")

centralityPlot(Network)
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Figure 3.3: Estimated network structure of 17 PTSD symptoms (Panel A) and
the corresponding centrality indices (Panel B). Centrality indices are shown as
standardized z-scores. The network structure is a Gaussian graphical model, which
is a network of partial correlation coefficients.

ID Variable
1 Avoid reminds of the trauma
2 Bad dreams about the trauma
3 Being jumpy or easily startled
4 Being over alert
5 Distant or cut o↵ from people
6 Feeling emotionally numb
7 Feeling irritable
8 Feeling plans won’t come true
9 Having trouble concentrating
10 Having trouble sleeping
11 Less interest in activities
12 Not able to remember
13 Not thinking about trauma
14 Physical reactions
15 Reliving the trauma
16 Upset when reminded of trauma
17 Upsetting thoughts or images

Table 3.2: Node IDs and corresponding symptom names of the 17 PTSD symp-
toms.
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The resulting plot is shown in Figure 3.3 (Panel B). It can be seen that nodes
di↵er quite substantially in their centrality estimates. In the network, Node 17
(upsetting thoughts/images) has the highest strength and betweenness and Node 3
(being jumpy) has the highest closeness. However, without knowing the accuracy
of the network structure and the stability of the centrality estimates, we cannot
conclude whether the di↵erences of centrality estimates are interpretable or not.

Edge-weight accuracy. The bootnet function can be used to perform the
bootstrapping methods described above. The function can be used in the same way
as the estimateNetwork function, or can take the output of the estimateNetwork
function to run the bootstrap using the same arguments. By default, the nonpara-
metric bootstrap with 1,000 samples will be used. This can be overwritten using
the nBoots argument, which is used below to obtain more smooth plots.9 The
nCores argument can be used to speed up bootstrapping and use multiple com-
puter cores (here, eight cores are used):

boot1 <- bootnet(Network, nBoots = 2500, nCores = 8)

The print method of this object gives an overview of characteristics of the sample
network (e.g., the number of estimated edges) and tips for further investigation,
such as how to plot the estimated sample network or any of the bootstrapped
networks. The summary method can be used to create a summary table of certain
statistics containing quantiles of the bootstraps.

The plot method can be used to show the bootstrapped CIs for estimated
edge parameters:

plot(boot1, labels = FALSE, order = "sample")

Figure 3.4 shows the resulting plots and reveals sizable bootstrapped CIs around
the estimated edge-weights, indicating that many edge-weights likely do not sig-
nificantly di↵er from one-another. The generally large bootstrapped CIs imply
that interpreting the order of most edges in the network should be done with
care. Of note, the edges 16 (upset when reminded of the trauma) – 17 (upsetting
thoughts/images), 3 (being jumpy) – 4 (being alert) and 5 (feeling distant) – 11
(loss of interest), are reliably the three strongest edges since their bootstrapped
CIs do not overlap with the bootstrapped CIs of any other edges.10

Centrality stability. We can now investigate the stability of centrality indices
by estimating network models based on subsets of the data. The case-dropping
bootstrap can be used by using type = "case":

boot2 <- bootnet(Network, nBoots = 2500, type = "case",

nCores = 8)

9Using many bootstrap samples, such as the 2,500 used here, might result in memory prob-
lems or long computation time. It is advisable to first use a small number of samples (e.g., 10)
and then try more. The simulations below show that 1,000 samples may often be sufficient.

10As with any CI, non-overlapping CIs indicate two statistics significantly di↵er at the given
significance level. The reverse is not true; statistics with overlapping CIs might still significantly
di↵er.
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Figure 3.4: Bootstrapped confidence intervals of estimated edge-weights for the
estimated network of 17 PTSD symptoms. The red line indicates the sample values
and the gray area the bootstrapped CIs. Each horizontal line represents one edge
of the network, ordered from the edge with the highest edge-weight to the edge
with the lowest edge-weight. In the case of ties (for instance, multiple edge-weights
were estimated to be exactly 0), the mean of the bootstrap samples was used in
ordering the edges. y-axis labels have been removed to avoid cluttering.

To plot the stability of centrality under subsetting, the plot method can again be
used:

plot(boot2)

Figure 3.5 shows the resulting plot: the stability of closeness and betweenness
drop steeply while the stability of node strength is better. This stability can be
quantified using the CS-coefficient, which quantifies the maximum proportion of
cases that can be dropped to retain, with 95% certainty, a correlation with the
original centrality of higher than (by default) 0.7. This coefficient can be computed
using the corStability function:

corStability(boot2)

The CS-coefficient indicates that betweenness (CS(cor = 0.7) = 0.05) and (CS(cor =
0.7) = 0.05) closeness are not stable under subsetting cases. Node strength per-
forms better (CS(cor = 0.7) = 0.36), but does not reach the cuto↵ of 0.5 from
our simulation study required consider the metric stable. Therefore, we conclude
that the order of node strength is interpretable with some care, while the orders
of betweenness and closeness are not.
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Figure 3.5: Average correlations between centrality indices of networks sampled
with persons dropped and the original sample. Lines indicate the means and areas
indicate the range from the 2.5th quantile to the 97.5th quantile.

Testing for significant di↵erences. The differenceTest function can be
used to compare edge-weights and centralities using the bootstrapped di↵erence
test. This makes use of the non-parametric bootstrap results (here named boot1)
rather than the case-dropping bootstrap results. For example, the following code
tests if Node 3 and Node 17 di↵er in node strength centrality:

differenceTest(boot1, 3, 17, "strength")

The results show that these nodes do not di↵er in node strength since the boot-
strapped CI includes zero (CI: −0.17, 0.37). The plot method can be used to plot
the di↵erence tests between all pairs of edges and centrality indices. For example,
the following code plots the di↵erence tests of node strength between all pairs of
edge-weights:

plot(boot1, "edge", plot = "difference", onlyNonZero = TRUE,

order = "sample")

In which the plot argument has to be used because the function normally de-
faults to plotting bootstrapped CIs for edge-weights, the onlyNonZero argument
sets so that only edges are shown that are nonzero in the estimated network, and
order = "sample" orders the edge-weights from the most positive to the most
negative edge-weight in the sample network. We can use a similar code for com-
paring node strength:
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plot(boot1, "strength")

In which we did not have to specify the plot argument as it is set to the "difference"
by default when the statistic is a centrality index.

The resulting plots are presented in Figure 3.6. Panel A shows that many
edges cannot be shown to significantly di↵er from one-another, except for the pre-
viously mentioned edges 16 (upset when reminded of the trauma) – 17 (upsetting
thoughts/images), 3 (being jumpy) – 4 (being alert) and 5 (feeling distant) – 11
(loss of interest), which significantly di↵er from most other edges in the network.
Panel B shows that most node strengths cannot be shown to significantly di↵er
from each other. The node with the largest strength, Node 17, is significantly
larger than almost half the other nodes. Furthermore, Node 7 and Node 10 and
also feature node strength that is significantly larger than some of the other nodes.
In this dataset, no significant di↵erences were found between nodes in both be-
tweenness and closeness (not shown). For both plots it is important to note that
no correction for multiple testing was applied.

3.5 Simulation Studies

We conducted three simulation studies to assess the performance of the meth-
ods described above. In particular, we investigated the performance of (1) the
CS-coefficient and the bootstrapped di↵erence test for (2) edge-weights and (3)
centrality indices. All simulation studies use networks of 10 nodes. The net-
works were used as partial correlation matrices to generate multivariate normal
data, which were subsequently made ordinal with four levels by drawing random
thresholds; we did so because most prior network papers estimated networks on
ordinal data (e.g., psychopathological symptom data). We varied sample size be-
tween 100, 250, 500, 1,000, 2,500 and 5,000, and replicated every condition 1,000
times. We estimated Gaussian graphical models, using the graphical LASSO in
combination with EBIC model selection (Foygel & Drton, 2010; see also Chap-
ter 2), using polychoric correlation matrices as input. Each bootstrap method
used 1,000 bootstrap samples. In addition, we replicated every simulation study
with 5-node and 20-node networks as well, which showed similar results and were
thus not included in this chapter to improve clarity.

CS-coefficients. We assessed the CS-coefficient in a simulation study for two
cases where: networks where centrality did not di↵er between nodes, and networks
where centrality did di↵er. We simulated chain networks as shown in Figure 3.1
consisting of 10 nodes, 50% negative edges and all edge-weights set to either 0.25
or −0.25. Next, we randomly rewired edges as described by Watts and Strogatz
(1998) with probability 0, 0.1, 0.5 or 1. A rewiring probability of 0.5 indicates
that every edge had a 50% chance of being rewired to another node, leading to
a di↵erent network structure than the chain graph. This procedure creates a
range of networks, ranging from chain graphs in which all centralities are equal
(rewiring probability = 0) to random graphs in which all centralities may be dif-
ferent (rewiring probability = 1). Every condition (rewiring probability ⇥ sample
size) was replicated 1,000 times, leading to 24,000 simulated datasets. On each of
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3. Accuracy of Psychological Networks

these datasets, case-dropping bootstrap was performed and the CS-coefficient was
computed. Figure 3.7 shows the results, showing that the CS-coefficient remains
low in networks in which centrality does not di↵er and rises as a function of sample
size in networks in which centralities do di↵er. It can be seen that under a model
in which centralities do not di↵er the CS-coefficient remains stable as sample size
increases and stays mostly below .5, and roughly 75% stays below 0.25. Therefore,
to interpret centrality di↵erences the CS-coefficient should not be below 0.25, and
preferably above 0.5.

Edge-weight bootstrapped di↵erence test. We ran a second simulation
study to assess the performance of the bootstrapped di↵erence test for edge-
weights. In this simulation study, chain networks were constructed consisting
of 10 nodes in which all edge-weights were set to 0.3. Sample size was again var-
ied between 100, 250, 500, 1,000, 2,500 and 5,000 and each condition was again
replicated 1,000 times, leading to 6,000 total simulated datasets. Data were made
ordinal and regularized partial correlation networks were estimated in the same
manner as in the previous simulation studies. We only compared edges that were
nonzero in the true network (thus, edges with a weight of 0.3 that were not dif-
ferent from one-another), and we investigated the rejection rate under di↵erent
levels of ↵: 0.05, 0.01, 0.001 and 0.0001. For every significance level, the expected
significance level given a certain number of bootstrap samples (in this case 1,000)
was computed using the following R code:

alpha <- 0.05

mean(replicate(10000,quantile(runif(1000),alpha/2)) +

(1 - replicate(10000,quantile(runif(1000),1-alpha/2))))

Figure 3.8 shows that rejection rate converged on the expected rejection rate with
higher samples, and was lower than the expected rejection rate in the low sample
condition of N = 100—a result of the LASSO pulling many edge-weights to zero
in low sample sizes.

Centrality bootstrapped di↵erence test. We conducted a third simulation
study to assess the performance of the bootstrapped di↵erence test for centrality
indices. The design was the same as the first simulation study, leading to 24,000 to-
tal simulated datasets. We performed the bootstrapped di↵erence test to all pairs
of nodes in all networks and computed the rate of rejecting the null-hypothesis of
centralities being equal. Figure 3.9 shows the results of this simulation study. It
can be seen that the average rate of rejecting the null-hypothesis of two centrality
indices being equal under a chain-network such as shown in Figure 3.1 stays below
0.05 at all sample sizes for all centrality indices. As such, checking if zero is in the
bootstrapped CI on di↵erences between centralities is a valid null-hypothesis test.
Figure 3.9, however, also shows that the rejection rate often is below 0.05, lead-
ing to a reduced power in the test. As such, finding true di↵erences in centrality
might require a larger sample size. When centralities di↵er (rewiring probability
> 0), power to detect di↵erences goes up as a function of sample size. Unreported
simulation studies showed that using Pearson or Spearman correlations on ordinal
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3.5. Simulation Studies

betweenness closeness strength
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Figure 3.7: Simulation results showing the CS-coefficient of 24,000 simulated
datasets. Datasets were generated using chain networks (partial correlations) of
10 nodes with edge-weights set to 0.25 or −0.25. Edges were randomly rewired to
obtain a range from networks ranging from networks in which all centralities are
equal to networks in which all centralities di↵er. The CS-coefficient quantifies the
maximum proportion of cases that can be dropped at random to retain, with 95%
certainty, a correlation of at least 0.7 with the centralities of the original network.
Boxplots show the distribution of CS-coefficients obtained in the simulations. For
example, plots on top indicate that the CS-coefficient mostly stays below 0.2 when
centralities do not di↵er from one-another (chain graph as shown in Figure 3.1).
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Figure 3.8: Simulation results showing the rejection rate of the bootstrapped dif-
ference test for edge-weights on 6,000 simulated datasets. Datasets were generated
using chain networks (partial correlations) of 10 nodes with edge-weights set to
0.3. Only networks that were nonzero in the true network were compared to one-
another. Lines indicate the proportion of times that two random edge-weights were
significantly di↵erent (i.e., the null-hypothesis was rejected) and their CI (plus and
minus 1.96 times the standard error). Solid horizontal lines indicate the intended
significance level and horizontal dashed line the expected significance level given
1,000 bootstrap samples. The y-axis is drawn using a logarithmic scale.

data using this method leads to an inflated Type-I error rate. Our simulations
thus imply that bootstrapped di↵erence test for centrality indices for ordinal data
should use polychoric correlations as input to the graphical LASSO.

3.6 Conclusion

In this chapter, we have summarized the state-of-the-art in psychometric network
modeling, provided a rationale for investigating how susceptible estimated psy-
chological networks are to sampling variation, and described several methods that
can be applied after estimating a network structure to check the accuracy and
stability of the results. We proposed to perform these checks in three steps: (A)
assess the accuracy of estimated edge-weights, (B) assess the stability of centrality
indices after subsetting the data, and (C) test if edge-weights and centralities di↵er
from one-another. Bootstrapping procedures can be used to perform these steps.
While bootstrapping edge-weights is straight-forward, we also introduced two new
statistical methods: the correlation stability coefficient (CS-coefficient) and the
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Figure 3.9: Simulation results showing the rejection rate of the bootstrapped
di↵erence test for centrality indices. Datasets were generated using the same
design as in Figure 3.7. Lines indicate the proportion of times that two random
centralities were significantly di↵erent (i.e., the null-hypothesis was rejected).

bootstrapped di↵erence test for edge-weights and centrality indices to aid in steps 2
and 3 respectively. To help researchers conduct these analyses, we have developed
the freely available R package bootnet, which acts as a generalized framework for
estimating network models as well as performs the accuracy tests outlined in this
chapter. It is of note that, while we demonstrate the functionality of bootnet in
this tutorial using a Gaussian graphical model, the package can be used for any
estimation technique in R that estimates an undirected network (such as the Ising
model with binary variables).

Empirical example results. The accuracy analysis of a 17-node symptom net-
work of 359 women with (subthreshold) PTSD showed a network that was sus-
ceptible to sampling variation. First, the bootstrapped confidence intervals of the
majority of edge-weights were large. Second, we assessed the stability of central-
ity indices under dropping people from the dataset, which showed that only node
strength centrality was moderately stable; betweenness and closeness centrality
were not. This means that the order of node strength centrality was somewhat
interpretable, although such interpretation should be done with care. Finally,
bootstrapped di↵erence tests at a significance level of 0.05 indicated that only
in investigating node strength could statistical di↵erences be detected between
centralities of nodes, and only three edge-weights were shown to be significantly
higher than most other edges in the network.
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Limitations and Future Directions

Power-analysis in psychological networks. Overall, we see that networks
with increasing sample size are estimated more accurately. This makes it easier
to detect di↵erences between centrality estimates, and also increases the stability
of the order of centrality estimates. But how many observations are needed to
estimate a reasonably stable network? This important question usually referred
to as power-analysis in other fields of statistics (Cohen, 1977) is largely unanswered
for psychological networks. When a reasonable prior guess of the network structure
is available, a researcher might opt to use the parametric bootstrap, which has
also been implemented in bootnet, to investigate the expected accuracy of edge-
weights and centrality indices under di↵erent sample sizes. However, as the field
of psychological networks is still young, such guesses are currently hard to come
by. As more network research will be done in psychology, more knowledge will
become available on graph structure and edge-weights that can be expected in
various fields of psychology. As such, power calculations are a topic for future
research and are beyond the scope of the current chapter.

Future directions. While working on this project, two new research questions
emerged: is it possible to form an unbiased estimator for centrality indices in
partial correlation networks, and consequently, how should true 95% confidence
intervals around centrality indices be constructed? As our example highlighted,
centrality indices can be highly unstable due to sampling variation, and the es-
timated sampling distribution of centrality indices can be severely biased. At
present, we have no definite answer to these pressing questions that we discuss in
some more detail in the online supplementary materials. In addition, construct-
ing bootstrapped CIs on very low significance levels is not feasible with a limited
number of bootstrap samples, and approximating p-values on especially networks
estimated using regularization is problematic. As a result, performing di↵erence
tests while controlling for multiple testing is still a topic of future research. Fi-
nally, future research should focus on identifying why the bootstrapped di↵erence
test has low statistical power and extend the presented simulation studies in an
attempt to identify if the test works under multiple conditions (e.g., di↵erent net-
work structures or network models). Given the current emergence of network
modeling in psychology, remediating these questions should have high priority.

Related research questions. We only focused on accuracy analysis of cross-
sectional network models. Assessing variability on longitudinal and multi-level
models is more complicated and beyond the scope of current chapter; it is also
not implemented in bootnet as of yet. We refer the reader to Bringmann and
colleagues (2015) for a demonstration on how confidence intervals can be obtained
in a longitudinal multi-level setting. We also want to point out that the results
obtained here may be idiosyncratic to the particular data used. In addition, it
is important to note that the bootstrapped edge-weights should not be used as a
method for comparing networks based on di↵erent groups, (e.g., comparing the
bootstrapped CI of an edge in one network to the bootstrapped CI of the same edge
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in another network) for which a statistical test is being developed.11 Finally, we
wish to point out promising research on obtaining exact p-values and confidence
intervals based on the results of LASSO regularized analyses (see Hastie et al.,
2015, for an overview), which may in the future lead to a lesser need to rely on
bootstrapping methods.

Conclusion

In addition to providing a framework for network estimation as well as performing
the accuracy tests proposed in this chapter, bootnet o↵ers more functionality to fur-
ther check the accuracy and stability of results that were beyond the scope of this
chapter, such as the parametric bootstrap, node-dropping bootstrap (Costenbader
& Valente, 2003) and plots of centrality indices of each node under di↵erent levels
of subsetting. Future development of bootnet will be aimed to implement function-
ality for a broader range of network models, and we encourage readers to submit
any such ideas or feedback to the Github Repository.12 Network accuracy has
been a blind spot in psychological network analysis, and the authors are aware of
only one prior paper that has examined network accuracy (Fried, Epskamp, et al.,
2016), which used an earlier version of bootnet than the version described here.
Further remediating the blind spot of network accuracy is of utmost importance
if network analysis is to be added as a full-fledged methodology to the toolbox of
the psychological researcher.

11
http://www.github.com/cvborkulo/NetworkComparisonTest

12
http://www.github.com/sachaepskamp/bootnet
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Chapter 4

Network Estimation and Sparsity

Abstract

Network models, in which psychopathological disorders are conceptu-
alized as a complex interplay of psychological and biological components,
have become increasingly popular in the recent psychopathological litera-
ture (Borsboom et al., 2011). These network models often contain significant
numbers of unknown parameters, yet the sample sizes available in psycholog-
ical research are limited. As such, general assumptions about the true net-
work are introduced to reduce the number of free parameters. Incorporating
these assumptions, however, means that the resulting network will always
reflect the particular structure assumed by the estimation method—a crucial
and often ignored aspect of psychopathological networks. For example, ob-
serving a sparse structure and simultaneously assuming a sparse structure
does not imply that the true model is, in fact, sparse. To illustrate this
point, we discuss a recently published paper that reveals a high-dimensional
network of psychopathological symptoms (Boschloo et al., 2015). Further-
more, we show the e↵ect of the assumption of sparsity in three simulation
studies.

4.1 Introduction

Recent psychological literature has focused on a network approach to model many
di↵erent psychological phenomena (Schmittmann et al., 2013). Such networks can
be high-dimensional structures (i.e., the number of unknown parameters is much
larger than the available data), which are hard to estimate without making gen-
eral assumptions about the underlying true model structure. If the true model is
assumed to be sparse, thus containing a small number of connections relative to
the number of possible connections, a methodology can be applied that will return

This chapter has been adapted from: Epskamp, S., Kruis, J., and Marsman, M. (in press).
Estimating psychopathological networks: be careful what you wish for. PlosOne.
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such a sparse network structure. In other words, assuming a sparse network struc-
ture results in estimating a sparse network structure, which means that certain
conclusions cannot be drawn from observing such a structure. In this chapter, we
argue that care should be taken in interpreting the obtained network structure
because the estimation procedure may pollute the results. We will illustrate this
by showing examples of networks obtained when sparse networks are estimated
even when the true network structure is dense.

4.2 Network Psychometrics

The network approach has been particularly promising in the field of psychopathol-
ogy. Within this framework, symptoms (e.g., insomnia, fatigue, and concentration
problems) are no longer treated as interchangeable indicators of some latent men-
tal disorder (e.g., depression). Instead, symptoms play an active causal role. For
example, insomnia leads to fatigue, fatigue leads to concentration problems, and
so forth (Borsboom & Cramer, 2013). Psychopathological disorders, then, are
not interpreted as the common cause of observed symptoms but rather as emer-
gent behaviors that result from a complex interplay of psychological and biological
components. To grasp such a complex structure, a network model can be used in
which variables such as symptoms or moods are represented by nodes. Nodes are
connected by edges that indicate associations between nodes. This line of research
has led to intuitive new insights about various psychopathological concepts such
as comorbidity (Borsboom et al., 2011; Cramer et al., 2010), the impact of life
events (Cramer, Borsboom, Aggen, & Kendler, 2012; Fried et al., 2015), and sud-
den life transitions (e.g., sudden onset of a depressive episode; van de Leemput et
al., 2014; Wichers, Groot, Psychosystems, ESM Group, & EWS Group, 2016).

The growing popularity of the network perspective on psychological phenom-
ena has culminated in the emergence of a new branch of psychology dedicated
to the estimation of network structures on psychological data—network psycho-
metrics (Epskamp, Maris, Waldorp, & Borsboom, in press). This field focuses on
tackling the problem of estimating network structures involving large numbers of
parameters in high-dimensional models. When cross-sectional data are analyzed,
the most popular models that are used are the Gaussian Graphical Model (GGM;
Lauritzen, 1996) for continuous data and the Ising model (Ising, 1925) for binary
data. Both the GGM and the Ising model fall under a general class of models
called Markov Random Fields. These models represent variables as nodes which
are connected by edges but only if the variables are conditionally independent.
The strength of an edge (i.e., its absolute deviance from zero) demonstrates the
strength of the association between two variables after conditioning on all other
variables in the network; this is also termed concentration (Cox & Wermuth,
1993). In the GGM, edges directly correspond to partial correlation coefficients.
The Ising model does not allow for such standardization, but edge weights can
be similarly interpreted. A more detailed conceptual introduction of these models
can be found in Chapter 1. A technical introduction to the GGM will follow in
Chapter 6, and a technical introduction to the Ising Model will follow in Chapter 8.

In both models, we must estimate a weight matrix that contains P (P − 1)/2
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number of parameters, where P is the number of nodes, in order to encode the
network structure. These parameters encompass the conditional relationship be-
tween two nodes after conditioning on all other nodes in the network and can
be shown to be quite instable with relatively low sample sizes (see Chapter 3).
“Relatively low sample sizes,” is a loose description and has not yet been well-
defined. A general rule would be to have at least as many observations as the
number of parameters. But, as will be shown later, this general rule still results
in unstable estimates. A common solution to overcome the problem of estimating
many parameters is to reduce this number by using some form of regularization
or penalization. A particularly promising technique is to apply the ‘least absolute
shrinkage and selection operator’ (LASSO; Tibshirani, 1996) to the edge weights
of the network. The LASSO penalizes the sum of absolute parameter values such
that the estimated values shrink to zero. That is, the absolute parameter esti-
mates will be small and will often equal exactly zero. Therefore, the resulting
model is almost always sparse; only a relatively few number of parameters will be
estimated to be nonzero. The use of LASSO typically leads to better performance
in cross-validations (i.e., overfitting is prevented) and results in more easily inter-
pretable models compared to nonregularized Ising models. Most important is that
if the true network structure is sparse, the LASSO performs well in estimating this
network structure and, more specifically, in estimating fewer edges to be nonzero
that are actually zero in the true network (i.e., fewer false positives).

The LASSO uses a tuning parameter that controls the sparsity, which can
be chosen to minimize some criterion such as the Extended Bayesian Information
Criterion (EBIC; Chen & Chen, 2008). This methodology has been shown to work
well for both the GGM (Foygel & Drton, 2010) and the Ising model (Foygel Barber
& Drton, 2015; van Borkulo et al., 2014), has been implemented in easy-to-use
software (e.g., Epskamp et al., 2012; van Borkulo & Epskamp, 2014), and has been
utilized in an increasing number of publications (e.g., Dalege et al., 2016; Isvoranu,
van Borkulo, et al., 2016; Kossakowski et al., 2016; Langley et al., 2015; Rhemtulla
et al., 2016; van Borkulo et al., 2015). For a more thorough introduction to this
methodology, we recommend reading van Borkulo et al. (2014) and Chapter 2.
To date, the largest application of a psychological network estimated using the
LASSO was carried out by Boschloo et al. (2015), who measured 120 psychiatric
symptoms in 34,653 subjects and modeled these with an Ising model. We use
their work in this chapter to illustrate our concerns regarding the interpretation
of network structures that are the result of applying network methodology to data.

4.3 A Sparse Network Model of Psychopathology

The network of Boschloo et al. (2015) shows a network structure in which symp-
toms representative of a disorder strongly cluster together. Although Boschloo and
her colleagues admitted that the found network structure closely represents the
structure that is imposed by the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM; American Psychiatric Association, 2013), they concluded that the
found structure indicates that symptoms are not interchangeable, which is pre-
sumed in the DSM. Commonly, a DSM diagnosis requires an individual to have X
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out of Y symptoms, regardless of which specific symptoms. This means that two
people with vastly di↵erent symptoms can be assigned the same diagnosis. This
interchangeability results from an underlying causal notion of unobserved diseases
causing symptoms rather than symptoms having an active causal role on each
other—a notion more formally known as the common cause model (Schmittmann
et al., 2013). Boschloo and her colleagues concluded that the network structure
shows that symptoms are not interchangeable, mainly due to apparent di↵erences
in the number of connections and the strength of the connections between symp-
toms (a relative small number of pathways between disorders and the presence of
some negative connections).

Although we do not necessarily disagree with the notion that symptoms play
an active causal role in psychopathology, we wish to point out that the conclu-
sion that symptoms are not interchangeable is difficult to ascertain from a sparse
approximated network structure alone. This is because the LASSO relies on the as-
sumption that the true network structure is sparse; the LASSO will always search
for a model in which relatively few edges and paths explain the co-occurrence
of all nodes. As a result, the LASSO can have a low sensitivity (i.e., not all
true edges are detected) but always has a high specificity (i.e., fewer false pos-
itives; van Borkulo et al., 2014). It is this reason why network analysts prefer
the LASSO; edges that are estimated by the LASSO are likely to represent true
edges. Moreover, the LASSO returns a possible explanation of the data using only
a few connections that can be interpreted as causal pathways (Lauritzen, 1996;
Pearl, 2000). That the LASSO yields a possible explanation, however, does not
mean that the LASSO provides the only explanation, nor does it indicate that
other explanations are false. In the case of Boschloo et al., the sparse explanation
found by the LASSO can give great insight regarding a possible way in which
psychopathological symptoms interact with each other. However, merely finding
a sparse structure does not mean that other explanations (e.g., a latent variable
model with interchangeable symptoms) are disproved. Simply stated, using the
LASSO always returns a sparse structure, that is what the LASSO does.

4.4 The Bet on Sparsity

The LASSO is capable of retrieving the true underlying structure but only if that
true structure is sparse. Any regularization method makes the assumption that the
true structure can be simplified in some way (e.g., is sparse) because otherwise too
many observations are needed to estimate the network structure. This principle
has been termed the bet on sparsity (Hastie et al., 2001). But what if the truth is
not sparse, but dense?

Such a case would precisely arise if the true model were a latent common cause
model in which one or several latent variables contribute to scores on completely
interchangeable indicators. This is a feasible alternative because the Ising model
can be shown to be mathematically equivalent to a certain type of latent variable
model: the multidimensional item response model (MIRT; Reckase, 2009), with
posterior normal distributions on the latent traits (Marsman, Maris, Bechger, &
Glas, 2015; see also Chapter 8). The corresponding Ising model is a low-rank

62



4.5. Estimating an Ising Model When the Truth Is Dense

network that will often be dense (i.e., all possible edges are present). Intuitively,
this makes sense because the Ising model parameterizes conditional dependencies
between items after conditioning on all other items, and no two items can be
made conditionally independent if the common cause model is true. A low-rank
weighted network will show indicators of a latent variable as clusters of nodes that
are all strongly connected with each other. Therefore, if a common cause model is
the true origin of the co-occurrences in the dataset, the corresponding Ising model
should show the indicators to cluster together. Then if LASSO regularization is
used, the corresponding network would likely feature sparsity but the nodes would
still be clustered together—much like the results shown by Boschloo et al.

It is this relationship between the Ising model and MIRT that has led re-
searchers to estimate the Ising model using a di↵erent form of regularization, by
estimating a low-rank approximation of the network structure (Marsman et al.,
2015). Such a structure is strikingly di↵erent than the sparse structure returned
by LASSO estimation. Whereas the LASSO will always yield many edge param-
eters to be exactly zero, a low-rank approximation generally estimates no edge
to be exactly zero. Thus a low-rank approximation will typically yield a dense
network. On the other hand, this dense network is highly constrained by the
eigenvector structure, leading many edge parameters to be roughly equivalent to
each other rather than compared to the strongly varying edge parameters LASSO
estimation allows. For example, the data can always be recoded such that a Rank
1 approximation only has positive connections. These are key points that cannot
be ignored when estimating a network structure. Regardless of the true network
structure that underlies the data, the LASSO will always return a sparse network
structure. Similarly, a low-rank approximation will always return a dense low-
rank network structure. Both methods tackle the bet on sparsity in their own
way—sparsity in the number of nonzero parameters or sparsity in the number of
nonzero eigenvalues—and both can lose the bet.

4.5 Estimating an Ising Model When the Truth Is Dense

Here we illustrate the e↵ect that the estimation procedure has on the resulting
Ising model in two examples. First, we simulated 1,000 observations from the true
models shown in Figure 4.1. The first model is called a Curie-Weiss model (Kac,
1966), which is fully connected and in which all edges have the same strength
(here set to 0.2). This network is a true Rank 1 network, which has been shown
to be equivalent to a unidimensional Rasch model (Marsman et al., 2015). The
Rasch model is a latent variable model in which all indicators are interchangeable.
Figure 4.2 shows the results using three di↵erent estimation methods—sequential
univariate logistic regressions for unregularized estimation (see Chapter 8), LASSO
estimation using the IsingFit1 R package (van Borkulo & Epskamp, 2014), and a
Rank 2 approximation (Marsman et al., 2015)—on the first n number of rows in the
simulated dataset. It can be seen that the unregularized estimation shows many
spurious di↵erences in edge strength, including many negative edges. The LASSO

1All LASSO analyses in this chapter make use the default setup of IsingFit, using a hyper-
parameter (γ) value of 0.25 as well as the AND-rule.
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Figure 4.1: True network structures used in simulation study. The first network
is a Curie-Weiss network: a fully connected network in which all edges have the
same strength. The second network is a random sparse network. All edge weights
are 0.2.

performs better but estimates a sparse model in which edge weights vary and in
which many edges are estimated to be exactly zero. The Rank 2 approximation
works best in capturing the model, which is not surprising because the true model
is a Rank 1 network. At high sample sizes, all methods perform well in obtaining
the true network structure.

The second model in Figure 4.1 corresponds to a sparse network in which 20%
of randomly chosen edge strengths are set to 0.2 and in which the remaining edge
strengths are set to 0 (indicating no edge). As Figure 4.3 shows, the LASSO
now performs very well in capturing the true underlying structure. Because both
the unregularized estimation and the Rank 2 approximation estimate a dense
network, they have a very poor specificity (i.e., many false-positive edges). In
addition, the Rank 2 approximation retains spurious connections even at high
sample sizes (choosing a higher rank will lead to a better estimation). Thus, this
example serves to show that the LASSO and low-rank approximations only work
well when the assumptions on the true underlying model are met. In particular,
using a low-rank approximation when the truth is sparse will result in many false
positives, whereas using a LASSO when the truth is dense will result in many false
negatives. Even when the true model is one in which every node represents an
interchangeable symptom, the LASSO would still return a model in which nodes
could be interpreted to not be interchangeable.

For the second example, we simulated data under the latent variable model
as shown in Figure 4.4, using an MIRT model (Reckase, 2009). In this model,
the symptoms for dysthymia and generalized anxiety disorder (GAD) were taken
from the supplementary materials of Boschloo et al. (2015), with the exception
of the GAD symptom “sleep disturbance,” which we split in two: insomnia and
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Figure 4.2: Examples of estimated network structures when the true network is a
Curie-Weiss network, using di↵erent sample sizes and estimation methods. Graphs
were drawn using the qgraph package without setting a maximum value (i.e., the
strongest edge in each network has full saturation and width).

hypersomnia. The item discriminations of each symptom were set to 1, indicating
that symptoms are interchangeable, and item difficulties were set to 0. All latent
variables were simulated to be normally distributed with a standard deviation of
1, and the correlation between dysthymia and GAD was set to 0.55—similar to
the empirically estimated comorbidity (Kessler, Chiu, Demler, & Walters, 2005).
Nodes 2 and 3 in dysthymia and nodes 6 and 7 in GAD are mutually exclusive,
which we modeled by adding orthogonal factors with slightly higher item discrim-
inations of 1.1 and -1.1. Furthermore, nodes 7, 8, 9, and 10 of dysthymia are
identical to nodes 6, 7, 8, and 9 of GAD respectively, which we modeled by adding
orthogonal factors with item discriminations of 0.75. These nodes are typically not
identical because a skip structure is imposed in datasets such as the one analyzed
by Boschloo et al. That is, if someone does not exhibit the symptom “low mood,”
that person is never asked about insomnia in the depression scale because he or
she is assumed to not have this symptom. We did not impose a skip structure
to keep the simulation study simple. Such shared symptoms are termed bridge
symptoms in network analysis because they are assumed to connect the clusters of
disorders and explain comorbidity (Borsboom et al., 2011; Cramer et al., 2010).
In sum, the model shown in Figure 4.4 generates data that are plausible given the
latent disease conceptualization of psychopathology.

Figure 4.5 shows the simulated and recovered network structures. First we
simulated 10 million observations from this model and estimated the correspond-
ing Ising model using nonregularized estimation by framing the Ising model as a
log-linear model (Agresti, 1990, see Chapter 8) (the estimation was done using the
IsingSampler package, Epskamp, 2014). Panel A shows the results, which give a
good proxy of the true corresponding Ising structure. It can be seen that the true
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Figure 4.3: Examples of estimated network structures when the true network is
sparse, using di↵erent sample sizes and estimation methods. Graphs were drawn
using the qgraph package without setting a maximum value (i.e., the strongest
edge in each network has full saturation and width).
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6: Sleep disturbance 1: Insomnia
7: Sleep disturnance 2: Hypersomnia
8: Difficulty concentrating or mind going blank
9: Easily fatigued

Figure 4.4: A multidimensional IRT model (MIRT) used in simulating data. All
latent variables were normally distributed with standard deviation of 1 and all
symptoms were binary. The edges in this model correspond to item discrimination
parameters.

model is dense, meaning that indicators of the disorders cluster together. Two
negative connections are formed between the mutually exclusive indicators, and
bridging connections are formed between the shared indicators. Next, we sim-
ulated 1,000 observations from the model in Figure 4.4 and estimated the Ising
model in various ways. Panel B shows unregularized estimation via a log-linear
model and shows many spurious strong connections, including many more neg-
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ative connections than present in the true model. As such, Panel B highlights
our need to regularize—even in a sizable dataset of 1,000 observations for a 19-
node network. The simulated data has 22.2 observations for every parameter, far
more than the 4.9 observations per parameter in Boschloo et al. (2015). Thus,
even with a high sample size (34,653 subjects) and even when more subjects are
measured than there are parameters present, it can still be advisable to use some
form of regularization, as is done by Boschloo et al. (Boschloo et al., 2015) in
using the LASSO. Panel C shows the result from using the LASSO, using the
IsingFit package (van Borkulo et al., 2014). In this model, the clustering is gen-
erally retrieved—two of the bridging connections are retrieved and one negative
connection is retrieved. However, the resulting structure is much more sparse than
the true model, and interpreting this structure could lead to the same conclusions
determined by Boschloo and her colleagues: The number of connections di↵ered
across symptoms, connection strengths varied considerably across symptoms, and
relatively few connections connected the two disorders. Finally, Panel D shows the
result of a Rank 2 approximation, which is equivalent to a two-factor model. Here,
it can be seen that although a dense structure is retrieved that shows the correct
clustering, violations of the clustering (the negative and bridging edges) are not
retrieved. The online supplementary materials2 show that with a higher sample
size (n = 5,000) the estimation is more accurate and that the unregularized and
LASSO estimations result in similar network structures.

Di↵erent Estimation Techniques

In light of the examples discussed in this chapter, researchers may wonder when
they should and should not use a particular estimation method. For example,
low-rank estimation is more suited in the example demonstrated in Figure 4.2,
whereas LASSO estimation fits better in the example shown in Figure 4.3. These
conclusions, however, depend on knowing the true network structure as shown in
Figure 4.1—something a researcher will not know in reality. The choice of estima-
tion method, therefore, is not trivial. Choosing the estimation method depends on
three criteria: (1) the prior expectation of the true network structure, (2) the rela-
tive importance the researcher attributes to sensitivity (discovery) and specificity
(caution), and (3) the practical applicability of an estimation procedure. When a
researcher expects the true network to be low rank (e.g., due to latent variables),
low-rank estimation should be preferred over LASSO regularization. On the other
hand, when a researcher expects the network to be sparse, LASSO regularization
should be used. In addition, LASSO regularization should be preferred when a
researcher aims to have high specificity (i.e., to refrain from estimating an edge
that is missing in the true model). Finally, practical arguments can play a role
in choosing an estimation procedure as well. LASSO, particularly in combination
with EBIC model selection, is relatively fast even with respect to large datasets.
As a result, researchers could apply bootstrapping methods to the estimation pro-
cedure to further investigate the accuracy of parameter estimation (see Chapter 3),
which may not be feasible for slower estimation procedures.

2
http://sachaepskamp.com/files/S2 EstimatedNetworks.pdf
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(b) Loglinear model (N = 1,000)
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(c) IsingFit (N = 1,000)
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(d) Rank 2 approximation (N = 1,000)

Figure 4.5: Estimated network structures based on data generated by the MIRT
model in Figure 4.4.

We focused the argumentation on LASSO regularization and low-rank approx-
imation because these are the main methodologies that have been applied in psy-
chological literature and present two extreme cases of a range of di↵erent network
structures that can be estimated. Because these methods lie on the extreme ends
of sparsity relative to dense networks, they best exemplify the main point of this
chapter: In small sample sizes, some assumptions of the true model must be
made (e.g., the true model is sparse), and these assumptions influence the re-
sulting network structure (e.g., the obtained network is sparse). This does not
mean that LASSO and low-rank approximation are the only methods available.
An alternative, for example, is to use elastic-net estimation, which mixes LASSO
regularization with ridge regression (penalizing the sum of squared coefficients).
The elasticIsing package (Epskamp, 2016) can be used to accomplish this; it uses
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cross-validation in selecting the tuning parameters. The online supplementary ma-
terials show an example of elastic-net applied to the data analyzed in Figure 4.5.
It is noteworthy that the elastic-net procedure selected a dense network (i.e., ridge
regression) over LASSO regularization, indicating that data-driven evidence can
be garnered to argue whether or not LASSO regularization should be used. The
obtained network, like the unregularized network in Figure 4.5 (Panel B), also
shows many connections which were falsely estimated to be negative; this raises
the question of whether its result should or should not be preferred over LASSO
regularized estimation. The online supplementary materials also contain examples
of LASSO regularization using di↵erent tuning arguments (e.g., BIC selection in-
stead of EBIC selection), which improves sensitivity (i.e., more edges are detected)
in this particular case. Doing so, however, will result in less specificity when the
true model is sparse (van Borkulo et al., 2014).

4.6 Conclusion

Network estimation has grown increasingly popular in psychopathological research.
The estimation of network structures, such as the Ising model, is a complicated
problem due to the fast growing number of parameters to be estimated. As a
result, the sample size typically used in psychological science may be insufficient
to capture the true underlying model. Although a large sample size network
estimation typically goes well regardless of the estimation method used, Figures
4.2, 4.3, and 4.5 show that estimating an Ising model with sample sizes commonly
used in psychological research results in poor estimates without the use of some
form of constraint on the parameter space. Two such constraints involve limiting
the size and number of nonzero parameters (LASSO) or reducing the rank of
a network (low-rank approximation). It is important to realize that using such
estimation methods makes an assumption on the underlying true model structure:
The LASSO assumes a sparse structure whereas low-rank approximation assumes
a dense but low-rank structure. Investigating the results of the estimation methods
cannot validate these assumptions. The LASSO always yields a sparse structure,
which does not mean that the true underlying structure could not have been dense.
On the other hand, low-rank approximations rarely produce sparse structures, but
that does not mean that the true underlying structure could not have been sparse.

Figure 4.2 illustrates this point by showing that LASSO estimation when the
true network structure is a Curie-Weiss model still results in a sparse structure.
This means that observing any of the sparse structures shown in Figure 4.2 does
not mean that the nodes in the network could not represent interchangeable indi-
cators of a single latent trait. Figure 4.5 illustrates this point again in a plausible
scenario in psychopathology and also shows that when the true network structure
is complicated and neither sparse nor low rank, as is the case here, all regular-
ization methods partly fail even when using a relatively large sample size. As
such, interpreting the sparsity of such a structure is questionable; the LASSO re-
sulting in a sparse model gives us little evidence for the true model being sparse
because a low-rank approximation returning a dense model seems to indicate that
the true model is dense. Those characteristics from the networks we obtain are a
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consequence of the method used to estimate a network structure (specifically the
assumptions made by the employed method about the data-generating network
structure) and often pollute the resulting estimated model (Kruis & Maris, 2015).

Recently it has been demonstrated that three, statistically indistinguishable,
representations of the Ising model exist that explain observed associations be-
tween binary variables either through a common cause (latent variable), through
the reciprocal e↵ect between variables (network), or through the conditioning on
a common e↵ect (collider variable; Epskamp et al., in press; Marsman et al., 2015;
Kruis & Maris, 2016). Consequently, when a model from one of these frameworks
can sufficiently describe the associative structure of the measured variables, there
exists an alternative representation for other frameworks that can also accurately
represent the structure of the data. For example, Boschloo et al.’s spare network
structure (Boschloo et al., 2015), resulting from the LASSO being applied to the
data, can also be described by a multidimensional latent variable model (with a
single latent variable for each clique in the network) and residual correlations. As
such, obtaining sufficient fit for a statistical network model cannot be regarded as
evidence for the theoretical model, where a network structure acts as the causal
mechanism from which associations between variables emerge. We therefore ad-
vise, in general, to tread carefully when drawing inferences about the theoretical
causal mechanisms that generate the data from statistical model fit.

Network models show great promise in mapping out and visualizing relation-
ships present in the data and are useful to comprehend high dimensional multivari-
ate relationships. In addition, network models can be powerful tools to estimate
the backbones of potential causal relationships—if those relationships are assumed
to exist. Using the LASSO to estimate such network structures is a powerful tool
in performing fast high-dimensional model selection that results in fewer false
positives, and interpreting network structures obtained from the LASSO can illu-
minate the strong relationships present in the dataset. Important to realize is that
using LASSO estimation will result in a sparse structure, and similarly, using a
low-rank approximation will result in a dense low-rank result. Our aim here is not
to argue against using the LASSO or to argue that estimating network structures
is wrong. Our aim is to clarify that choosing the estimation method is not trivial
and can greatly impact both the estimated structure as well as any conclusions
drawn from that structure.
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Chapter 5

Personalized Network Modeling in

Psychopathology

Abstract

Two methodological trends have become prominent in the fields of psy-
chopathology and psychiatry: (1) technological developments in collecting
time-intensive, repeated, intra-individual measurements in order to capture
symptom fluctuations and other time varying factors (e.g., emotions/a↵ect)
in daily life (i.e., time-series), and (2) an increasing number of statisti-
cal tools for for estimating assocations between these measurements (i.e.,
network structures) based on these time-series data. Combining these two
trends allows for the estimation of intra-individual network structures. Us-
ing vector-autoregression (VAR), two networks can be obtained: a temporal

network, in which one investigates if symptoms (or other relevant variables)
predict one another over time, and a contemporaneous network, in which
one investigates if symptoms predict one another in the same window of
measurement. The network literature using these models has so far mostly
focused on the temporal network. Here we argue that temporal relations
between psychopathological variables might typically unfold within shorter
time intervals (e.g., minutes) than the time intervals commonly and feasibly
used in current time-series studies (e.g., hours). As a result, such temporal
relations will be captured in the contemporaneous network, rather than in
the temporal network. Both temporal and contemporaneous networks may
highlight potential causal pathways—they are not definitive proof of causal-
ity but may lead to meaningful insights. As such, both types of networks
function as hypothesis generators. We conclude the chapter with empirical
examples of such analyses on symptom time-series data from clinical cases.

This chapter has been adapted from: Epskamp, S., van Borkulo, C.D., van der Veen, D.C.,
Servaas, M.N., Isvoranu, A.M., Riese, H., and Cramer, A.O.J. Personalized Network Modeling
in Psychopathology: The Importance of Contemporaneous and Temporal Connections.
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5.1 Introduction

Recent years have witnessed an emergence of two distinct trends in the study of
psychopathology. First, technological advances have permitted the gathering of
intensive repeated measurements of patients and healthy controls with the Ex-
perience Sampling Method (ESM; Aan het Rot, Hogenelst, & Schoevers, 2012;
Myin-Germeys et al., 2009; Wichers, Lothmann, Simons, Nicolson, & Peeters,
2012). With ESM, participants are measured repeatedly within short time inter-
vals during daily life. For example, someone is queried five times a day during a
period of two weeks on his or her level of insomnia, depressed mood, and fatigue
since the previous measurement. We will term the time frame on which one re-
ports the window of measurement. The resulting time-series data allow for the
investigation of intra-individual processes (Hamaker, 2012). The second trend is
the network perspective on psychopathology, in which mental disorders are inter-
preted as the consequence of a dynamical interplay between symptoms and other
variables (Borsboom & Cramer, 2013; Cramer et al., 2010; Cramer & Borsboom,
2015). This literature uses network models in an attempt to understand and pre-
dict the dynamics of psychopathology. From this perspective, symptoms are not
seen as passive indicators of a mental disorder but rather play an active role,
making symptoms prime candidates for interventions (Borsboom, in press; Fried,
Epskamp, et al., 2016).

Time-series data of a single individual o↵er a promising gateway into under-
standing the dynamical processes that may occur within that individual over time
(e.g., Bringmann et al., 2013, 2015; Pe et al., 2015; Wigman et al., 2015). Such per-
sonalized network structures are typically estimated using a statistical technique
called vector-autoregression (VAR; van der Krieke et al., 2015). Predominantly,
VAR analyses have focused on the estimation of temporal relationships (relation-
ships that occur between di↵erent windows of measurement). However, as will be
outlined in Chapter 6, the residuals of the VAR model can be further used to esti-
mate contemporaneous relationships (relationships that occur in the same window
of measurement), which are not yet commonly used in the field. In this chapter,
we argue that both network structures generate valuable hypothesis-generating in-
formation directly applicable to the study of psychopathology as well as to clinical
practice. We focus the majority of the discussion on explaining contemporaneous
partial correlation networks, as these are not yet often utilized in the literature
of intra-individual analysis. We exemplify this by analyzing two ESM datasets
obtained from patients.

5.2 Temporal and Contemporaneous Networks

In time-series data analysis with an average time-interval of a few hours, a typical
default statistical assumption is violated: consecutive responses are not likely to
be independent (e.g., someone who is tired between 9:00 and 11:00 is likely to
still be tired between 11:00 and 13:00). The minimal method of coping with this
violation of independence is the lag-1 VAR model (van der Krieke et al., 2015). In
this model, a variable in a certain window of measurement is predicted by the same
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variable in the previous window of measurement (autoregressive e↵ects) and all
other variables in the previous window of measurement (cross-lagged e↵ects; Selig
& Little, 2012)1. This model does not assume auto-correlations between larger
di↵erences in time (e.g., lag-2) are zero, but merely that such relationships can be
fully explained by the lag-1 model. These autoregressive and cross-lagged e↵ects
can be estimated and visualized in a network (Bringmann et al., 2013). In this
network, measured variables (such as symptoms) are represented by nodes. When
one variable predicts another in the next window of measurement, we draw a link
with an arrowhead pointing from one node to the other. We term this network
the temporal network.

The predictive e↵ects shown in the temporal network satisfy the assumption
that in a causal relationship the cause must precede the e↵ect. Therefore, these
are often interpreted to be indicative of causal relationships. Only interpreting
temporal coefficients, however, does not utilize VAR to its full potential. The
residuals of the temporal VAR model are correlated; correlations in the same
window of measurement remain that cannot be explained by the temporal e↵ects.
These correlations can be used to compute a network of partial correlations (Wild
et al., 2010). In such a network, each variable is again represented by a node. Links
(without arrowhead) between two nodes indicate the partial correlation obtained
after controlling for both temporal e↵ects and all other variables in the same
window of measurement. We term this network the contemporaneous network2.

Figure 5.1 shows an example of the two network structures obtained from a
VAR analysis. These networks are estimated using ESM data of a clinical pa-
tient, and are further described and interpreted in Section 5.6. The temporal and
contemporaneous networks were estimated at the same time, using the methodol-
ogy outlined by Abegaz and Wit (2013). The temporal network (a) shows auto-
regressions (an arrow of a node pointing at itself) on three variables: ‘tired’, ‘bodily
discomfort’ and ‘concentration’. Thus, when this patient is tired she is likely still
tired during the next window of measurement. There are cross-lagged relation-
ships between several variables. For example, this patient being tired predicts
her to ruminate more during the next window of measurement.. The contem-
poraneous network (b) shows, among other relationships, a relationship between
‘relaxed’ and ‘nervous’: when this patient was tired she was also more likely to
relax poorer, as reported during the same window of measurement. This can be
seen as the direct consequence of a plausible causal relationship: being nervous
might lead you to feel less relaxed (or vice-versa). There is no reason why such a
causal relationship should take a few hours to occur, which brings us to the main
point of this chapter.

1VAR can be seen as an ordinary regression where the predictors are lagged variables.
2The contemporaneous network should not be confused with a network of lag-0 (partial) cor-

relations. Such a network would (1) not take into account that responses are not independent,
and (2) present a mixture of temporal and contemporaneous e↵ects. Thus, we obtain the contem-
poraneous network from the residuals of the VAR model, since only then relationships between
windows of measurement and relationships within windows of measurement are separated.
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Figure 5.1: Two network structures that can be estimated with time-series data
analysis, based on data of a clinical patient (n = 52) measured over a period of two
weeks. The model was estimated using the graphicalVAR package for R. Circles
(nodes) represent variables, such as symptoms, and connections (links, both undi-
rected drawn as simple lines or directed drawn as an arrow) indicate predictive
relationships. Green links indicate positive relationships, red links indicate neg-
ative relationships, and the width and saturation of a link indicates the strength
of the relationship. The network on the left shows a temporal network, in which
a link denotes that one variable predicts another variable in the next window of
measurement. The network on the right shows a contemporaneous network, in
which links indicate partial correlations between variables in the same window
of measurement, after controlling for all other variables in the same window of
measurement and all variables of the previous window of measurement.

5.3 Causation at the Contemporaneous Level

In a typical ESM study, the time between consecutive measurements is a few
hours3. As such, the temporal network will only contain predictive e↵ects of
measured variables on other measured variables about a few hours later. However,
it is likely that many causal relationships occur much faster than a timeframe of
a few hours. Take for example a classical causal model:

Turn on sprinklers ! Grass is wet.

Turning on the sprinklers causes the grass to become wet. This causal e↵ect occurs
very fast: after turning on the sprinklers it takes perhaps a few seconds for the
grass to become wet. If we take measures of sprinklers (“on” or “o↵”) and the
wetness of the grass every two hours, it would be rather improbable to capture the

3Notable exceptions are sampling designs in which individuals are asked to fill-out question-
naires once a day or week.
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case in which the sprinklers were turned on just before the grass became wet. As
such, the temporal network would not contain a connection between turning on
the sprinklers and the grass being wet, and likely would only contain a temporal
auto-regression of the grass being wet (because it takes time for grass to dry).
However, after controlling for this auto-regression, we most likely would find a
connection between these variables in the contemporaneous network: in windows
of measurement where the sprinklers were on we would likely also find that the
grass was wet.

We can think in a similar vein about psychopathological causal relationships.
For example, a patient su↵ering from panic disorder might anticipate a panic
attack by experiencing somatic arousal (e.g., sweating, increased heart rate):

Somatic arousal ! anticipation of panic attack

In this structure, an arrow indicates that whatever is on the left causes whatever is
on the right. This patient anticipates a panic attack, because the patient is expe-
riencing somatic arousal. This causal e↵ect would likely occur within minutes, not
hours. Someone who experiences somatic arousal between 13:00 and 15:00 might
still experience somatic arousal between 15:00 and 17:00. Thus, we can expect to
find auto-regressions. However, between somatic arousal and anticipation of panic
attack we would likely only find a contemporaneous connection.

In sum, relations between symptoms and other variables can plausibly unfold
faster than the time-window of measurement; such relationships will be captured
in the contemporaneous network. Figure 5.1 showed, however, that the contem-
poraneous network has no direction (links have no arrow-heads). To understand
how such undirected networks can still highlight potential causal pathways, we
need to delve into the literature on estimation of networks in psychopathology.

5.4 Partial Correlation Networks

As outlined above, the contemporaneous relationships can be interpreted and
drawn as a network of partial correlations. In this section, we describe how such
partial correlation networks can be interpreted and how links in such a network
can be seen as indicative of causal relationships. Partial correlation networks
are part of a more general class of undirected (i.e., no arrows) networks (for-
mally called Markov Random Fields; Lauritzen, 1996) that have been introduced
to psychopathology in response to the call for conceptualizing psychopathological
behavior (such as symptoms) as complex networks (Borsboom et al., 2011; Cramer
et al., 2010). After the initial introduction of partial correlation networks to the
psychopathological literature (Borsboom & Cramer, 2013), the use of undirected
networks in psychopathology gained considerable traction following the introduc-
tion of easy-to-use estimation methods and publicly available software packages for
both estimation and visualization (Epskamp et al., 2012; van Borkulo et al., 2014).
Ever since, such network structures have been extensively applied to research in
the fields of psychopathology and psychiatry, such as comorbidity (Boschloo et
al., 2015), autism (Ruzzano, Borsboom, & Geurts, 2015), post-traumatic stress
disorder (McNally et al., 2015), psychotic disorders (Isvoranu, van Borkulo, et al.,
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2016; Isvoranu, Borsboom, et al., 2016), major depression (Fried et al., 2015; van
Borkulo et al., 2015), and clinical care (Kroeze et al., 2016).

Partial correlation networks have become so prominent because they present a
relatively easy method to estimate and visualize potential causal pathways, while
taking into account that observational data (i.e., no experimental interventions)
only contains limited information on such causal relationships. In observational
data, causality is reflected only in the conditional independence structure (Pearl,
2000). Conditional independence means that two variables are no longer correlated
at fixed levels of a third variable. A partial correlation network shows conditional
independence, because when the partial correlation between two variables after
conditioning on all others equals zero, then that means two variables are condi-
tionally independent. Therefore, two nodes that are not directly connected via a
link are conditionally independent.

Taking again the patient described above su↵ering from a panic disorder, sup-
pose we expand the causal structure to include this patient’s pathway related to
avoiding feared situations:

Somatic arousal ! anticipation of panic attack ! avoidance of feared situations.

Anticipating a panic attack might cause this patient to avoid feared situations,
such as malls or busy shopping streets4. The causal structure indicates that we
would expect to be able to predict this patent avoiding feard situations given
that he or she is experiencing somatic arousal. However, if we already know this
person is anticipating a panic attack, we already predict that this person will
avoid feared sitatations. Then, observing somatic arousal on top of anticipating
the panic attack does not improve this prediction. Thus, we would expect non-zero
partial correlations between somatic arousal and anticipation of panic attack, and
between anticipation of panic attack and avoidance. We would furthermore expect
a partial correlation of zero between somatic arousal and avoidance behavior;
somatic arousal and avoidance behavior are conditionally independent given the
anticipation of a panic attack. Consequently, we would expect the following partial
correlation network:

Somatic arousal — anticipation of panic attack — avoidance behavior.

Finding such a partial correlation network often does not allow one to find the
true direction of causation. This is due to two technical arguments: (1) equiv-
alent models explain the same conditional independencies and (2) these models
only work when we can assume the causal structure is acyclic (i.e., contains no
feedback loops). Concerning the first argument, we can summarize the above
causal structure as A ! B ! C, in which A and C are conditionally indepen-
dent given B. This conditional independence, however, also holds for two other
models: A  B  C and A  B ! C (Pearl, 2000). In general, we cannot
distinguish between these three models using only observational data. Adding
more variables only increases this problem of potentially equivalent models, mak-
ing it difficult to construct such a network only from observational data. Even

4These relationships should be taken as an example. The direction of such e↵ects is still at
topic of debate, and likely di↵ers from patient to patient (Frijda, 1988).
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when such a network can be constructed, we need to assume that the structure
is not self-enforcing. That is, a variable cannot cause itself via some chain (e.g.,
A ! B ! C ! A). In psychopathology, however, this assumption likely does not
hold (in our example above: anticipating a panic attack might cause more somatic
arousal). As a result of these problems with directed structures when temporal or
experimental information is lacking, undirected networks have been more success-
ful in this emergent research field. In an undirected network, the observation that
A and C are conditionally independent given B is represented by only one model:
A — B — C (Lauritzen, 1996).

To summarize, the contemporaneous network is an undirected network without
arrowheads. This network shows a link when two variables are not conditionally
independent given both all responses in the previous window of measurement and
responses of all other variables in the current window of measurement. When two
variables are conditionally independent, no link is drawn. If a causal relationship
were present, we would expect such a link, and if a causal relationship were not
present, we would not expect such a link. Therefore, the links in the contempora-
neous network can be indicative of causal relationships. However, as finding the
direction of such relationships is hard, we do not attempt to do so and keep the
links in the contemporaneous network without direction.

5.5 Generating Causal Hypotheses

The connections in both the temporal and contemporaneous network cannot be
interpreted as true causal relationships except under strong assumptions. The
pathways shown can only be indicative of potential causal relationships. Such a
pathway is a necessary condition for causality (we would expect such relationships
when there is a true causal e↵ect), but not sufficient (the relationship can also
be spurious and due to, e.g., unobserved causes; Pearl, 2000). Therefore, these
networks can be seen as hypothesis generating. To test for causality one needs to
investigate what happens after experimentally changing one variable. If fatigue
causes concentration problems, we would expect concentration levels to change
after experimentally making someone fatigued. Experimentally changing concen-
tration levels should, on the other hand, not influence fatigue. Such causal testing
can only be done experimentally; it is hard to infer causality from observational
data, no matter how often and intensive someone is measured and how intensive
the sampling rate is.

In addition to generating hypotheses on causal links, both networks also gen-
erate hypotheses on which nodes are important. The importance of nodes in a
network can be quantified with descriptive measures called centrality measures
(Costantini, Epskamp, et al., 2015; Newman, 2010; Opsahl et al., 2010). A node
with a high centrality is said to be ‘central’, indicating the node is well connected
in the network. Such a central node may be a prime candidate for intervention,
as targeting this node will influence the rest of the system. This is not only the
case for central nodes in the temporal network, but also for central nodes in the
contemporaneous network. Even when a node has no temporal connections, it
can still carry a lot of information on subsequent measurements, purely by being

77



5. Personalized Network Modeling in Psychopathology

central in the contemporaneous network. For example, if A predicts B and C in
the same window of measurement (contemporaneous links), and B and C both
predict themselves in the next window of measurement (autoregressions), then as
a result A is able to predict B and C in the next window of measurement, even
though no cross-lagged relationships might be found in the temporal network.

While experimental intervention is needed to test causal hypotheses, such hy-
potheses on causal relationships and central nodes might be hard to verify in
practice. For example, one cannot wait with forming treatment plans until after
lengthy experimental designs have been tested on a clinical patient. In addition,
in intensive treatments for example, multiple nodes are likely to be targeted si-
multaneously; the causal e↵ect of one particular node is hard to test. Furhermore,
it might not be known how certain symptoms can be treated at all (e.g., feelings
of derealisation when the patient is su↵ering from a comorbid depresonalisation
disorder, a disorder that is often concurrent with a panic disorder). Still, the
obtained insights are useful: the personalized networks can be discussed with the
patient and, when the patient recognizes the discovered relationships, help to gen-
erate hypotheses and choose interventions that target these nodes (Kroeze et al.,
2016).

5.6 Clinical Example

To exemplify how the described symptom networks can be utilized in clinical
practice, we analyzed ESM data obtained from two patients treated in a tertiary
outpatient clinic in Groningen. Patient 1 was a female patient, aged 23, who
received cognitive behavioral therapy (CBT) for a severe panic disorder and a
depressive disorder secondary to the panic disorder. Her response rate was 74%.
Patient 2 was a female patient, aged 53 su↵ering from major depressive disorder,
in early partial remission after having received electroconvulsive therapy (ECT).
Her response rate was 93%, and data collection started one day after her last ECT
session.

Methods

The patients received an extensive briefing plus written user instructions for the
ESM measurements. Direct support was available 24/7. Patient data were gath-
ered during normal daily life with an ESM tool developed for an ongoing epi-
demiological study. With our secured server system (RoQua; roqua.nl; Sytema
& Van der Krieke, 2013), text messages with links to online questionnaires were
sent to the patient’s smartphone. All items could be answered on a 7-point Likert
scale varying from ‘1=not at all’ to ‘7=very much’. Measurement occasions were
scheduled five times a day every three hours for two weeks (maximal number of
possible measurement is 70), and took three to five minutes to complete. The tim-
ing of the measurements was adjusted to their individual daily rhythm with the
last measurement timed 30 minutes before going to bed. Patients were instructed
to fill-out the questionnaires as soon as possible after receiving the text message.
The patient received a reminder after 30 minutes, and after 60 minutes the link
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Figure 5.2: Temporal (panel a) and contemporaneous (panel b) network based
on data of a clinical patient (n = 65) measured over a period of two weeks. The
model was estimated using the graphicalVAR package for R.

was closed. The protocol used was submitted to the ethical review board of the
University Medical Center Groningen, who confirmed that formal assessment was
not required. Prior to participation, patients were fully informed about the study
after which they gave written informed consent.

To estimate simple network structures with not many nodes, we selected seven
of the administered variables that usually should interact with each other: feeling
sad, being tired, ruminating, experiencing bodily discomfort, feeling nervous, feel-
ing relaxed and being able to concentrate. Network structures were standardized
as described by Wild et al. (2010) to avoid misleading parameter estimates in the
network structure (Bulteel, Tuerlinckx, Brose, & Ceulemans, 2016). The networks
were estimated using the graphicalVAR package for R (Epskamp, 2015), which uses
penalized maximum likelihood estimation to estimate model parameters (strength
of connections) while simultaneously controlling for parsimony (which links are re-
moved; Abegaz & Wit, 2013; Rothman et al., 2010). The graphicalVAR package
estimates 2,500 di↵erent models, varying 50 levels of parsimony in the temporal
network and 50 levels of parsimony in the contemporaneous network. Bayesian
Information Criterion (BIC) model selection was used to select the best fitting
model. A more detailed description of the estimation procedure is beyond the
scope of this chapter. An introduction to model selection of regularized networks
is provided in Chapter 2, and a methodological introduction to this modeling
framework is provided in Chapter 6. We refer the reader to (Abegaz & Wit, 2013)
for the estimation proceure used.
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Results

Figure 5.1 shows the two network structures of Patient 1. The temporal network
in Panel (a) shows several connections involving bodily discomfort: whenever she
experienced bodily discomfort, she ruminated more, felt more tired and was less
able to concentrate three hours later. The contemporaneous network in Panel (b)
shows that feeling relaxed plays a central role in the network. Whenever she
was relaxed she experienced less sadness, tiredness, nervousness and was better
able to concentrate (and vise versa, e.g., whenever she experienced less sadness
she was more relaxed). In the case of Patient 1, therapy sessions revealed that
intensively cleaning her house was her way of coping with stress. This lead to
bodily discomfort and eventually rumination about her inability to do the things
in the way she used to do things, resulting in a sad mood. Teaching her other
ways to cope with stress broke this negative pattern.

Figure 5.2 shows the two network structures of Patient 2. The contempora-
neous network in Panel (b) features more connections than the temporal network
in Panel (a). In the contemporaneous network, the node bodily discomfort has
a central role. Whenever Patient 2 experienced bodily discomfort (in her case,
palpitations), she felt sadder, less relaxed, ruminated more and was less able to
concentrate within the same window of measurement. This fits the pathology of a
panic disorder where bodily sensations are interpreted catastrophically. The tem-
poral network shows the e↵ects over time and highlights a potential feedback loop,
where bodily discomfort rumination (in her case, catastrophic interpretations of
the bodily sensations) leads to more attention to bodily discomfort, causing more
rumination. Feeling tired seems also to lead to more rumination in time.

5.7 Conclusion

In this chapter we argued that when analyzing intra-individual time-series data in
clinical settings, researchers should focus on both temporal and contemporaneous
relationships. While temporal networks are commonly estimated and interpreted
in the network approach to psychopathology (e.g., Bringmann et al., 2013), con-
temporaneous networks, especially when drawn as a partial correlation network,
are not commonly used. We have argued that both contemporaneous and tempo-
ral networks can highlight meaningful relationships, interpretable and useable by
patients and clinicians in treatment, as well as present researchers with hypothesis
generating exploratory results on potential causal relationships. Such personalized
knowledge can be used for intervention selection (e.g., choosing which symptoms to
treat), as well as generate testable hypotheses pertaining to the individual patient
that can be used to perform experiments. In addition to temporal relationship,
contemporaneous relationships are also important in discovering psychological dy-
namics, as such relationships can also occur at a much faster time scale than the
typical lag interval used in ESM studies.

A main limitation of the VAR method is that, even when contemporaneous
networks are estimated, the results depend on the lag-interval used. If the lag
interval is too long, meaningful relationships might not be retrieved (e.g., some
dynamics might occur between days or weeks rather than hours). Conversely, if
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the relationship is too fast, and dissipates fast, it might also not be retrieved (e.g.,
if the e↵ect of a relation dissipates after minutes, it might not be captured in a
design that measures persons hourly or slower). The optimal lag-interval is often
unknown, and can even di↵er between individuals and di↵erent variables. The lag-
interval used is typically chosen in part due to practical reasons; it is not feasible
for a patient to fill out a questionnaire often during a day (e.g., 20 times a day).
The data gathering can also not take too long (e.g., more than two weeks), as
the VAR model typically assumes people do not structurally change (Haslbeck &
Waldorp, 2016a; Wichers et al., 2016). While e↵ects that are slower than the lag-
interval could be captured in a second temporal network (e.g., a network between
days in addition to a network between measurements; de Haan-Rietdijk, Kuppens,
& Hamaker, 2016), such methods require more observations.

The aim of this chapter is not to argue against interpreting temporal coeffi-
cients; both temporal and contemporaneous e↵ects contain meaningful informa-
tion on how the observed variables relate to one-another. Regardless, we strongly
argue that the temporal and contemporaneous relationships should not be over-
interpreted, as these merely highlight potential causal pathways. So what is the
use then of contemporaneous and temporal networks if they do not allow for causal
interpretation? We argue that, for an individual patient, it is hardly relevant if
relationships in his/her data are causal or not. What matters is that both types of
networks give the clinician as well as the patient a personalized, and visualized win-
dow into a patient’s daily life. Moreover, this personalized window comes with a
host of opportunities to arrive at tailor-made intervention strategies (e.g., treating
central symptom of patient), and to monitor progress (e.g., will “deactivating”
central symptom result in the deactivation of other symptoms?). Additionally,
discussing the idiographic intricacies of networks with the patient o↵ers ample
opportunity for the patient to gain insight into his/her strengths and pitfalls and
for reinforcing a sense of participation in one’s own care. Personalized care is on
everybody’s agenda, and rightly so; given its benefits, so should network modeling
of psychopathology data at the level of the individual be.
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Chapter 6

Discovering Psychological Dynamics

Abstract

This chapter outlines statistical network models in cross-sectional and
time-series data, that attempt to highlight potential causal relationships be-
tween observed variables. The chapter describes three kinds of datasets.
In cross-sectional data (1), one can estimate a Gaussian graphical model
(GGM; a network of partial correlation coefficients). In single-subject time-
series analysis (2), networks are typically constructed through the use of
(multilevel) vector autoregression (VAR). VAR estimates a directed net-
work that encodes temporal predictive e↵ects—the temporal network. We
show that GGM and VAR models are closely related: VAR generalizes the
GGM by taking violations of independence between consecutive cases into
account. VAR analyses can also return a GGM that encodes relationships
within the same window of measurement—the contemporaneous network.
When multiple subjects are measured (3), multilevel VAR estimates fixed
and random temporal networks. We show that between-subject e↵ects can
also be obtained in a GGM network—the between-subjects network. We pro-
pose a novel two-step multilevel estimation procedure to obtain fixed and
random e↵ects for contemporaneous network structures. This procedure is
implemented in the R package mlVAR. The chapter presents a simulation
study to show the performance of mlVAR and showcases the method in an
empirical example on personality inventory items and physical exercise.

6.1 Introduction

Network modeling of psychological data has increased in recent years. This is con-
sistent with a general call to conceptualize observed psychological processes that
are not merely indicative of latent common causes but rather reflect the emergent

This chapter has been adapted from: Epskamp, S., Waldorp, L.J., Mõttus, R., and Bors-
boom, D. (2016). Discovering Psychological Dynamics: The Gaussian Graphical Model in Cross-
sectional and Time-series Data. arXiv preprint, arXiv:1609.04156.
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behavior of complex, dynamical systems in which psychological, biological, and
sociological components directly interact with each other (Borsboom et al., 2011;
Cramer, Sluis, et al., 2012; Cramer et al., 2010; Schmittmann et al., 2013; Van
Der Maas et al., 2006). Such relationships are typically not known, and proba-
bilistic network models (Koller & Friedman, 2009) are used to explore potential
causal relationships between observables (Epskamp et al., in press; van Borkulo et
al., 2014)—the dynamics of psychology. This chapter provides a methodological
overview of statistical network models in cross-sectional and time-series data. Fur-
thermore, this chapter shows that the common network models for cross-sectional
and time-series data are closely related. In time-series modeling, this relationship
allows researchers to extend the modeling framework to incorporate contempora-
neous and between-subject e↵ects. We propose a novel estimation procedure to
do so, which we implemented in the free software package mlVAR.1

We can distinguish two lines of research in which networks are utilized on
psychological datasets: modeling of cross-sectional data and modeling of intensive
repeated measures in relatively short time frames (e.g., several times per day
during several weeks). In cross-sectional modeling, a model is applied to a dataset
in which multiple persons are measured only once. The most popular method is
to estimate undirected network models, indicating pairwise interactions—so-called
pairwise Markov random fields (Lauritzen, 1996; Murphy, 2012). When the data
are continuous, the Gaussian graphical model (GGM; Lauritzen, 1996) can be
estimated. The GGM estimates a network of partial correlation coefficients—the
correlation between two variables after conditioning on all other variables in the
dataset. This model is applied extensively to psychological data (e.g., Cramer,
Sluis, et al., 2012; Fried, Epskamp, et al., 2016; Isvoranu, van Borkulo, et al.,
2016; Kossakowski et al., 2016; McNally et al., 2015; van Borkulo et al., 2015).

Time-series data can be obtained by using the experience sampling method
(ESM; Myin-Germeys et al., 2009), in which subjects are asked several times per
day to fill in a short questionnaire through a device or smartphone app. Of-
ten in ESM data, repeated measures of one or multiple participants are modeled
through the use of (multilevel) vector autoregressive (VAR) models, which esti-
mate how well each variable predicts the measured variables at the next time point
(Borsboom & Cramer, 2013). These models are growing increasingly popular in
assessing intraindividual dynamical structures (e.g., Bringmann et al., 2013, 2015;
Wigman et al., 2015). As will be shown below, the VAR model can be seen as
a generalization of the GGM that takes violations of independence between con-
secutive cases into account. Thus, the lines of research on cross-sectional and
time-series data can naturally be combined. The GGM is, however, not yet com-
monly used in time-series analysis.

In this chapter we present an overview of out-of-the-box methods, applicable
to normally distributed data, that aim to map out the dynamics present in psycho-
logical data. We will do so in two distinct settings: cross-sectional data, in which
observations are plausibly independent, and intensive repeated measures in a rel-
atively short time span obtained through ESM data. In multivariate normal data,

1CRAN link: http://cran.r-project.org/package=mlVAR
Github link (developmental): http://www.github.com/SachaEpskamp/mlVAR
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all relationships between variables are contained within the variance–covariance
matrix. Thus, characterizing the covariances in estimable ways provides a method
to characterize all relationships that are present. This information can then be
represented in networks. In cross-sectional data, one network can be obtained—
an undirected network of partial correlation coefficients. In time-series data, up
to three networks can be obtained—the temporal network, a directed network in-
dicating within-person relationships across time; the contemporaneous network,
an undirected partial correlation network within the same measurement; and the
between-subjects network, an undirected partial correlation network between the
means of the subject’s scores within the time span of measurement. We describe
how all three networks can highlight potential causal pathways and thereby act as
hypothesis-generating structures.

The chapter is structured in the following manner. We first characterize the
joint likelihood of full ESM data in three steps: (a) when cases are deemed to be
plausibly independent, (b) when the time-series data of a single subject contain
plausibly nonindependent observations, and (c) when we have time-series data of
several subjects that combine both independent and nonindependent observations.
In each of these situations, we outline estimation procedures including a descrip-
tion of open-source software packages. We also implement the novel methods of
this chapter, the methods for analyzing ESM data of multiple subjects, in the
software package mlVAR. Furthermore, we show the functionality of this pack-
age in an empirical example by reanalyzing personality inventory items measured
in an ESM design (Mõttus, Epskamp, & Francis, 2016). Finally, we assess the
performance of these methods in a large-scale simulation study.

6.2 Characterizing Multivariate Gaussian Data

In this chapter we will model measurements of N subjects (p 2 1, 2, . . . , N),
in which subject p is measured Tp times (t 2 1, 2, . . . , Tp) on I variables (i 2
1, 2, . . . , I). Let YYY represent the set of random variables measured in each subject:

YYY =
n

YYY (1),YYY (2), . . . ,YYY (N)

o

.

Element YYY (p) contains the random responses of a subject on all Tp measurements:

YYY (p) =

2

6

6

6

6

4

YYY
(p)
1

YYY
(p)
2

...

YYY
(p)
T
p

3

7

7

7

7

5

,

in which YYY
(p)
t contains the row vector with random responses of subject p on time-

point t, which we assume to be a multivariate Gaussian distribution with some
mean vector µµµ(p) and some variance–covariance matrix ⌃⌃⌃(p):

YYY
(p)
t =

h

Y
(p)
t1 Y

(p)
t2 . . . Y

(p)
tI

i

⇠ N
⇣

µµµ(p),⌃⌃⌃(p)
⌘

.
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We will denote realizations of the above described random variables by lowercase

letters (e.g., yyy and y
(p)
ti ). It is important to note that measurements are nested in

persons and not the other way around (two subjects can have a di↵erent number
of measurements) and that the measurement t of one subject does not correspond
to measurement t of another subject.2 In typical data representation used in

statistical software, YYY
(p)
t will correspond to a row of responses from a given subject

on all items. We will term these the cases: A case is the set of responses of a
subject on a time point on all items.

Given a set of parameters ⇠⇠⇠, let L denote the likelihood function

L (⇠⇠⇠;yyy) = fYYY (yyy | ⇠⇠⇠) ,

in which fYYY (yyy | ⇠⇠⇠) denotes a probability density function, which we will shorten
to f (yyy | ⇠⇠⇠) for the remainder of this chapter. The likelihood function is crucial
in estimating the set of parameters ⇠⇠⇠, either by maximum likelihood estimation
(MLE) or by playing a crucial role in the formation of the posterior distribution
of ⇠⇠⇠ in Bayes’ rule. An important assumption in computing such a likelihood
function is the assumption of independence. Given a set of estimated parameters
⇠⇠⇠, and assuming the model is correct, we can reasonably assume that scores of
subjects are independent, allowing us to write the joint likelihood as a product of
marginal likelihoods:

f (yyy | ⇠⇠⇠) =
N
Y

p=1

f
⇣

yyy(p) | ⇠⇠⇠
⌘

.

Suppose we measured subjects only once and on one variable—say, their IQ level.
This assumption of independence indicates, for example, that knowing Peter has
an IQ of 90 does not help us predict Sarah’s IQ level, given that IQ has a mean
of 100 and a standard deviation of 15.

In order to fully characterize the likelihood of all observations, we further need
to characterize f(yyy(p) | ⇠⇠⇠), the joint likelihood of all cases of a single subject. This
is easily done in the cross-sectional example described above because every subject
has only one observation. When multiple cases of a subject can be assumed to
be independent, this likelihood similarly can be expressed as a product of all the
likelihoods of the cases. However, as we will detail below, often the assumption
of independent cases is not valid. The remainder of this section will first describe
graphical models based on cross-sectional data, in which cases can be assumed to
be independent, followed by a description of dependent cases for a single subject
(N = 1) as well as for multiple subjects (N > 1).

6.3 The Gaussian Graphical Model

In cross-sectional data, every subject is only measured once on a set of response
items. In this case, as described above, we can reasonably assume that cases
are independent and thus characterize the likelihood as factorized over subjects.

2Data cannot be represented as a box (Cattell, 1988), as would be the case if subjects were
all measured at fixed measurement occasions (e.g., at baseline, one week after treatment, etc.).
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Because only one observation per subject is available, however, we cannot expect to
estimate subject-specific mean and variance–covariance structures. It is typically
assumed that the cases all share the same distribution. That is,

YYY (p) ⇠ N (µµµ,⌃⌃⌃) 8p,

in which 8p should be read as “for all subjects.” Now, the full likelihood can
be readily obtained and the mean vector µµµ and variance–covariance matrix ⌃⌃⌃ can
reliably be estimated using MLE, least squares estimation, or Bayesian estimation.

Our focus point is on ⌃⌃⌃. Because we assume multivariate normality, ⌃⌃⌃ encodes
all the information necessary to determine how the observed measures relate to
one another. It is to this end that great e↵ort has been made to further model the
structure of ⌃⌃⌃. Elements of this variance–covariance matrix can be standardized
to correlation coefficients, allowing researchers to investigate marginal pairwise
associations. This matrix, however, encodes more than just marginal associations.
The Schur complement (Ouellette, 1981) shows that all conditional distributions
of a set of variables, given another set of variables, can be obtained from blocks of
⌃⌃⌃. Therefore, in order to discover dynamics in psychological data, investigating
the structure of ⌃⌃⌃ is of great importance.

However, we will not focus on ⌃⌃⌃ in this chapter but rather on its inverse—the
precision matrix KKK,

KKK = ⌃⌃⌃−1,

also know as the GGM (Lauritzen, 1996). Of particular importance is that the
standardized elements of the precision matrix encode partial correlation coeffi-
cients of two variables given all other variables:

Cor
�

Yi, Yj | YYY −(i,j)

�

= − ijp
ii

p
jj

,

in which ij denotes an element of KKK, and YYY −(i,j) denotes the set of variables
without i and j (we dropped the person superscript for notational clarity). These
partial correlations can be used as edge weights in a weighted network. Each
variable Yi is represented as a node, and connections (edges) between these nodes
represent the partial correlation between two variables. When drawing such a
network, positive partial correlations are typically visualized with green edges and
negative partial correlations with red edges, and the absolute strength of a partial
correlation is represented by the width and saturation of an edge (see Chapter 9).
When a partial correlation is zero, we draw no edge between two nodes. As such,
the GGM can be seen as a network model of conditional associations; no edge
indicates that two variables are independent after conditioning on other variables
in the dataset.

Figure 6.1 shows a hypothetical example of such a GGM in psychology. Three
nodes represent if someone is able to concentrate well, if someone is fatigued,
or if someone is su↵ering from insomnia. This figure shows that someone who
is tired is also more likely to su↵er from concentration problems and insomnia.
Furthermore, this network shows that concentration problems and insomnia are
conditionally independent given the level of fatigue. The GGM shown in Figure 6.1
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−0.25 0.3

Fatigue

InsomniaConcentration

Figure 6.1: A hypothetical example of a GGM on psychological variables. Nodes
represent someone’s ability to concentrate, someone’s level of fatigue, and some-
one’s level of insomnia. Connections between the nodes, termed edges, represent
partial correlation coefficients between two variables after conditioning on the
third. Green edges indicate positive partial correlations, red edges indicate nega-
tive partial correlations, and the width and saturation of an edge corresponds to
the absolute value of the partial correlation.

can be interpreted in three di↵erent ways: (a) potential causal relationships, (b)
predictive e↵ects and predictive mediation, and (c) genuine mutual interactions.

First, a GGM can be taken to show potential causal relationships because the
structure can be equivalent to three causal structures (Pearl, 2000):

1. Concentration ! Fatigue ! Insomnia

2. Concentration  Fatigue ! Insomnia

3. Concentration  Fatigue  Insomnia

In these structures,! denotes that what is on the left side of the arrow causes what
is on the right side of the arrow. In observational data without temporal informa-
tion, distinguishing between these models beyond only identifying the conditional
independency is not possible. Thus, we may not know exactly why conditioning on
fatigue leads to insomnia and concentration being independent—this finding may
represent the smoke of a figurative causal fire. With more variables, the number
of potential equivalent causal models can increase drastically (MacCallum et al.,
1993).

The GGM is useful for generating hypotheses that can, at least in principle,
later be experimentally tested. Specifically, the causal structures above hypothe-
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size what happens when you intervene on the nodes (Pearl, 2000). For example, if
we observe that someone is less able to concentrate after being fatigued in an ex-
periment, the relationship fatigue ! concentration appears more plausible. If we
also observe that the person does not become more fatigued after we have experi-
mentally impaired his or her ability to concentrate, the reverse causal relationship
becomes less plausible.

Second, an edge in a GGM indicates that one node predicts a connected node
after controlling for all other nodes in the network. This can be shown in the
relationship between coefficients obtained from least-squares prediction and the
inverse variance–covariance matrix. Let ΓΓΓ represent an I⇥ I matrix with zeros on
the diagonal. Each row of ΓΓΓ, without the diagonal element γγγi.−(i), contains the
regression coefficients obtained in

yi = ⌧ + γγγi.−(i)yyy−(i) + "i. (6.1)

As such, γij encodes how well the jth variable predicts the ith variable. This
predictive e↵ect is naturally symmetric; if knowing someone’s level of insomnia
predicts his or her level of fatigue, then conversely knowing someone’s level of
fatigue allows us to predict his or her level of insomnia. As a result, γij is propor-
tional to γji. There is a direct relationship between these regression coefficients
and the inverse variance–covariance matrix (Meinshausen & Bühlmann, 2006).
Let DDD denote a diagonal matrix on which the ith diagonal element is the inverse
of the ith residual variance: dii = 1/Var("i). Then, it can be shown (Pourahmadi,
2011) that

KKK =DDD (III −ΓΓΓ) . (6.2)

Thus, γij is proportional to ij . A zero in the inverse variance–covariance ma-
trix indicates that one variable does not predict another variable. Consequently,
the network tells us something about the extent to which variables predict each
other. In the case of Figure 6.1, the network demonstrates that both insomnia
and fatigue as well as fatigue and concentration predict each other. This does
not mean that knowing someone’s level of fatigue does not say anything about
that person’s concentration problems—because these nodes are connected via an
indirect path, they may correlate with each other—but merely that fatigue medi-
ates this predictive e↵ect. When someone’s level of fatigue is known, also knowing
that person’s level of insomnia does not add any predictive value to that person’s
ability to concentrate.

Third, the network structure found in a GGM can be interpreted as showing
genuine mutual causation between two nodes of the network—manipulating one
node can a↵ect the other and vise versa. Mathematically, the GGM can be shown
to have the same form as the Ising model (Ising, 1925) from statistical physics (see
Chapter 8), except that the Ising model only models binary data and therefore
has a di↵erent normalizing constant. This is because both models are part of a
class of models, called pairwise Markov random fields (Lauritzen, 1996; Murphy,
2012), which have been extensively used to model complex behavior in physical
systems. For example, the Ising model represents particles with nodes and the
distance between particles with edges. Particles, in essence very small magnets,
are then modeled to have their north pole face up or down. Particles tend to
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oriented themselves randomly at normal temperatures but align at low temper-
atures. Because particles tend to align at low temperatures, one particle being
aligned somehow causes an adjacent particle to align in that same way and vice
versa. These relationships are naturally symmetric (see Chapter 8). Applying the
analogy of the Ising model for particles to the GGM shown in Figure 6.1, we could
say that these symptoms tend to be in the same state (of alignment) if there is a
positive connection between them and if they tend to be in di↵erent states if there
is a negative connection. In this system, a person su↵ering from fatigue could also
su↵er from insomnia as well as concentration problems (van Borkulo et al., 2014).

Estimation

The maximum likelihood solution of KKK can readily be obtained by standardizing
the inverse sample variance–covariance matrix and by multiplying all o↵-diagonal
elements by −1. An interesting problem pertains to elements ofKKK which are close
to, but not exactly, zero. In the interest of parsimony, researchers may want to
remove these edges and obtain conditional independence with fewer parameters in
the model. One way to obtain this is to use the sampling distribution of the partial
correlation coefficients represented in KKK to test if edges are significantly di↵erent
from zero. The network can then be thresholded by removing the nonsignificant
edges (by fixing them at zero). Alternatively, lengthy model search algorithms
can be applied to iteratively add and remove edges. In recent literature, it has
become increasingly popular to use regularization techniques, such as penalized
MLE, to jointly estimate model structure and parameter values (van Borkulo et
al., 2014; see also Chapter 2). In particular, the least absolute shrinkage and
selection operator (LASSO; Tibshirani, 1996) has been shown to perform well in
quickly estimating model structure and parameter estimates of a sparse GGM
(Friedman et al., 2008; Meinshausen & Bühlmann, 2006; Yuan & Lin, 2007). A
particularly fast variant of LASSO is the graphical LASSO (glasso; Friedman et al.,
2008), which directly penalizes elements of the inverse variance–covariance matrix
(Witten, Friedman, & Simon, 2011; Yuan & Lin, 2007). In addition, glasso utilizes
a tuning parameter that controls the sparsity of the network: A sparse network
is one with few edges (i.e., KKK contains mostly zeros). The tuning parameter
can be chosen in a way that optimizes cross-validated prediction accuracy or that
minimizes information criteria such as the extended Bayesian information criterion
(EBIC; Chen & Chen, 2008). Estimating a GGM with the glasso algorithm in
combination with EBIC model selection has been shown to work well in retrieving
the true network structure (Foygel & Drton, 2010; see also Chapter 2) and is
currently the dominant method for estimating the GGM in psychological data
(see also Chapter 2 for an introduction to this methodology aimed at empirical
researchers).

Figure 6.2 shows an example of a GGM estimated using glasso in combina-
tion with EBIC model selection. This network was estimated on the bfi dataset
from the psych R package (Revelle, 2010). This dataset contains the responses
of 2,800 people on 25 items designed to measure the Big Five personality traits
(McCrae & Costa, 1997). The network shows many meaningful connections, such
as “make friends easily” being linked to “make people feel at ease,” “don’t talk
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C2: Continue until everything is perfect.
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C5: Waste my time.
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E1: Don't talk a lot.
E2: Find it difficult to approach others.
E3: Know how to captivate people.
E4: Make friends easily.
E5: Take charge.

Neuroticism
N1: Get angry easily.
N2: Get irritated easily.
N3: Have frequent mood swings.
N4: Often feel blue.
N5: Panic easily.
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O1: Am full of ideas.
O2: Avoid difficult reading material.
O3: Carry the conversation to a higher level.
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A1: Am indifferent to the feelings of others.
A2: Inquire about others' well−being.
A3: Know how to comfort others.
A4: Love children.
A5: Make people feel at ease.

Conscientiousness
C1: Am exacting in my work.
C2: Continue until everything is perfect.
C3: Do things according to a plan.
C4: Do things in a half−way manner.
C5: Waste my time.

Extraversion
E1: Don't talk a lot.
E2: Find it difficult to approach others.
E3: Know how to captivate people.
E4: Make friends easily.
E5: Take charge.

Neuroticism
N1: Get angry easily.
N2: Get irritated easily.
N3: Have frequent mood swings.
N4: Often feel blue.
N5: Panic easily.

Openness
O1: Am full of ideas.
O2: Avoid difficult reading material.
O3: Carry the conversation to a higher level.
O4: Spend time reflecting on things.
O5: Will not probe deeply into a subject.

Figure 6.2: An example of a network model estimated on the BFI personality
dataset from the psych package in R (cross-sectional data, N = 2,800). Nodes
represent variables (in this case personality inventory items) and edges between
the nodes represent partial correlation coefficients. The network was estimated
using the glasso in combination with EBIC model selection, using the EBICglasso
function in the qgraph package.

a lot” being linked to “find it difficult to approach others,” and “carry the con-
versation to a higher level” being linked to “know how to captivate people.” For
a detailed discussion on the interpretation of such models in personality research
(see Chapter 10).

The GGM can be estimated by inverting and standardizing the sample variance–
covariance matrix, which can be done in the open-source statistical programming
language R (R Core Team, 2016) by using the corpcor (Schäfer et al., 2015) or
qgraph (Epskamp et al., 2012) R package. The qgraph package also supports
thresholding via significance testing or false discovery rates. The glasso algorithm
is implemented in the packages glasso (Friedman et al., 2014) and huge (Zhao et
al., 2015). The huge package also allows for selection of the tuning parameter
using cross-validation or EBIC. The EBIC-based tuning parameter selection with
the glasso package, using only a variance–covariance matrix as input, has been
implemented in the qgraph package. The parcor package (Krämer et al., 2009)
implements other LASSO variants for estimating the GGM. Finally, fitting an es-
timated GGM to data can be done in the R packages ggm (Marchetti, Drton, &
Sadeghi, 2015) and lvnet (see Chapter 7).
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6.4 When Cases Are Not Independent: n = 1

Di↵erent kinds of data in psychology occur when only one subject is measured
several times. The likelihood is fully characterized by the likelihood of the single
subject:

f(yyy | ⇠⇠⇠) = f(yyy(1) | ⇠⇠⇠).

We need to characterize f(yyy(p) | ⇠⇠⇠). In repeated measures of psychological con-
structs—assuming a reasonably short interval between consecutive measurements
is typical in ESM studies—we cannot reasonably assume that cases are indepen-
dent. For example, suppose we measured Peter multiple times on his level of
fatigue, measured on a scale from 1 (not at all fatigued) to 10 (extremely fa-
tigued). Suppose we know Peter has an average fatigue level of 5 with a standard
deviation of 1. Knowing that Peter scored a 2 at some time point, we can make a
better prediction regarding the level of Peter’s fatigue at the next time point (it is
probably still low a few hours later) than if we only knew his mean and standard
deviation, which would predict this level most likely to be somewhere between 3
and 7. This is because someone’s fatigue, like most psychological and physiological
states, is likely to show some stability over a time interval of several hours.

It is important to note that f (yyy | ⇠⇠⇠) cannot be computed by multiplying the
marginal likelihoods of every response. Instead, we now need to express the full
joint likelihood. When we drop superscript (1) denoting the single subject, this
becomes

f (yyy | ⇠⇠⇠) = f
⇣

yyyT | yyy
1

, . . . , yyyT
p

−1

,⇠⇠⇠
⌘

· · · f (yyy
3

| yyy
1

, yyy
2

,⇠⇠⇠) f (yyy
2

| yyy
1

,⇠⇠⇠) f (yyy
1

| ⇠⇠⇠) .

The model above, although fully characterizing the joint likelihood, is not es-
timable without stringent assumptions, so we make the following assumptions.

1. The joint probability distribution can be factorized according to a graph.

2. The conditional probability distributions are stable and independent of t.

3. The first measurements are treated as exogenous and not modeled.

4. The conditional distributions are multivariate normal.

The first assumption is that the time series follows some graph structure such
that the factorization of the joint probability distribution can be made easier.
Figure 6.3 shows three such potential graph structures. The first panel shows the
Lag 0 factorization, in which each observation is assumed to be independent of
others. As described above, although this is a sparse representation, the Lag 0
model is not plausible in most time-series psychological datasets. As such, we could
use the graph factorization of the second panel of Figure 6.3 instead, denoting the
Lag 1 factorization

f (yyy | ⇠⇠⇠) = f
⇣

yyyT | yyyT
p

−1

,⇠⇠⇠
⌘

· · · f (yyy
2

| yyy
1

,⇠⇠⇠) f (yyy
1

| ⇠⇠⇠) .

This is a powerful factorization because it does not assume that measurement
are independent of one another. For example, the Lag 1 factorization does not
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Figure 6.3: Here are three possible graph factorizations of the within-subject like-
lihood of subject p. Each node represents a vector of measurements at some time
point. The top panel shows the Lag 0 factorization, indicating that cases are inde-
pendent. Because this is usually not a plausible assumption in psychology, we can
instead use another factorization. The middle panel shows the Lag 1 factorization,
indicating that cases are independent given only the previous case. The bottom
panel shows the Lag 2 factorization, indicating that cases are independent given
the past two cases.

95



6. Discovering Psychological Dynamics

assume there are no Lag 2 correlations—correlations between yyyt−2

and yyyt for
any t—but instead that these Lag 2 correlations can fully be explained by the
Lag 1 interactions, yyyt−2

?? yyyt | yyyt−1

for all t. However, more flexible models
can be specified as well, such as the Lag 2 model shown in the last panel of
Figure 6.3. Because the number of observations in ESM studies is often relatively
low (people cannot be expected to fill out tens of questionnaires daily over the
course of several days), adding complexity to the model requires more observations
to reliably estimate parameter values. Therefore, we will only describe the Lag 1
factorization in the remainder of this chapter because this factorization is the
simplest that also controls for the most obvious violations of independence between
consecutive cases.

The second assumption is that the conditional probability distributions do
not depend on t and are thus stable over time. This is called the assumption
of stationarity. Using this assumption, the time series of a single subject now
features multiple observations of the same relationship (e.g., the Lag 1 relation-
ship), making the model estimable. Combining this with the third assumption of
first measurements being treated as exogenous, and thereby not modeled, renders
the probability distribution simple and straightforward. For example, the Lag 1
factorization then becomes

f (yyy | yyy
1

,⇠⇠⇠)
lag−1

=
Y

t

f
�

yyyt | yyyt−1

,⇠⇠⇠
�

.

The assumption of stationarity is not trivial because people can develop over time.
In a typical ESM study, data are gathered in a relatively short time span (e.g.,
a few weeks). Assuming a person stays relatively stable in such a short interval
is much more plausible. It is therefore important to note that the assumption of
stability does not assume a person never changes, merely that the person’s scores
are distributed similarly in a relatively short time span (Fleeson, 2001).

Finally, we assume that these conditional distributions are multivariate normal.
Using the Schur complement, these distributions can be shown to be equivalent to
a linear regression model with correlated multivariate normal residuals. We can,
without loss of information, center the lagged predictors such that we obtain

YYY t | yyyt−1

⇠ N
�

µµµ+BBB
�

yyyt−1

−µµµ
�

,⇥⇥⇥
�

,

in which BBB denotes an I⇥I matrix of temporal e↵ects, µµµ denotes the I length vec-
tor of stationary means, and ⇥⇥⇥ denotes the I ⇥ I variance–covariance matrix con-
ditional on the previous time point, which we will term contemporaneous e↵ects.
This model is also known as the VAR because it can be seen as a multivariate multi-
ple regression on the previous time point. VAR has become popular in psychology

because BBB encodes temporal prediction: Element β
(p)
ij being nonzero means that

Yti is predicted by Yt−1,j . Such a temporal prediction is termed Granger causality
in the economic literature (Eichler, 2007; Granger, 1969) because it satisfies at
least the temporal requirement for causation (i.e., cause must precede the e↵ect).

This model implies a stationary distribution of cases:

yyyt ⇠ N (µµµ,⌃⌃⌃) ,
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Figure 6.4: A hypothetical example of two network structures obtained from a
vector-autoregression model. The network on the left indicates the temporal net-
work, demonstrating that a variable predicts another variable at the next time
point. The network on the right indicates the contemporaneous network, demon-
strating that two variables predict each other in the same time point.

in which⌃⌃⌃ can be obtained fromBBB and⇥⇥⇥, making use of the vectorization operator
Vec and the Kronecker product ⌦:

Vec (⌃⌃⌃) = (III −BBB ⌦BBB)
−1

Vec (⇥⇥⇥) . (6.3)

A proof of Equation (6.3) is beyond the scope of this chapter and can be requested
from the author. It is important to note that in addition to the estimation of
temporal e↵ects, the VAR model can be used to obtain the GGM (the inverse of
the variance–covariance matrix described above) for nonindependent cases. We
can further note that if cases are independent, BBB = OOO and subsequently ⌃⌃⌃ = ⇥⇥⇥.
Thus, the GGM is a special case of the VAR model. This leads to a strikingly
di↵erent interpretation of the VAR model; the VAR model can be seen as an
inclusion of temporal e↵ects on a GGM.

Contemporaneous Causation

In order to disentangle the temporal and contemporaneous relationship, it is best
not to combine them into a single GGM model but rather to investigate them
separately. Following Wild et al. (2010), the inverse of ⇥⇥⇥ can be standardized to a
GGM model encoding residual partial correlation coefficients, which can be drawn
in a network model. As a result, the VAR model returns two network models: the
temporal network, a directed network indicating temporal prediction or Granger
causality, and the contemporaneous network, a partial-correlation network of ef-
fects in the same window of measurement. Both network structures can highlight
potential causal pathways. In psychology, there will likely be many causal rela-
tionships that occur much faster than the lag interval in a typical ESM study;
in which case, these pathways will be captured in the contemporaneous network.
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For example, if someone is experiencing bodily discomfort, that will immediately
negatively a↵ect that person’s ability to enjoy him or herself.

Figure 6.4 shows a hypothetical example of the two network structures ob-
tained in a VAR analysis. The left panel shows the temporal network (a graphical
representation of BBB). This network shows that whenever the subject in question
felt energetic (or tired) this person also felt more (or less) energetic in the next
measurement. The temporal network also shows us that after exercising, this per-
son felt less energetic as well. The contemporaneous network in the right panel
(a graphical representation of the GGM based on ⇥⇥⇥) shows a plausible reverse
relationship: Whenever this person exercised, he or she felt more energetic in the
same measurement occasion.

Estimation

We can estimate the VAR model by specifying it as a regression model. Without
the loss of information, we can center the variables to have a mean of zero. The
corresponding multivariate regression model then becomes

yyyt = BBByyyt−1

+ """t

"""t ⇠ N(000,⇥⇥⇥).

Alternatively, the VAR model can be estimated in steps using separate univariate
models for every variable:

yti = βββiyyyt−1

+ "ti

"ti ⇠ N(0,
p

✓ii),

in which βββi denotes the ith row of BBB. Figure 6.5 shows the di↵erence between
univariate and multivariate estimation. In univariate estimation, every model
contains a di↵erent subset of the parameters of interest. In addition, the contem-
poraneous covariance ✓

12

is not obtained in any of the models and needs to be
estimated post hoc by correlating the residuals of both regression models.

Abegaz and Wit (2013) proposed to apply LASSO estimation of BBB and ⇥⇥⇥ us-
ing the multivariate regression with the covariance estimation (MRCE) algorithm
described by Rothman et al. (2010). MRCE involves iteratively optimizing BBB
using cyclical-coordinate descent and KKK using the glasso algorithm (Friedman et
al., 2008, 2014). EBIC model selection can be used to obtain the best performing
model. This methodology has been implemented in two open source R packages:
sparseTSCGM (Abegaz & Wit, 2015), which aims to estimate the model on re-
peated multivariate genetic data, and graphicalVAR (Epskamp, 2015), which was
designed to estimate the model on the psychological data of a single subject. The
graphicalVAR package also allows for unregularized multivariate estimation.

6.5 When Cases Are Not Independent: n > 1

When multiple subjects are measured, we need to characterize the likelihood for
every subject. Using the assumptions described above, we can model the time
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Figure 6.5: A multivariate and univariate estimation of a VAR model with two ob-
served variables. Intercepts are not shown to improve clarity. Panel A shows that
in multivariate estimation, the entire model is estimated at once whereas Panels
B and C show that in sequential estimation two separate models are estimated.

series of each subject with a subject-specific VAR model:

yyy
(p)
t | yyy(p)t−1

⇠ N
⇣

µµµ(p) +BBB(p)
⇣

yyy
(p)
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−µµµ(p)
⌘

,⇥⇥⇥(p)
⌘

.

Often, however, researchers are not interested in the dynamics of a single partic-
ipant but rather in the generalizability of dynamics over multiple subjects. To
this end, researchers may want to estimate the average e↵ects and interindividual
di↵erences of such intraindividual dynamics. We can model these by using the
language of multilevel modeling (Bringmann et al., 2013). For each parameter,
we denote the average e↵ect as the fixed e↵ects, fff , and the person-level deviance
from this mean as the random e↵ects, RRR(p), with the realization rrr(p). Using this
notation, the parameter vector of a single subject becomes
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in which Vec stacks the columns of a matrix, and Vech does the same but only
takes the upper-triangular elements including the diagonal. The random e↵ects
are centered on zero:

E

0

@

2

4

RRRµµµ

RRRBBB

RRR
⇥

⇥

⇥

3

5

1

A = 000,

such that the fixed e↵ects reflect the population means of the parameters. The
variance of the random e↵ects can be interpreted as the individual di↵erences.

The fixed e↵ects and random e↵ect variances and covariances can be estimated
by estimating a VAR model for every subject, pooling the parameter estimates,
and computing the mean (fixed e↵ects) and variance–covariance matrix (random
e↵ects distribution). This estimation, however, is separate for every subject. To
combine all observations in a single model, we can assign distributions over the
parameters; in which case, we make use of multilevel modeling. Assigning distri-
butions has two main benefits. First, instead of having a single parameter per

99



6. Discovering Psychological Dynamics

subject, we now only need to estimate the parameters of the distribution. For
example, when we model observations from 100 subjects, instead of estimating
each parameter 100 times, we now only need to estimate its mean and variance.
Second, the multilevel structure acts as a prior distribution in Bayesian estimation
procedures—in case we wish to obtain person-specific parameter estimates post
hoc. In particular, multilevel modeling leads to shrinkage; parameter values that
are very di↵erent from the fixed e↵ects are likely to be estimated closer to the fixed
e↵ect in multilevel modeling than when using a separate model for every subject.
For example, if we estimate a certain temporal regression in five people and find
the values 1.1, 0.9, 0.7, 1.3, and 10, it is likely that the fifth statistic, 10, is an
outlier. Ideally, we would estimate this value to be closer to the other values.

Modeling and estimating a random distribution for the contemporaneous var-
iance–covariance matrix is still a topic for future research and not readily im-
plemented in open-source software. This is mainly because these matrices must
be positive definite. We cannot simply assign normal distributions to elements of
the contemporaneous (partial) variance–covariance matrix because doing so might
lead to nonzero probability of matrices that are not positive definite. Therefore,
we do not define this distribution here and merely state that there is some pop-
ulation mean for its elements, fff

⇥

⇥

⇥

. We assume the means and lagged regression
parameters to be normally distributed:



RRRµµµ

RRRBBB

�

⇠ N

✓

000,



⌦⌦⌦µµµ ⌦⌦⌦µµµBBB

⌦⌦⌦BBBµµµ ⌦⌦⌦BBB

�◆

.

To summarize, the multilevel VAR model makes use of the following parameters
for all subjects:

• fffBBB : The average within-person temporal relationships between consecutive
time points.

• fff
⇥

⇥

⇥

: The average within-person contemporaneous relationships.

• ⌦⌦⌦µµµ: The between-person relationships between observed variables.

• ⌦⌦⌦µµµBBB and ⌦⌦⌦BBB : Individual di↵erences between the temporal relationships
and other temporal relationships or the means. Of particular interest is
p

Diag (⌦⌦⌦BBB), which shows the individual di↵erences of each temporal rela-
tionship (Bringmann et al., 2013).

For any researcher interested in investigating results of particular subjects, the
subject-specific structures are also of interest:

• µµµ(p): The stationary means of subject p.

• BBB(p): The within-person temporal relationships of subject p.

• ⇥⇥⇥(p): The within-person contemporaneous relationships of subject p.

100
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A New Look at Cross-Sectional Analysis

Such variance decomposition exposes a major limitation of cross-sectional analyses.
In cross-sectional data, each subject is only measured once: T

1

= T
2

= . . . = TP =
1. This can be seen as a special case of the multilevel VAR model in which the
Lag 0 factorization is used to model the single response of a subject. This single
response can then be written as the stationary mean of person p and the deviation
from that mean:

yyy
(p)
1

= µµµ(p) + """
(p)
1

"""
(p)
1

⇠ N(000,⇥⇥⇥(p)).

It is immediately clear that⇥⇥⇥(p) cannot be estimated from a single set of responses.
Moreover, even if we assume that within-person contemporaneous e↵ects are equal
across people and drop the superscript (p), this still leaves us without an estimable
model because RRRµµµ is also assumed to be normally distributed. Therefore, we get

"""
(p)
1

⇠ N(000,⇥⇥⇥)

RRRµµµ ⇠ N(000,⌦⌦⌦µµµ).

In no way do we know if deviations from the grand mean are due to the within-
person variance in⇥⇥⇥ or the between-person variance in⌦⌦⌦µµµ. Thus, in cross-sectional
analysis, within- and between-subject variances are not distinguishable. We can
estimate ⇥⇥⇥ by assuming ⌦⌦⌦µµµ = OOO, or we can estimate ⌦⌦⌦µµµ by assuming ⇥⇥⇥ = OOO.
Both assumptions lead to the exact same estimates. This does not mean that
cross-sectional analysis is unusable by default because the obtained structure can
highlight potential causal relationships between variables; however, it cannot dis-
entangle between-subject relationships from short-term, within-subject relation-
ships (Hamaker, 2012).

Between-Subjects Causation

The variance–covariance matrix ⌦⌦⌦µµµ encodes how variables relate to one another
across subjects and can be modeled using a GGM network of partial correlation
coefficients. As such, the multilevel VAR model returns three types of network
structures describing relationships between observed variables. In addition to the
temporal and contemporaneous network fixed e↵ects (the average temporal and
contemporaneous network) and random e↵ects (the personal deviations from these
averages), the multilevel VAR model also returns a between-subjects network—the
network structure between stationary means of subjects based on ⌦⌦⌦µµµ.

Hamaker (2012) described an example of how within- and between-person ef-
fects can strongly di↵er from each other. Suppose we let people write several
texts, and we measure the number of spelling errors they made and the number
of words per minute they typed (typing speed). We would expect the seemingly
paradoxical three network structures shown in Figure 6.6. First, we would not
expect the temporal network to show any relationships. There is no logical reason
to assume that observing someone type a text faster than his or her average has
any influence on the number of spelling errors in the next text. Second, we expect
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Figure 6.6: A hypothetical example three network structures obtained from a mul-
tilevel vector-autoregression model. The network on the left indicates the temporal
network, showing that a variable predicts another variable at the next time point.
The network in the middle indicates the contemporaneous network, showing that
personal deviations from the means predict each other at the same time point.
Finally, the network on the right indicates the between-subjects network, showing
how the means of di↵erent subjects relate to one another

a positive relationship in the contemporaneous network. When a person types
faster than his or her average typing speed, that person will make more spelling
errors. Finally, we expect a negative relationship in the between-person network
(e.g., people who type fast, on average, generally make fewer spelling errors). This
is because people who type fast, on average, are likely to be more skilled in writ-
ing (e.g., a court room stenographer) and therefore are less likely to make a lot of
spelling errors, compared to someone who types infrequently.

The di↵erent ways of thinking about the e↵ects of manipulations in time-series
models can be organized in terms of recently developed interventionist accounts
of causation (Woodward, 2005). According to Woodward, causation is fleshed
out in terms of interventions: X is a cause of Y if an intervention (natural or
experimental) on X would lead to a change in Y . Statistically, the interventionist
account is compatible with, for example, Pearl’s (2000) semantics in terms of a “do-
operator.” Here, an intervention onX is represented as Do (X = x), and the causal
e↵ect on Y is formally expressed as E (Y | Do (X = x)). Pearl distinguished this
from the classical statistical association, in which no intervention is present, and we
get the ordinary regression E (Y | See (X = x)). This is a useful notation because
it immediately raises the important point that there is a di↵erence between doing
and seeing, which of course parallels the classic distinction between experimental
and correlational research (Cronbach & Meehl, 1955).

Cashing out causal e↵ects in terms of interventions is useful to get a grip on
the causal information in the di↵erent GGMs defined in this chapter. In a time-
series model, interventions on variables can be conceptualized in di↵erent ways.
In particular, consider the intervention Do (X = x). We can think of this in terms
of a random shock to the system, which sets X to value x on a particular time
point and evaluates the e↵ect on another variable Y on the next time point (or
series of time points as in continuous time models). If we want to gauge this
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type of causal relationship, we may look at the within-subjects VAR model. To
take Hamaker’s (2014) example, say we want to know what would happen to the
number of typing errors: If a researcher forced a given person to type very fast,
that researcher would need to evaluate the within-person data, which would show
a negative association between typing speed and typing errors. Between-subject
data would be misleading because individual di↵erences would probably yield a
positive correlation between speed and accuracy—faster typists are likely to be
more accurate typists.

However, we can also think of a manipulation that sets X to value x in a
di↵erent way, for instance, by inducing a long-term change in the system that
leads it to converge on X = x in expectation. To evaluate the e↵ect of this type
of intervention, we should consider the behavior of the system on the changes
of the intercept of X. Clearly, in order to evaluate this type of intervention,
the within-subject time-series model is useless (as per stationarity). However,
the between-subjects model may contain important clues because it contains the
relationships between the long-term averages across people. Thus, if we want to
gauge the e↵ect of a long-term change (most plausibly conceptualized as a change
in intercept), the between-subjects model is a better guide. In terms of Hamaker’s
(2014) example, if we are interested in the e↵ect of changing someone’s typing
speed structurally (e.g., by training a person systematically), our preferred source
of causal information would likely lie in the between-subjects model because the
parameters of the within-subjects model would undoubtedly lead to the wrong
conclusion.

Estimation

A straightforward technique is to estimate separate VAR models for each subject.
Afterwards, fixed e↵ects (i.e., average e↵ects in the population) can be estimated
by pooling the parameters and averaging them. This estimation technique is rela-
tively fast even for large models, but it requires a high number of observations per
person. As described above, an alternative is to use multilevel modeling (Hamaker,
2012). The benefit of the latter approach is that instead of estimating the VAR
model in each subject, only the fixed e↵ects and variance–covariance of the random
e↵ects need to be estimated. This can be done by integrating over the distribu-
tion of the random e↵ects or by specifying the model using hierarchical Bayesian
Monte-Carlo sampling methods (Gelman & Hill, 2006; Schuurman, Grasman, &
Hamaker, 2016). Here, we propose a novel two-step, multilevel estimation pro-
cedure that estimates the fixed e↵ects for the temporal, between-subjects, and
contemporaneous networks as well as the random e↵ects for the temporal and
contemporaneous networks. The contemporaneous networks are estimated in a
second step, by analyzing the residuals of the first step.

Temporal network. Although multivariate multilevel estimation is possible in
theory, it is computationally expensive in practice. For example, when we want
to explore potential dynamics in medium-sized ESM datasets on around 10 to
20 variables, multivariate multilevel estimation becomes very slow in both MLE

103



6. Discovering Psychological Dynamics

and Bayesian estimation. Therefore, we only describe univariate estimation pro-
cedures (Bringmann et al., 2013). Because the joint conditional distribution of

yyy
(p)
t | yyy(p)t−1

is normal, it follows that the marginal distribution of every variable is
univariate normal and can be obtained by dropping all other parameters from the
distribution:
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in which βββi indicates the row vector of the ith row of BBB(p). When drawn as a
temporal network, the edges point to node i. Many software packages do not
allow the estimation of µµµ(p) as described above. In this case, the sample means of
every subject, ȳyy(p), can be taken as a substitute for µµµ(p) (Hamaker & Grasman,
2014). The model then becomes a univariate multilevel regression model with
within-subject centered predictors, estimable by functions such as the lmer in
lme4 (Bates, Mächler, Bolker, & Walker, 2015). The Level 1 model becomes
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Estimation of such univariate models only requires the numeric approximation
of an I + 1 dimensional integral, which is much easier to compute. Therefore,
sequential estimation using univariate models have been used in estimating mul-
tilevel VAR models (Bringmann et al., 2013). A downside, however, is that not
all parameters are included in the model. In particular, o↵-diagonal elements of
⇥⇥⇥(p) and ⌦⌦⌦µµµ as well as certain elements of ⌦⌦⌦µµµBBB and ⌦⌦⌦BBB are not obtained. A
second downside is that estimating correlated random e↵ects does not work well
for models with many predictors. In particular, lmer becomes very slow with ap-
proximately more than eight predictors. As such, networks with more than eight
nodes are hard to estimate. To estimate larger networks (e.g., 20 nodes), we can
choose to estimate uncorrelated random e↵ects, which we term orthogonal estima-
tion. The performance of orthogonal estimation, although the random e↵ects are
in reality correlated, is assessed in the simulation study below.

Between-subjects network. To obtain estimates of between-subject e↵ects,
Hamaker and Grasman (2014) suggest that the sample means of every subject,
ȳyy(p) in Equation (6.4), can be included as predictors at the subject level. With
this extension, the Level 2 model for the person-specific mean of the ith variable
now becomes

µ
(p)
i = fµ

i

+ γγγµ,iȳyy
(p)
−(i) + r(p)µ

i

, (6.6)
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in which we use γγγµ,i to denote the ith row (without the diagonal element i) of a I⇥I

matrix ΓΓΓµ, and ȳyy
(p)
−(i) denotes the vector ȳyy

(p) without the i-th element. Because ȳ
(p)
i

is itself an estimate of µ
(p)
i , Equation (6.6) seems to take the form of Equation (6.1).

As such, these estimates can be used, as seen in Equation (6.2), to estimate a
GGM between the means (Lauritzen, 1996; Meinshausen & Bühlmann, 2006)—
the between-subjects network. Due to the estimation in a multilevel framework,
the resulting matrix will not be perfectly symmetric and must be made symmetric
by averaging lower and upper triangular elements. Thus, each edge (i.e., partial
correlation) in the between-subjects network is estimated by standardizing and
averaging two regression parameters: the parameter denoting how well mean A
predicts mean B and the regression parameter denoting how well mean B predicts
mean A.

Contemporaneous network. An estimate for contemporaneous networks can
be obtained in a second step by investigating the residuals of the multilevel model
that estimate the temporal and between-subject e↵ects. These residuals can be
used to run multilevel models that predict the residuals of one variable from the
residuals of other variables at the same time point. Let "̂ti

(p) denote the estimated

residual of variable i at time point t of person p, and let "̂""
(p)
t,−(i) denote the vector of

residuals of all other variables at this time point. The Level 1 model then becomes

"̂ti
(p) = ⌧

(p)
i + γγγ

(p)
",i "̂""

(p)
t,−(i) + ⇣

(p)
ti , (6.7)

in which γγγ
(p)
",i represents the i-th row (without the diagonal element i) of a I ⇥ I

matrix, ΓΓΓ(p)
µ , ⌧

(p)
i represents some intercept, and ⇣

(p)
ti represents a residual. In the

Level 2 model, we again assign a multivariate normal distribution to parameters

⌧
(p)
i and γγγ

(p)
",i . It can be seen that Equation (6.7) also takes the form of Equa-

tion (6.1). Thus, this model can again be seen as the node-wise GGM estimation
procedure. Estimates of both the person-specific and fixed-e↵ects contemporane-
ous networks can be obtained by using Equation (6.2), where again the matrices
need to be made symmetric by averaging upper and lower triangle elements. As
with the temporal network, orthogonal estimation can be used when the number
of variables is large (i.e., larger than approximately eight).

Thresholding. After estimating network structures, researchers may be inter-
ested in removing edges that may be spurious and due to sampling error. By
setting edge weights to zero, e↵ectively removing edges from a network, a sparse
network is obtained that is more easily interpretable. One method of doing so is by
removing all edges that are not significantly di↵erent from zero. For fixed e↵ects,
multilevel software returns standard errors and p values, allowing this thresholding
to be done. For the temporal networks, each edge is represented by one parameter
and thus by one p value. The contemporaneous and between-subjects networks,
however, are a function of two parameters that are standardized and averaged:
a regression parameter for the multiple regression model of the first node and a
regression parameter for the multiple regression model of the second node. As
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such, for every edge, two p values are obtained. We can choose to retain edges
of which at least one of the two p values is significant, termed the OR-rule, or
we can choose to retain edges in which both p values are significant, termed the
AND-rule (Barber, Drton, & Others, 2015).

Summary. In sum, the above described two-step estimation method proposes
to estimate a multilevel model per variable, using within-person centered lagged
variables as within-subject predictors and the sample means as between-subject
predictors. These models can be used to obtain estimates for the temporal network
and between-subjects network. In a second step, the contemporaneous networks
can be estimated by estimating a second multilevel on the residuals of the first
multilevel model. The mlVAR R package implements these methods (Epskamp,
Deserno, & Bringmann, 2016). In this package, temporal coefficients can be es-
timated as being “unique” per subject (unique VAR models per subject), “corre-
lated” (estimating correlations between temporal e↵ects), “orthogonal” (assuming
temporal e↵ects are not correlated), or “fixed” (no multilevel structure on temporal
e↵ects). The contemporaneous e↵ects can also be estimated as being “unique” (all
residuals are used to obtain one GGM), “correlated” (second step multilevel model
with correlated random e↵ects), “orthogonal” (second step multilevel model with
uncorrelated random e↵ects), or “unique” (residuals are used to obtain a GGM
per subject). The mlVAR package can also be used to plot the estimated networks,
in which significance thresholding is used by default with a significance level of
↵ = 0.05.

6.6 Empirical Example

To provide an empirical example of the multilevel VAR methods described above,
we reanalyzed the data of Mõttus et al. (2016). This data consists of two inde-
pendent ESM samples, in which items tapping three of the five Five-Factor Model
(McCrae & John, 1992) domains (neuroticism, extraversion, and conscientious-
ness) were administered as was an additional question that asked participants
how much they had exercised since the preceding measurement occasion. Sam-
ple 1 consisted of 26 people providing 1,323 observations in total, and Sample 2
consisted of 62 people providing a total of 2,193 observations. Participants in
Sample 1 answered questions three times per day whereas participants in Sam-
ple 2 answered questions five times per day. In both samples, the minimum time
between measurements was 2 hr. For more information about the samples and
the specific questions asked, we refer readers to Mõttus et al. (2016).

To obtain an easier and more interpretable example, we first only analyzed
questions aimed to measure the extraversion trait and the question measuring
exercise. This lead to five variables of interest: questions pertaining to feeling
outgoing, energetic, adventurous, or happy and the question measuring partici-
pants’ exercise habits. We analyzed the data using the mlVAR package. Because
the number of variables was small, we estimated the model using correlated tem-
poral and contemporaneous random e↵ects. We ran the model separately for both
samples and computed the fixed e↵ects for the temporal, contemporaneous, and
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between-subjects networks. Correlations of the edge weights indicated that all
three networks showed high correspondence between the two samples (temporal
network: 0.82, contemporaneous network: 0.94, between-subjects network: 0.70).
Owing to the degree of replicability, we combined the two samples and estimated
the model on the combined data.

Figure 6.7 shows the estimated fixed e↵ects of the temporal, contemporaneous,
and between-subjects network. In these figures, only significant edges (↵ = 0.05)
are shown. In the contemporaneous and between-subjects networks, an edge was
retained if one of the two regressions on which the partial correlation is based
was significant (the so-called OR-rule; van Borkulo et al., 2014). These results
are in line with the hypothetical example shown in Figure 6.4: People who ex-
ercised were more energetic while exercising and less energetic after exercising.
In the between-subjects network, no relationship between exercising and energy
was found. The between-subjects network, however, showed a strong relationship
between feeling adventurous and exercising: People who, on average, exercised
more also felt, on average, more adventurous. This relationship was not present
in the temporal network and much weaker in the contemporaneous network. Also
noteworthy is that people were less outgoing after exercising. Figure 6.8 shows
the standard deviation of the random e↵ects in the temporal and contemporane-
ous networks. Although not many di↵erences can be detected in the temporal
network, the contemporaneous network shows strong di↵erences: People mostly
di↵ered in their relationship between exercising and feeling energetic.

In addition to using only the extraversion and exercise items, we also ran the
model on all 17 administered items in the dataset. In this instance, we used or-
thogonal random e↵ects to estimate the model. Figure 6.9 shows the estimated
fixed e↵ects of the three network structures. It can be seen that indicators of the
three traits tend to cluster together in all three networks. Regarding the node
exercise, we found the same relationships between exercise, energetic, and adven-
turous (also found in the previous example) in the larger networks. Furthermore,
we noted that exercising was connected to feeling angry in the between-subjects
network but not in the other networks. Finally, there was a between-subjects con-
nection between exercising and feeling self-disciplined: People who, on average,
exercised more also felt, on average, more self-disciplined.

6.7 Simulation Study

In this section, we present a simulation study to assess the performance of ml-
VAR and the above-described methods for estimating network structures on ESM
data of multiple subjects. Simulation studies on the described methods for cross-
sectional and n = 1 studies are available elsewhere (Abegaz & Wit, 2013; Foygel
& Drton, 2010; see also Chapter 2). For this study, we simulated datasets of
10 variables, in which the fixed-e↵ect temporal, contemporaneous, and between-
subjects networks were simulated to be 50% sparse (i.e., containing only half the
possible edges). A more detailed description of how the models were simulated
can be read in the Appendix. We varied the number of subjects (50, 100, and 250)
and the number of measurements per subject (25, 50, 75, and 100) and replicated
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Figure 6.8: The networks showing the standard deviation of random e↵ects in the
temporal and contemporaneous networks. Due to scale di↵erences, networks are
plotted using di↵erent maximum values.

each condition 100 times. This led to a total number of 1,200 simulated datasets.
In each dataset, we estimated a multilevel VAR model using orthogonal random
e↵ects.

In order to assess how well the estimated networks resemble the true networks,
we computed for each dataset the correlations between true and estimated fixed
temporal, contemporaneous, and between-subjects networks and the correlations
between true and estimated random e↵ects of the temporal and contemporaneous
networks—because the between-subjects network does not have random e↵ects.
In addition, we assessed the performance of using significance in thresholding the
network. We used the OR-rule in thresholding the fixed-e↵ects contemporaneous
and between-subjects network and removed in all the networks all edges not sig-
nificant at ↵ = 0.05. In line with other studies on assessing how well a method
retrieves the structure of a network (e.g., van Borkulo et al., 2014), we computed
the sensitivity and specificity. The sensitivity (also termed true positive rate) is
high when the method retains edges that are in the true network, and the speci-
ficity (also termed true negative rate) is high when the method does not retain
edges that are not in the true model (i.e., models without edges that are, in reality,
zero).

Figure 6.10 shows the results of the simulation study. It can be seen that per-
formance was generally good. Fixed e↵ects of the temporal and contemporaneous
networks were well estimated (high correlations), most edges in the true network
were detected (high sensitivity), and few edges were detected to be nonzero that
were, in truth, zero (high specificity). Random-e↵ect estimation was poorer but
steeply increased with more measurements per subject. The between-subjects net-
work was better estimated with more people. At low sample-sizes, the method
lacked power to detect true edges (low sensitivity) but did not estimate false edges
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Figure 6.9: The estimated fixed e↵ects of the three network structures based
on all 17 variables administered. Only significant edges are shown. Legend: 1 =
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Figure 6.10: Here are the results of the simulation study. Boxplots indicate the
distribution of the measures over all the 100 simulated datasets per condition.
From left to right is shown: the correlation between true and estimated fixed
e↵ects, the sensitivity (i.e., the ability to detect true edges), the specificity (i.e.,
the ability to remove false edges), and the correlation between true and estimated
random e↵ects.

(high specificity).

6.8 Conclusion

In this chapter, we presented an overview of statistical methods that estimate
network models—both cross-sectional and time-series—of multivariate Gaussian
data. In our cross-sectional data analysis, we described the GGM, which takes the
form of a network of partial correlation coefficients. In time-series data, we de-
scribed that two network structures can be obtained: a temporal network, which is
a directed network of regression coefficients between lagged and current variables,
and a contemporaneous network, which is a GGM describing the relationships that
remain after controlling for temporal e↵ects. We argued that both can generate
causal hypotheses. When multiple subjects were measured, the natural combina-
tion of cross-sectional and time-series data came by adding a third network struc-
ture: the between-subjects network, which is a GGM that describes relationships
between the stationary means of people. We argued that this network can also
show potential causal relationships but in a di↵erent way than the temporal and
contemporaneous networks. We proposed a two-step, multilevel estimation pro-
cedure to estimate temporal, contemporaneous, and between-subjects networks,
which we implemented in the open-source R package, mlVAR. We presented a
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simulation study showing that mlVAR closely estimates the true network struc-
ture and presented an empirical example showcasing the three network structures
described above.

The outlined methodology in this chapter is not the only possible methodol-
ogy for obtaining network structures from multivariate Gaussian data. A detailed
description of these methods was beyond the scope of this chapter, as this chap-
ter focussed on the GGM and its natural generalizations in time-series data. In
particular, much work has been done on the estimation of directed acyclic graphs
(DAG; Kalisch & Bühlmann, 2007; Pearl, 2000) which aim to model causal ef-
fects. When cases can be assumed to be independent, such DAGs can be fitted in
standard structural equation (SEM) modeling software (see Chapter 7). Several
software packages exist that aim to find such a DAG (e.g., pcalg, Kalisch et al.,
2012; bnlearn, Scutari, 2010; BDgraph, Mohammadi & Wit, 2015). In time-series
data, one can use structural VAR (Chen et al., 2011; also termed unified SEM,
Gates, Molenaar, Hillary, Ram, & Rovine, 2010) to fit contemporaneous e↵ects in
a directed network. Structural VAR can be shown to be equivalent to the VAR
model discussed in this chapter, and can under strict assumptions be interpreted
as a causal model. A promising estimation procedure to estimate such models over
many individuals, while dealing with potential heterogeneity, is ‘group iterative
multiple model estimation’ (GIMME; Gates & Molenaar, 2012), which is imple-
mented in R in the gimme package (Lane, Gates, Molenaar, Hallquist, & Pike,
2016).

The presented methods are not without problems and have several limitations.
First, multivariate estimation of the multilevel VAR model is not yet feasible
for larger datasets. As such, we only focused on combining univariate models.
Doing so, however, means that not all parameters are in the same model. It is
important to note that univariate models do not readily provide estimates of the
contemporaneous networks, which must be estimated in a second step. Second,
even when multivariate estimation is possible, it is still challenging to estimate
a multilevel model on the contemporaneous networks due to the requirement of
positive definite matrices. Third, when more than approximately eight variables
are measured, estimating the multilevel models with correlated random e↵ects is
no longer feasible in open-source, MLE software. In this case, orthogonal random
e↵ects can be used. Although the simulation study showed that the networks
are still attainable when using orthogonal random e↵ects (even though random
e↵ects were correlated in the true model), using orthogonal estimation enforces
parsimony on the model that may not be plausible. Finally, even when orthogonal
estimation was used, the analysis ran very slowly in models with more than 20
variables. As such, multilevel VAR analysis of high-dimensional datasets is not yet
feasible. LASSO estimation as used in n = 1 models can also be used with multiple
subjects, but it does not take individual di↵erences into account (Abegaz & Wit,
2013). LASSO estimation methods that combine the strengths of high-dimensional
network estimation in n = 1 models, with the ability to use information of other
subjects, could be promising in this regard, but they have not yet been worked
out in detail.

It should further be noted that all network structures only generate hypotheses
and are in no way confirmatory of causal relationships. The analyses showcased in
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this chapter are therefore exploratory and allow researchers to obtain insights into
the predictive relationships present in the data—regardless of theory with respect
to the data-generating model. Under the assumptions of multivariate normality,
stationarity, and the Lag 1 factorization, the networks show how variables predict
each other over time (temporal network), within time (contemporaneous network),
and on average (between-subjects network). Furthermore, in the thresholding of
edges, no correction for multiple testing was applied by default. We deliberately
chose this because our aim was to present exploratory hypothesis-generating struc-
tures, and not correcting for multiple testing yields greater sensitivity. This means
that care should be taken in substantively interpreting the selected edges of the
networks.

One of the main innovations in this chapter comes in the substantial inter-
pretation of between-subjects e↵ects being potentially causal. The function of
between-subjects di↵erences in causal models has been argued to be problematic
(Borsboom, Mellenbergh, & Van Heerden, 2003; Markus & Borsboom, 2013a).
In order to make inferences on causal processes based on how people di↵er from
each other, we must place very strong assumptions on the homogeneity of causal
structures across individuals. In essence, we must assume that individuals are
independent realizations of the same causal model (see also Hamaker, 2012). It
is rarely acknowledged, however, that a similar problem holds for intraindividual
data. As in the between-subjects case, the inference from a statistical associa-
tion in the data to a causal model, operative at the level of the individual, is
dependent on the strength of the research design and does not follow from the
statistical associations themselves. In addition, if time series do not contain ac-
tual manipulations, the generalization in question can be equally problematic as
in between-subjects designs.

Suppose we found a robust association between X and Y together with the
temporal precedence of X (e.g., as in Granger causality) in a time-series analysis;
we still would not know whether interventions onX would actually lead to changes
in Y . Associations in within-subjects models can be subject to third-variable
issues, such as Simpson’s paradox, just as well as between-subjects models can.
Correlations remain correlations, whether they come from individual di↵erences
or from time series, and rather than categorically preferring one type of data over
another, it appears more sensible to let our judgment on optimal inferences depend
on the substantive context.

In sum, this chapter provided methodological tools that can be used to gain
insight in the potential dynamics present in psychological data. The described
software packages and estimation methods present the current state-of-the-art in
a field that is growing rapidly. These methods provide new ways to look at data—
both literally, through the use of networks to visualize the results, and figuratively,
by investigating contemporaneous and between-subjects e↵ects in combination
with temporal e↵ects.
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6.9 Appendix A: Simulating Multi-level VAR Models and
Data

This algorithm generates data for P subjects on T measurement occasions of I
items, using a lag-1 factorization. The fixed e↵ect temporal, contemporaneous,
and between-subjects networks all have a sparsity of 50%. This algorithm is
implemented in the mlVARsim function. Given parameters are

• DF
⇥

⇥

⇥

: The degrees of freedom (sampling variation) in sampling contempo-
raneous covariance matrices (default: 2I)

• Sfff






: The shrinkage factor of the temporal fixed e↵ects (default: 0.9)

• Sσσσ2






: The shrinkage factor of the temporal random e↵ects (default: 0.9)

• VVV BBB : Vector of variances of the temporal e↵ects (default uniformly drawn
between 0.01 and 1)

1. Generate the following structures:

• Inverse I ⇥ I variance–covariance matrices ⇥⇥⇥−1, ⌦⌦⌦−1

µµµ , and I2 ⇥ I2

variance–covariance matrix ⌦⌦⌦−1

BBBBBBBBB . All with 50% sparsity and 50% nega-
tive edges, using the methodology described by Yin and Li (2011) with
a constant of 1.1 and a parameter range of 0.5 to 1. Standardize these
matrices such that the diagonals of ⇥⇥⇥ and ⌦⌦⌦µµµ are equal to ones and the
diagonal of ⌦⌦⌦BBBBBBBBB is equal to VVV BBB .

• I length vector fffµµµ ⇠ N (000, III)

• I2 length vector fffβββ ⇠ N (000, III). Subsequently, set 50% lowest absolute
values to zero.

2. Generate P covariance matrices ⇥⇥⇥(p) ⇠ Wishart−1 (⇥⇥⇥/DF
⇥

⇥

⇥

,DF
⇥

⇥

⇥

)

3. Generate P parameter sets µµµ(p) ⇠ N
�

fffµµµ,⌦⌦⌦µµµ

�

and Vec(BBB(p)) ⇠ N
�

fffβββ ,⌦⌦⌦BBB

�

4. Compute eigenvalues of BBB(p): λ
(1)

1

. . .λ
(P )

I

5. If max
⇣

Re(λ
(p)
i )2 + Im(λ

(p)
i )2 > 1

⌘

a) Set fffβββ  Sfff






fffβββ

b) Scale ⌦⌦⌦BBB such that diag (⌦⌦⌦BBB)  Sσσσ2






diag (⌦⌦⌦BBB)

c) Go to 3

6. For each p, set yyy
(p)
−100

= µµµ(p)

7. For each p, generate for t = −99,−98, . . . , T the scores yyy
(p)
t

8. Discard all scores with t < 1

9. If any |y(p)ti |> 100, go to 5a
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Chapter 7

Generalized Network Psychometrics

Abstract

We introduce the network model as a formal psychometric model, con-
ceptualizing the covariance between psychometric indicators as resulting
from pairwise interactions between observable variables in a network struc-
ture. This contrasts with standard psychometric models, in which the co-
variance between test items arises from the influence of one or more common
latent variables. Here, we present two generalizations of the network model
that encompass latent variable structures, establishing network modeling
as parts of the more general framework of Structural Equation Modeling
(SEM). In the first generalization, we model the covariance structure of la-
tent variables as a network. We term this framework Latent Network Mod-

eling (LNM) and show that, with LNM, a unique structure of conditional
independence relationships between latent variables can be obtained in an
explorative manner. In the second generalization, the residual variance-
covariance structure of indicators is modeled as a network. We term this
generalization Residual Network Modeling (RNM) and show that, within this
framework, identifiable models can be obtained in which local independence
is structurally violated. These generalizations allow for a general model-
ing framework that can be used to fit, and compare, SEM models, network
models, and the RNM and LNM generalizations. This methodology has been
implemented in the free-to-use software package lvnet, which contains confir-
matory model testing as well as two exploratory search algorithms: stepwise
search algorithms for low-dimensional datasets and penalized maximum like-
lihood estimation for larger datasets. We show in simulation studies that
these search algorithms performs adequately in identifying the structure of
the relevant residual or latent networks. We further demonstrate the utility
of these generalizations in an empirical example on a personality inventory
dataset.

This chapter has been adapted from: Epskamp, S., Rhemtulla, M.T., and Borsboom, D. (in
press). Generalized Network Psychometrics: Combining Network and Latent Variable Models.
Psychometrika.
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7.1 Introduction

Recent years have seen an emergence of network modeling in psychometrics (Borsboom,
2008; Schmittmann et al., 2013), with applications in clinical psychology (e.g., van
Borkulo et al., 2015; McNally et al., 2015; Fried et al., 2015), psychiatry (e.g.,
Isvoranu, van Borkulo, et al., 2016; Isvoranu, Borsboom, et al., 2016), health sci-
ences (e.g., Kossakowski et al., 2016), social psychology (e.g., Dalege et al., 2016;
Cramer, Sluis, et al., 2012), and other fields (see for a review of recent literature
Fried & van Borkulo, 2016). This line of literature stems from the network per-
spective of psychology, which conceptualizes psychological behavior as complex
systems in which observed variables interact with one-another (Cramer et al.,
2010). As described in previous chapters of this dissertation, network models are
used to gain insight into this potentially high-dimensional interplay. In practice,
network models can be used as a sparse representation of the joint distribution
of observed indicators, and as such these models show great promise in psycho-
metrics by providing a perspective that complements latent variable modeling.
Network modeling highlights variance that is unique to pairs of variables, whereas
latent variable modeling focuses on variance that is shared across all variables
(Costantini, Epskamp, et al., 2015). As a result, network modeling and latent
variable modeling can complement—rather than exclude—one-another.

In this chapter, we introduce the reader to this field of network psychometrics
(Epskamp et al., in press) and formalize the network model for multivariate normal
data, the Gaussian Graphical Model (GGM; Lauritzen, 1996), as a formal psycho-
metric model. We contrast the GGM to the Structural Equation Model (SEM;
Wright, 1921; Kaplan, 2000) and show that the GGM can be seen as another way
to approach modeling covariance structures as is typically done in psychometrics.
In particular, rather than modeling the covariance matrix, the GGM models the
inverse of a covariance matrix. The GGM and SEM are thus very closely related:
every GGM model and every SEM model imply a constrained covariance struc-
ture. We make use of this relationship to show that, through a reparameterization
of the SEM model, the GGM model can be obtained in two di↵erent ways: first,
as a network structure that relates a number of latent variables to each other, and
second, as a network between residuals that remain given a fitted latent variable
model. As such, the GGM can be modeled and estimated in SEM, which allows for
network modeling of psychometric data to be carried out in a framework familiar
to psychometricians and methodologists. In addition, this allows for one to assess
the fit of a GGM, compare GGMs to one-another and compare a GGM to a SEM
model.

However, the combination of GGM and SEM allows for more than fitting net-
work models. As we will show, the strength of one framework can help overcome
shortcomings of the other framework. In particular, SEM falls short in that ex-
ploratory estimation is complicated and there is a strong reliance on local indepen-
dence, whereas the GGM falls short in that it assumes no latent variables. In this
chapter, we introduce network models for latent covariances and for residual co-
variances as two distinct generalized frameworks of both the SEM and GGM. The
first framework, Latent Network Modeling (LNM), formulates a network among
latent variables. This framework allows researchers to exploratively estimate con-
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ditional independence relationships between latent variables through model search
algorithms; this estimation is difficult in the SEM framework due to the presence
of equivalent models (MacCallum et al., 1993). The second framework, which
we denote Residual Network Modeling (RNM), formulates a network structure on
the residuals of a SEM model. With this framework, researchers can circumvent
critical assumptions of both SEM and the GGM: SEM typically relies on the as-
sumption of local independence, whereas network modeling typically relies on the
assumption that the covariance structure among a set of the items is not due to
latent variables at all. The RNM framework allows researchers to estimate SEM
models without the assumption of local independence (all residuals can be cor-
related, albeit due to a constrained structure on the inverse residual covariance
matrix) as well as to estimate a network structure, while taking into account the
fact that the covariance between items may be partly due to latent factors.

While the powerful combination of SEM and GGM allows for confirmative
testing of network structures both with and without latent variables, we recognize
that few researchers have yet formulated strict confirmatory hypotheses in the
relatively new field of network psychometrics. Often, researchers are more inter-
ested in exploratively searching a plausible network structure. To this end, we
present two exploratory search algorithms. The first is a step-wise model search
algorithm that adds and removes edges of a network as long as fit is improved,
and the second uses penalized maximum likelihood estimation (Tibshirani, 1996)
to estimate a sparse model. We evaluate the performance of these search methods
in four simulation studies. Finally, the proposed methods have been implemented
in a free-to-use R package, lvnet, which we illustrate in an empirical example on
personality inventory items (Revelle, 2010).

7.2 Modeling Multivariate Gaussian Data

Let yyy be the response vector of a random subject on P items1. We assume yyy is
centered and follows a multivariate Gaussian density:

yyy ⇠ NP (000,⌃⌃⌃) ,

In which ⌃⌃⌃ is a P ⇥ P variance–covariance matrix, estimated by some model-
implied ⌃̂⌃⌃. Estimating ⌃̂⌃⌃ is often done through some form of maximum likelihood
estimation. If we measure N independent samples of yyy we can formulate the
N ⇥ P matrix YYY containing realization yyy>i as its ith row. Let SSS represent the
sample variance–covariance matrix of YYY :

SSS =
1

N − 1
YYY >YYY .

1Throughout this chapter, vectors will be represented with lowercase boldfaced letters and
matrices will be denoted by capital boldfaced letters. Roman letters will be used to denote
observed variables and parameters (such as the number of nodes) and Greek letters will be used
to denote latent variables and parameters that need to be estimated. The subscript i will be
used to denote the realized response vector of subject i and omission of this subscript will be
used to denote the response of a random subject.
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In maximum likelihood estimation, we use SSS to compute and minimize −2 times
the log-likelihood function to find ⌃̂⌃⌃ (Lawley, 1940; Jöreskog, 1967; Jacobucci,
Grimm, & McArdle, 2016):

min
ˆ

⌃

⌃

⌃

h

log det
⇣

⌃̂⌃⌃
⌘

+Trace
⇣

SSS⌃̂⌃⌃
−1

⌘

− log det
⇣

ŜSS
⌘

− P
i

. (7.1)

To optimize this expression, ⌃̂⌃⌃ should be estimated as closely as possible to SSS and
perfect fit is obtained if ⌃̂⌃⌃ = SSS. A properly identified model with the same number
of parameters (K) used to form ⌃̂⌃⌃ as there are unique elements in SSS (P (P + 1)/2

parameters) will lead to ⌃̂⌃⌃ = SSS and therefore a saturated model. The goal of

modeling multivariate Gaussian data is to obtain some model for ⌃̂⌃⌃ with positive
degrees of freedom, K < P (P + 1)/2, in which ⌃̂⌃⌃ resembles SSS closely.

Structural Equation Modeling

In Confirmatory Factor Analysis (CFA), YYY is typically assumed to be a causal
linear e↵ect of a set of M centered latent variables, ⌘⌘⌘, and independent residuals
or error, """:

yyy = ⇤⇤⇤⌘⌘⌘ + """.

Here, ⇤⇤⇤ represents a P ⇥ M matrix of factor loadings. This model implies the
following model for ⌃̂⌃⌃:

⌃̂⌃⌃ = ⇤⇤⇤   ⇤⇤⇤> +⇥⇥⇥, (7.2)

in which    = Var (⌘⌘⌘) and ⇥⇥⇥ = Var ("""). In Structural Equation Modeling (SEM),
Var (⌘⌘⌘) can further be modeled by adding structural linear relations between the
latent variables2:

⌘⌘⌘ = BBB⌘⌘⌘ + ⇣⇣⇣,

in which ⇣⇣⇣ is a vector of residuals and BBB is an M ⇥ M matrix of regression
coefficients. Now, ⌃̂⌃⌃ can be more extensively modeled as:

⌃̂⌃⌃ = ⇤⇤⇤ (III −BBB)
−1

   (III −BBB)
−1>

⇤⇤⇤> +⇥⇥⇥, (7.3)

in which now    = Var (⇣⇣⇣). This framework can be used to model direct causal
e↵ects between observed variables by setting ⇤⇤⇤ = III and ⇥⇥⇥ = OOO, which is often
called path analysis (Wright, 1934).

The⇥⇥⇥ matrix is, like ⌃̂⌃⌃ and SSS, a P⇥P matrix; if⇥⇥⇥ is fully estimated—contains
no restricted elements—then⇥⇥⇥ alone constitutes a saturated model. Therefore, to
make either (7.2) or (7.3) identifiable, ⇥⇥⇥ must be strongly restricted. Typically, ⇥⇥⇥
is set to be diagonal, a restriction often termed local independence (Lord, Novick, &
Birnbaum, 1968; Holland & Rosenbaum, 1986) because indicators are independent
of each other after conditioning on the set of latent variables. To improve fit,
select o↵-diagonal elements of ⇥⇥⇥ can be estimated, but systematic violations of
local independence—many nonzero elements in ⇥⇥⇥—are not possible as that will

2We make use here of the convenient all-y notation and do not distinguish between exogenous
and endogenous latent variables (Hayduk, 1987).
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quickly make (7.2) and (7.3) saturated or even over-identified. More precisely, ⇥⇥⇥
can not be fully-populated—some elements of ⇥⇥⇥ must be set to equal zero—when
latent variables are used. An element of ⇥⇥⇥ being fixed to zero indicates that two
variables are locally independent after conditioning on the set of latent variables.
As such, local independence is a critical assumption in both CFA and SEM; if
local independence is systematically violated, CFA and SEM will never result in
correct models.

The assumption of local independence has led to critiques of the factor model
and its usage in psychology; local independence appears to be frequently violated
due to direct causal e↵ects, semantic overlap, or reciprocal interactions between
putative indicators of a latent variable (Borsboom, 2008; Cramer et al., 2010;
Borsboom et al., 2011; Cramer, Sluis, et al., 2012; Schmittmann et al., 2013). In
psychopathology research, local independence of symptoms given a person’s level
of a latent mental disorder has been questioned (Borsboom & Cramer, 2013). For
example, three problems associated with depression are “fatigue”, “concentration
problems” and “rumination”. It is plausible that a person who su↵ers from fa-
tigue will also concentrate more poorly, as a direct result of being fatigued and
regardless of his or her level of depression. Similarly, rumination might lead to
poor concentration. In another example, Kossakowski et al. (2016) describe the
often-used SF-36 questionnaire (Ware Jr & Sherbourne, 1992) designed to mea-
sure health related quality of life. The SF-36 contains items such as “can you walk
for more than one kilometer” and “can you walk a few hundred meters”. Clearly,
these items can never be locally independent after conditioning on any latent trait,
as one item (the ability to walk a few hundred meters) is a prerequisite for the
other (walking more than a kilometer). In typical applications, the excessive co-
variance between items of this type is typically left unmodeled, and treated instead
by combining items into a subscale or total score that is subsequently subjected
to factor analysis; of course, however, this is tantamount to ignoring the relevant
psychometric problem rather than solving it.

Given the many theoretically expected violations of local independence in psy-
chometric applications, many elements of ⇥⇥⇥ in both (7.2) and (7.3) should ordi-
narily be freely estimated. Especially when violations of local independence are
expected to be due to causal e↵ects of partial overlap, residual correlations should
not be constrained to zero; in addition, a chain of causal relationships between
indicators can lead to all residuals to become correlated. Thus, even when latent
factors cause much of the covariation between measured items, fitting a latent vari-
able model that involves local independence may not fully account for correlation
structure between measured items. Of course, in practice, many psychometricians
are aware of this problem, which is typically addressed by freeing up correlations
between residuals to improve model fit. However, this is usually done in an ad-hoc
fashion, on the basis of inspection of modification indices and freeing up error co-
variances one by one, which is post hoc, suboptimal, and involves an uncontrolled
journey through the model space. As a result, it is often difficult to impossible
to tell how exactly authors arrived at their final reported models. As we will
show later in this chapter, this process can be optimized and systematized using
network models to connect residuals on top of a latent variable structure.
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Y1

Y2

Y3

Figure 7.1: Example of a pairwise Markov Random Field model. Edges in this
model indicate pairwise interactions, and are drawn using undirected edges to
distinguish from (bidirectional) covariances. Rather than a model for marginal
associations (such as a network indicating covariances), this is a model for condi-
tional associations. The network above encodes that Y

1

and Y
3

are independent
after conditioning on Y

2

. Such a model allows all three variables to correlate while
retaining one degree of freedom (the model only has two parameters)

Network Modeling

Recent authors have suggested that the potential presence of causal relationships
between measured variables may allow the explanation of the covariance structure
without the need to invoke any latent variables (Borsboom, 2008; Cramer et al.,
2010; Borsboom et al., 2011; Schmittmann et al., 2013). The interactions between
indicators can instead be modeled as a network, in which indicators are repre-
sented as nodes that are connected by edges representing pairwise interactions.
Such interactions indicate the presence of covariances that cannot be explained
by any other variable in the model and can represent—possibly reciprocal—causal
relationships. Estimating a network structure on psychometric data is termed
network psychometrics (Epskamp et al., in press). Such a network of interacting
components can generate data that fit factor models well, as is commonly the
case in psychology. Van Der Maas et al. (2006) showed that the positive manifold
of intelligence—which is commonly explained with the general factor for intelli-
gence, g—can emerge from a network of mutually benefiting cognitive abilities.
Borsboom et al. (2011) showed that a network of psychopathological symptoms,
in which disorders are modeled as clusters of symptoms, could explain comorbidity
between disorders. Furthermore, Epskamp et al. (in press) showed that the Ising
model for ferromagnetism (Ising, 1925), which models magnetism as a network of
particles, is equivalent to multidimensional item response theory (Reckase, 2009;
see Chapter 8).
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In network psychometrics, psychometric data are modeled through directed or
undirected networks. Directed networks are equivalent to path analysis models.
For modeling undirected networks, pairwise Markov Random Fields (Lauritzen,
1996; Murphy, 2012) are used. In these models, each variable is represented
by a node, and nodes are connected by a set of edges. If two nodes, yj and
yk, are not connected by an edge, then this means they are independent after
conditioning on the set of all other nodes, yyy−(j,k). Whenever two nodes cannot be
rendered independent conditional on the other nodes in the system, they are said
to feature in a pairwise interaction, which is represented by an undirected edge—
an edge with no arrows—to contrast such an e↵ect from covariances typically
represented in the SEM literature with bidirectional edges. Figure 7.1 represents
such a network model, in which nodes y

1

and y
3

are independent after conditioning
on node y

2

. Such a model can readily arise from direct interactions between the
nodes. For example, this conditional independence structure would emerge if y

2

is
a common cause of y

1

and y
3

, or if y
2

is the mediator in a causal path between y
1

and y
3

. In general, it is important to note that pairwise interactions are not mere
correlations; two variables may be strongly correlated but unconnected (e.g., when
both are caused by another variable in the system) and they may be uncorrelated
but strongly connected in the network (e.g., when they have a common e↵ect in
the system). For instance, in the present example the model does not indicate that
y
1

and y
3

are uncorrelated, but merely indicates that any correlation between y
1

and y
3

is due to their mutual interaction with y
2

; a network model in which either
directly or indirectly connected paths exist between all pairs of nodes typically
implies a fully populated (no zero elements) variance–covariance matrix.

In the case of multivariate Gaussian data this model is termed the Gaussian
Graphical Model (GGM; Lauritzen, 1996). In the case of multivariate normality,
the partial correlation coefficient is sufficient to test the degree of conditional
independence of two variables after conditioning on all other variables; if the
partial correlation coefficient is zero, there is conditional independence and hence
no edge in the network. As such, partial correlation coefficients can directly be used
in the network as edge weights ; the strength of connection between two nodes3.
Such a network is typically encoded in a symmetrical and real valued p⇥ p weight
matrix, ⌦⌦⌦, in which element !jk represents the edge weight between node j and
node k:

Cor
⇣

yj , yk | yyy−(j,k)
⌘

= !jk = !kj .

The partial correlation coefficients can be directly obtained from the inverse of
variance–covariance matrix ⌃̂⌃⌃, also termed the precision matrix K̂KK (Lauritzen,
1996):

Cor
⇣

yj , yk | yyy−(j,k)
⌘

= − jkp
kk

p
jj

.

Thus, element jk of the precision matrix is proportional to to the partial corre-
lation coefficient of variables yj and yk after conditioning on all other variables.
Since this process simply involves standardizing the precision matrix, we propose

3A saturated GGM is also called a partial correlation network because it contains the sample
partial correlation coefficients as edge weights.
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the following model4:

⌃̂⌃⌃ = K̂KK
−1

=∆∆∆ (III −⌦⌦⌦)
−1

∆∆∆, (7.4)

in which∆∆∆ is a diagonal matrix with δjj = 
− 1

2
jj and ⌦⌦⌦ has zeroes on the diagonal.

This model allows for confirmative testing of the GGM structures on psychometric
data. Furthermore, the model can be compared to a saturated model (fully pop-
ulated o↵-diagonal values of ⌦⌦⌦) and the independence model (⌦⌦⌦ = OOO), allowing
one to obtain χ2 fit statistics as well as fit indices such as the RMSEA (Browne
& Cudeck, 1992) and CFI (Bentler, 1990). Such methods of assessing model fit
have not yet been used in network psychometrics.

Similar to CFA and SEM, the GGM relies on a critical assumption; namely,
that covariances between observed variables are not caused by any latent or un-
observed variable. If we estimate a GGM in a case where, in fact, a latent factor
model was the true data generating structure, then generally we would expect
the GGM to be saturated—i.e., there would be no missing edges in the GGM
(Chandrasekaran, Parrilo, & Willsky, 2012). A missing edge in the GGM indi-
cates the presence of conditional independence between two indicators given all
other indicators; we do not expect indicators to become independent given subsets
of other indicators (see also Ellis & Junker, 1997; Holland & Rosenbaum, 1986).
Again, this critical assumption might not be plausible. While variables such as
“Am indi↵erent to the feelings of others” and “Inquire about others’ well-being”
quite probably interact with each other, it might be far-fetched to assume that no
unobserved variable, such as a personality trait, in part also causes some of the
variance in responses on these items.

7.3 Generalizing Factor Analysis and Network Modeling

We propose two generalizations of both SEM and the GGM that both allow the
modeling of network structures in SEM. In the first generalization, we adopt the
CFA5 decomposition in (7.2) and model the variance–covariance matrix of latent
variables as a GGM:

   =∆∆∆
 

 

 

(III −⌦⌦⌦
 

 

 

)
−1

∆∆∆
 

 

 

.

This framework can be seen as modeling conditional independencies between latent
variables not by directed e↵ects (as in SEM) but as an undirected network. As
such, we term this framework latent network modeling (LNM).

In the second generalization, we adopt the SEM decomposition of the variance–
covariance matrix in (7.3) and allow the residual variance–covariance matrix ⇥⇥⇥ to
be modeled as a GGM:

⇥⇥⇥ =∆∆∆
⇥

⇥

⇥

(III −⌦⌦⌦
⇥

⇥

⇥

)
−1

∆∆∆
⇥

⇥

⇥

.

4To our knowledge, the GGM has not yet been framed in this form. We chose this form
because it allows for clear modeling and interpretation of the network parameters.

5We use the CFA framework instead of the SEM framework here as the main application of
this framework is in exploratively estimating relationships between latent variables.
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A. Structural Equation Modeling B. Network Modeling

C. Latent Network Modeling D. Residual Network Modeling

Figure 7.2: Examples of possible models under four di↵erent modeling frame-
works. Circular nodes indicate latent variables, square nodes indicate manifest
variables and gray nodes indicate residuals. Directed edges indicate factor load-
ings or regression parameters and undirected edges indicate pairwise interactions.
Note that such undirected edges do not indicate covariances, which are typically
denoted with bidirectional edges. Replacing covariances with interactions is where
the network models di↵er from typical SEM.

Because this framework conceptualizes associations between residuals as pairwise
interactions, rather than correlations, we term this framework Residual Network
Modeling (RNM). Using this framework allows—as will be described below—for
a powerful way of fitting a confirmatory factor structure even though local inde-
pendence is systematically violated and all residuals are correlated.

Figure 7.2 shows four di↵erent examples of possible models that are attainable
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under the SEM, LNM and RNM frameworks. Panel A shows a typical SEM model
in which one latent variable functions as a common cause of two others. Panel B
shows a network model which can be estimated using both the RNM and the
LNM frameworks. Panel C shows a completely equivalent LNM model to the
SEM model of Panel A in which the direction of e↵ect between latent variables
is not modeled. Finally, panel D shows a model in which three exogenous latent
variables underlie a set of indicators of which the residuals form a network. The
remainder of this section will describe RNM and LNM in more detail and will
outline the class of situations in which using these models is advantageous over
CFA or SEM.

Latent Network Modeling

The LNM framework models the latent variance–covariance matrix of a CFAmodel
as a GGM:

⌃̂⌃⌃ = ⇤⇤⇤∆∆∆
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⇤⇤⇤> +⇥⇥⇥. (7.5)

This allows researchers to model conditional independence relationships between
latent variables without making the implicit assumptions of directionality or acyclic-
ness. In SEM, BBB is typically modeled as a directed acyclic graph (DAG), meaning
that elements of BBB can be represented by directed edges, and following along the
path of these edges it is not possible to return to any node (latent variable). The
edges in such a DAG can be interpreted as causal, and in general they imply a
specific set of conditional independence relationships between the nodes (Pearl,
2000).

While modeling conditional independence relationships between latent vari-
ables as a DAG is a powerful tool for testing strictly confirmatory hypotheses,
it is less useful for more exploratory estimation. Though there have been re-
cent advances in exploratory estimation of DAGs within an SEM framework (e.g.,
Gates & Molenaar, 2012; Rosa, Friston, & Penny, 2012), many equivalent DAGs
can imply the same conditional independence relationships, and thus fit the data
equally well even though their causal interpretation can be strikingly di↵erent
(MacCallum et al., 1993). Furthermore, the assumption that the generating model
is acyclic—which, in practice, often is made on purely pragmatic grounds to iden-
tify a model—is problematic in that much psychological behavior can be assumed
to have at least some cyclic and complex behavior and feedback (Schmittmann
et al., 2013). Thus, the true conditional independence relationships in a dataset
can lead to many equivalent compositions of BBB, and possibly none of them are the
true model.

In psychometrics and SEM the GGM representation has not been very promi-
nent, even though it has some manifest benefits over the attempt to identify DAGs
directly. For example, by modeling conditional independence relationships be-
tween latent variables as a GGM, many relationships can be modeled in a simpler
way as compared to a DAG. In addition, in the GGM each set of conditional
independence relations only corresponds to one model: there are no equivalent
GGMs with the same nodes. Figure 7.3 shows a comparison of several conditional
independence relations that can be modeled equivalently or not by using a GGM
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Y1

Y2

Y3

A

Y1

Y2

Y3

B

Y1

Y2

Y3

C

Y1

Y2

Y3

D

Y1

Y2

Y3

E

No equivalent GGM with
the same # of parameters

F

No equivalent DAG with
the same # of parameters

G

Y1

Y2

Y3

Y4

H

Figure 7.3: Equivalent models between directed acyclic graphs (DAG; left) and
Gaussian graphical models (GGM; right). Each row of graphs show two models
that are equivalent.
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or by using a DAG. Panel A and Panel C show two DAGs that represent the same
conditional independence relations, y

1

?? y
3

| y
2

, which can both be represented
by the same GGM shown in Panel B and Panel D. There are some conditional
independence relations that a GGM cannot represent in the same number of pa-
rameters as a DAG; Panel E shows a collider structure that cannot be exactly
represented by a GGM (the best fitting GGM would feature three edges instead
of two). On the other hand, there are also conditional independence relationships
that a GGM can represent and a DAG cannot; the cycle of Panel H cannot be
represented by a DAG. Further equivalences and di↵erences between GGMs and
DAGs are beyond the scope of this chapter, but haven been well described in the
literature (e.g., chapter 3 of Lauritzen, 1996; Koller & Friedman, 2009; Kolaczyk,
2009). In sum, the GGM o↵ers a natural middle ground between zero-order corre-
lations and DAGs: every set of zero-order correlations implies exactly one GGM,
and every DAG implies exactly one GGM. In a sense, the road from correlations
to DAGs (including hierarchical factor models) thus always must pass through
the realm of GGMs, which acts as a bridge between the correlational and causal
worlds.

Because there are no equivalent undirected models possible, LNM o↵ers a
powerful tool for exploratory estimation of relationships between latent variables.
For example, suppose one encounters data generated by the SEM model in Fig-
ure 7.2, Panel A. Without prior theory on the relations between latent variables,
exploratory estimation on this dataset would lead to three completely equivalent
models: the one shown in Figure 7.2, Panel C and two models in which the common
cause instead is the middle node in a causal chain. As the number of latent vari-
ables increases, the potential number of equivalent models that encode the same
conditional independence relationships grows without bound. The LNM model
in Panel C of Figure 7.2 portrays the same conditional independence relationship
as the SEM model in Panel A of Figure 7.2, while having no equivalent model.
Exploratory estimation could easily find this model, and portrays the retrieved
relationship in a clear and unambiguous way.

A final benefit of using LNM models is that they allow network analysts to
construct a network while taking measurement error into account. So far, networks
have been constructed based on single indicators only and no attempt has been
made to remediate measurement error. By forming a network on graspable small
concepts measured by a few indicators, the LNM framework can be used to control
for measurement error.

Residual Network Modeling

In the RNM framework the residual structure of SEM is modeled as a GGM:

⌃̂⌃⌃ = ⇤⇤⇤ (III −BBB)
−1

   (III −BBB)
−1>

⇤⇤⇤> +∆∆∆
⇥

⇥

⇥

(III −⌦⌦⌦
⇥

⇥

⇥

)
−1

∆∆∆
⇥

⇥

⇥

. (7.6)

This modeling framework conceptualizes latent variable and network modeling as
two sides of the same coin, and o↵ers immediate benefits to both. In latent variable
modeling, RNM allows for the estimation of a factor structure (possibly including
structural relationships between the latent variables), while having no uncorrelated
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errors and thus no local independence. The error-correlations, however, are still
highly structured due to the residual network structure. This can be seen as a
compromise between the ideas of network analysis and factor modeling; while we
agree that local independence is plausibly violated in many psychometric tests,
we think the assumption of no underlying latent traits and therefore a sparse
GGM may often be too strict. For network modeling, RNM allows a researcher
to estimate a sparse network structure while taking into account that some of
the covariation between items was caused by a set of latent variables. Not taking
this into account would lead to a saturated model (Chandrasekaran et al., 2012),
whereas the residual network structure can be sparse.

To avoid confusion between residual correlations, we will denote edges in ⌦⌦⌦
⇥

⇥

⇥

residual interactions. Residual interactions can be understood as pairwise linear
e↵ects, possibly due to some causal influence or partial overlap between indicators
that is left after controlling for the latent structure. Consider again the indicators
for agreeableness “Am indi↵erent to the feelings of others” and “Inquire about
others’ well-being”. It seems clear that we would not expect these indicators to be
locally independent after conditioning on agreeableness; being indi↵erent to the
feelings of others will cause one to not inquire about other’s well-being. Thus,
we could expect these indicators to feature a residual interaction; some degree of
correlation between these indicators is expected to remain, even after conditioning
on the latent variable and all other indicators in the model.

The RNM framework in particular o↵ers a new way of improving the fit of
confirmatory factor models. In contrast to increasingly popular methods such as
exploratory SEM (ESEM; Marsh, Morin, Parker, & Kaur, 2014) or LASSO reg-
ularized SEM models (Jacobucci et al., 2016), the RNM framework improves the
fit by adding residual interactions rather than allowing for more cross-loadings.
The factor structure is kept exactly intact as specified in the confirmatory model.
Importantly, therefore, the interpretation of the latent factor does not change.
This can be highly valuable in the presence of a strong theory on the latent vari-
ables structure underlying a dataset even in the presence of violations of local
independence.

7.4 Exploratory Network Estimation

Both the LNM and RNM modeling frameworks allow for confirmative testing of
network structures. Confirmatory estimation is straightforward and similar to
estimating SEM models, with the exception that instead of modeling    or ⇥⇥⇥ now
the latent network ⌦⌦⌦

 

 

 

or ⌦⌦⌦
⇥

⇥

⇥

is modeled. Furthermore, both modeling frameworks
allow for the confirmatory fit of a network model. In LNM, a confirmatory network
structure can be tested by setting ⇤⇤⇤ = III and ⇥⇥⇥ = OOO; in RNM, a confirmatory
network model can be tested by omitting any latent variables. We have developed
the R package lvnet6, which utilizes OpenMx (Neale et al., 2016) for confirmative
testing of RNM and LNM models (as well as a combination of the two). The lvnet
function can be used for this purpose by specifying the fixed and the free elements

6github.com/sachaepskamp/lvnet
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of model matrices. The package returns model fit indices (e.g., the RMSEA, CFI
and χ2 value), parameter estimates, and allows for model comparison tests.

Often the network structure, either at the residual or the latent level, is un-
known and needs to be estimated. To this end, the package includes two ex-
ploratory search algorithms described below: step-wise model search and penal-
ized maximum likelihood estimation. For both model frameworks and both search
algorithms, we present simulation studies to investigate the performance of these
procedures. As is typical in simulation studies investigating the performance of
network estimation techniques, we investigated the sensitivity and specificity (van
Borkulo et al., 2014). These measures investigate the estimated edges versus the
edges in the true model, with a ‘positive’ indicating an estimated edge and a ‘neg-
ative’ indicating an edge that is estimated to be zero. Sensitivity, also termed the
true positive rate, gives the ratio of the number of true edges that were detected
in the estimation versus the total number of edges in the true model:

sensitivity =
# true positives

# true positives + # of false negatives

Specificity, also termed the true negative rate, gives the ratio of true missing
edges detected in the estimation versus the total number of absent edges in the
true model:

specificity =
# true negatives

# true negatives + # false positives

The specificity can be seen as a function of the number of false positives: a high
specificity indicates that there were not many edges detected to be nonzero that
are zero in the true model. To favor degrees of freedom, model sparsity and in-
terpretability, specificity should be high all-around—estimation techniques should
not result in many false positives—whereas sensitivity should increase as a function
of the sample size.

Simulating Gaussian Graphical models

In all simulation studies reported here, networks were constructed in the same
way as done by Yin and Li (2011) in order to obtain a positive definite inverse-
covariance matrix KKK. First, a network structure was generated without weights.
Next, weights were drawn randomly from a uniform distribution between 0.5 and
1, and made negative with 50% probability. The diagonal elements of KKK were
then set to 1.5 times the sum of all absolute values in the corresponding row, or
1 if this sum was zero. Next, all values in each row were divided by the diagonal
value, ensuring that the diagonal values become 1. Finally, the matrix was made
symmetric by averaging the lower and upper triangular elements. In the chain
graphs used in the following simulations, this algorithm created networks in which
the non-zero partial correlations had a mean of 0.33 and a standard deviation of
0.04.
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Stepwise Model Search

In exploratory search, we are interested in recovering the network structure of
either ⌦⌦⌦

 

 

 

in LNM or ⌦⌦⌦
⇥

⇥

⇥

in RNM. This can be done through a step-wise model
search, either based on χ2 di↵erence tests (Algorithm 1) or on minimization of
some information criterion (Algorithm 2) such as the Akaike information criterion
(AIC), Bayesian information criterion (BIC) or the extended Bayesian informa-
tion criterion (EBIC; Chen & Chen, 2008) which is now often used in network
estimation (van Borkulo et al., 2014; Foygel & Drton, 2010). In LNM, remov-
ing edges from ⌦⌦⌦

 

 

 

cannot improve the fit beyond that of an already fitting CFA
model. Hence, model search for ⌦⌦⌦

 

 

 

should start at a fully populated initial setup
for ⌦⌦⌦

 

 

 

. In RNM, on the other hand, a densely populated ⌦⌦⌦
⇥

⇥

⇥

would lead to an
over-identified model, and hence the step-wise model search should start at an
empty network ⌦⌦⌦

⇥

⇥

⇥

= OOO. The function lvnetSearch in the lvnet package can be
used for both search algorithms.

Algorithm 1 Stepwise network estimation by χ2 di↵erence testing.

Start with initial setup for ⌦⌦⌦
repeat
for all Unique elements of ⌦⌦⌦ do
Remove edge if present or add edge if absent
Fit model with changed edge

end for
if Adding an edge significantly improves fit (↵ = 0.05) then
Add edge that improves fit the most

else if Removing an edge does not significantly worsen fit (↵ = 0.05) then
Remove edge that worsens fit the least

end if
until No added edge significantly improves fit and removing any edge signifi-
cantly worsens fit

Algorithm 2 Stepwise network estimation by AIC, BIC or EBIC optimization.

Start with initial setup for ⌦⌦⌦
repeat
for all Unique elements of ⌦⌦⌦ do
Remove edge if present or add edge if absent
Fit model with changed edge

end for
if Any changed edge improved AIC, BIC or EBIC then
Change edge that improved AIC, BIC or EBIC the most

end if
until No changed edge improves AIC, BIC or EBIC
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Figure 7.4: Model used in simulation study 1: step-wise model search in latent
network modeling. Four latent variables were each measured by three items. La-
tent variables covary due to the structure of a latent Gaussian graphical model in
which edges indicate partial correlation coefficients. This model has the form of
a chain graph, which cannot be represented in a structural equation model. Fac-
tor loadings, residual variances and latent variances were set to 1 and the latent
partial correlations had an average of 0.33 with a standard deviation of 0.04.

Simulation Study 1: Latent Network Modeling

We performed a simulation study to assess the performance of the above mentioned
step-wise search algorithms in LNM models. Figure 7.4 shows the LNM model
under which we simulated data. In this model, four latent factors with three
indicators each were connected in a latent network. The latent network was a chain
network, leading all latent variables to be correlated according to a structure that
cannot be represented in SEM. Factor loadings and residual variances were set to
1, and the network weights were simulated as described in the section “Simulating
Gaussian Graphical models”. The simulation study followed a 5 ⇥ 4 design: the
sample size was varied between 50, 100, 250, 500 and 1 000 to represent typical
sample sizes in psychological research, and the stepwise evaluation criterion was
either χ2 di↵erence testing, AIC, BIC or EBIC (using a tuning parameter of
0.5). Each condition was simulated 1 000 times, resulting in 20 000 total simulated
datasets.

Figure 7.5 shows the results of the simulation study. Data is represented in
standard boxplots (McGill, Tukey, & Larsen, 1978): the box shows the 25th, 50th
(median) 75th quantiles, the whiskers range from the largest values in 1.5 times
the inter-quantile range (75th - 25th quantile) and points indicate outliers outside
that range. In each condition, we investigated the sensitivity and specificity. The
top panel shows that sensitivity improves with sample size, with AIC performing
best and EBIC worst. From sample sizes of 500 and higher all estimation criterion
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Figure 7.5: Simulation results of simulation study 1: step-wise model search in
latent network modeling. Each condition was replicated 1 000 times, leading to
20 000 total simulated datasets. High sensitivity indicates that the method is able
to detect edges in the true model, and high specificity indicates that the method
does not detect edges that are zero in the true model.
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Figure 7.6: Model used in simulation study 2: step-wise model search in residual
network modeling. Two latent variables were each measured by five items; a
Gaussian graphical model, in which edges indicate partial correlation coefficients,
leads to all residuals to be correlated due to a chain graph between residuals, which
cannot be represented in a structural equation model. Factor loadings, residual
variances and latent variances were set to 1, the factor covariance was set to 0.25
and the latent partial correlations had an average of 0.33 with a standard deviation
of 0.04.

performed well in retrieving the edges. The bottom panel shows that specificity
is generally very high, with EBIC performing best and AIC worst. These results
indicate that the step-wise procedure is conservative and prefers simpler models
to more complex models; missing edges are adequately detected but present edges
in the true model might go unnoticed except in larger samples. With sample sizes
over 500, all four estimation methods show both a high sensitivity and specificity.

Simulation Study 2: Residual Network Modeling

We conducted a second simulation study to assess the performance of step-wise
model selection in RNM models. Figure 7.7 shows the model under which data
were simulated: two latent variables with 5 indicators each. The residual network
was constructed to be a chain graph linking a residual of an indicator of one latent
variable to two indicators of the other latent variable. This structure cannot be
represented by a DAG and causes all residuals to be connected, so that ⇥⇥⇥ is
fully populated. Factor loadings and residual variances were set to 1, the factor
covariance was set to 0.25, and the network weights were simulated as described
in the section “Simulating Gaussian Graphical models”.

The simulation study followed a 5 ⇥ 4 design; sample size was again varied
between 50, 100, 250, 500 and 1 000, and models were estimated using either
χ2 significance testing, AIC, BIC or EBIC. Factor loadings and factor variances
were set to 1 and the factor correlation was set to 0.25. The weights in ⌦⌦⌦

⇥

⇥

⇥

were
chosen as described in the section “Simulating Gaussian Graphical models”. Each
condition was simulated 1, 000 times, leading to 20 000 total datasets.
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Figure 7.7: Simulation results of simulation study 2: step-wise model search in
residual network modeling. Each condition was replicated 1 000 times, leading to
20 000 total simulated datasets. High sensitivity indicates that the method is able
to detect edges in the true model, and high specificity indicates that the method
does not detect edges that are zero in the true model.
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7. Generalized Network Psychometrics

Figure 7.7 shows the results of the simulation study. The top panel shows
that sensitivity increases with sample size and performs best when using AIC as
the criterion. BIC performed comparably in sensitivity to χ2 testing and EBIC
performed the worst. The bottom panel shows that specificity was very high for
all sample sizes and all criteria, with EBIC performing best and AIC worst. These
results indicate that the number of false positives is very low and that the method
is on average well capable of discovering true edges for sample size larger than
250. In sum, all four criteria perform well with EBIC erring on the side of caution
and AIC erring on the side of discovery.

LASSO Regularization

While the step-wise model selection algorithms perform well in retrieving the cor-
rect network structure, they are very slow when the number of nodes in the network
increases (e.g., more than 10 nodes). This is particularly important in the context
of RNM, in which the number of indicators can be larger than 10 even in small
models. A popular method for fast estimation of high-dimensional network struc-
tures is by applying the least absolute shrinkage and selection operator (LASSO;
Tibshirani, 1996). LASSO regularization has also recently been introduced in the
SEM literature (Jacobucci et al., 2016) as a method for obtaining sparser struc-
tures of ⇤⇤⇤ and BBB. In the LASSO, instead of optimizing the likelihood function as
described in (7.1), a penalized likelihood is optimized (Jacobucci et al., 2016):

min
ˆ

⌃

⌃

⌃

h

log det
⇣

⌃̂⌃⌃
⌘

+Trace
⇣

SSS⌃̂⌃⌃
−1

⌘

− log det
⇣

ŜSS
⌘

− P + ⌫Penalty
i

, (7.7)

in which ⌫ denotes a tuning parameter controlling the level of penalization. The
penalty here is taken to be the sum of absolute parameters:

Penalty =
X

<i,j>

|!ij |,

in which !ij denotes an element from either ⌦⌦⌦
 

 

 

or ⌦⌦⌦
⇥

⇥

⇥

. Other penalty functions
may be used as well—such as summing the squares of parameter estimates (ridge
regression; Hoerl & Kennard, 1970) or combining both absolute and squared values
(elastic net; Zou & Hastie, 2005)—but these are not currently implemented in
lvnet. The benefit of the LASSO is that it returns models that perform better
in cross-validation. In addition, the LASSO yields sparse models in which many
relationships are estimated to be zero.
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7.4. Exploratory Network Estimation

Algorithm 3 LASSO estimation for exploratory network search.

for all Sequence of tuning parameters ⌫
1

, ⌫
2

, . . . do
Estimate LASSO regularized model using given tuning parameter
Count the number of parameters for which the absolute estimate is larger
than ✏
Determine information criterion AIC or BIC given fit and number of param-
eters

end for
Select model with best AIC, BIC or EBIC
Refit this model without LASSO in which absolute parameters smaller than ✏
are fixed to zero

The lvnet function allows for LASSO regularization for a given model matrix
(⌦⌦⌦

⇥

⇥

⇥

, ⌦⌦⌦
 

 

 

, ⇥⇥⇥,    , ⇤⇤⇤ or BBB) and a given value for the tuning parameter ⌫. The
optimizer used in lvnet does not return exact zeroes. To circumvent this is-
sue, any absolute parameter below some small value ✏ (by default ✏ = 0.0001)
is treated as zero in counting the number of parameters and degrees of freedom
(Zou, Hastie, Tibshirani, et al., 2007). The lvnetLasso function implements the
search algorithm described in Algorithm 3 to automatically choose an appropriate
tuning parameter, use that for model selection and rerun the model to obtain a
comparable fit to non-regularized models. In this algorithm, a sequence of tuning
parameters is tested, which is set by default to a logarithmically spaced sequence
of 20 values between 0.01 and 1.

Simulation Study 3: Latent Network Modeling

We studied the performance of LASSO penalization in estimating the latent net-
work structure in a similar simulation study to the study of the step-wise procedure
described above. Data were simulated under a similar model to the one shown
in Figure 7.4, except that now 8 latent variables were used leading to a total of
24 observed variables. All parameter values were the same as in simulation study
1. The simulation followed a 5 ⇥ 3 design. Sample size was varied between 100,
250, 500, 1 000 and 2 500, and for each sample size 1 000 datasets were simulated
leading to a total of 5 000 generated datasets. On these datasets the best model
was selected using either AIC, BIC or EBIC, leading to 15 000 total replications.
In each replication, sensitivity and specificity were computed. Figure 7.8 shows
that AIC had a relatively poor specificity all-around, but a high sensitivity. EBIC
performed well with sample sizes of 500 and higher.

Simulation Study 4: Residual Network Modeling

To assess the performance of LASSO in estimating the residual network structure
we simulated data as in Figure 7.6, except that in this case four latent variables
were used, each with 5 indicators, the residuals of which were linked via a chain
graph. All parameter values were the same as in simulation study 2. The design
was the same as in simulation study 3, leading to 5 000 generated datasets on
which AIC, BIC or EBIC were used to select the best model. While Figure 7.9
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Figure 7.8: Simulation results of simulation study 3: model selection via penalized
maximum likelihood estimation in latent network modeling. The same model as
in Figure 7.4 was used except now with 4 latent variables leading to 24 observed
variables. For each sample size 1 000 datasets were generated, leading to 5 000
total simulated datasets on which AIC, BIC or EBIC was used to select the best
model. High sensitivity indicates that the method is able to detect edges in the
true model, and high specificity indicates that the method does not detect edges
that are zero in the true model.
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Figure 7.9: Simulation results of simulation study 4: model selection via penalized
maximum likelihood estimation in residual network modeling. The same model as
in Figure 7.6 was used except now with 4 latent variables leading to 20 observed
variables. For each sample size 1 000 datasets were generated, leading to 5 000
total simulated datasets on which AIC, BIC or EBIC was used to select the best
model. High sensitivity indicates that the method is able to detect edges in the
true model, and high specificity indicates that the method does not detect edges
that are zero in the true model.

shows good performance of the LASSO in retrieving the residual network structure
and similar results as before: AIC performs the worst in specificity and EBIC the
best.
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7.5 Empirical Example: Personality Inventory

In this section, we demonstrate LNM and RNM models by confirmative testing
a model and exploratively searching a residual and a latent network structure.
We use the lvnet package, which can be installed directly from Github using the
devtools package in R:

> library("devtools")

> install_github("sachaepskamp/lvnet")

> library("lvnet")

To exemplify the method, we will use a dataset from the psych package (Revelle,
2010) on the Big 5 personality traits (Benet-Martinez & John, 1998; Digman, 1989;
Goldberg, 1990a, 1993; McCrae & Costa, 1997). This dataset consists of 2800 ob-
servations of 25 items designed to measure the 5 central personality traits with 5
items per trait. We estimated the CFA model on the BFI dataset. Next, we used
LASSO estimation to the RNM model using 100 di↵erent tuning parameters and
using EBIC as criterion to maximize specificity and search for a sparse residual
network. The fully correlated covariance matrix of latent variables is equivalent
to a fully connected latent network structure. Thus, after fitting a RNM model,
we can again apply LASSO to estimate a latent network in the resulting model,
which we abbreviate here to an RLNM model. The R code used for this analysis
can be found in the supplementary materials.

df χ2 AIC BIC EBIC RMSEA TLI CFI
CFA 265 4713.94 183233.7 183589.9 184542.4 0.08 0.75 0.78
RNM 172 806.63 179511.0 180419.4 182848.2 0.04 0.94 0.97

RLNM 176 843.18 179539.5 180424.2 182789.5 0.04 0.94 0.97

Table 7.1: Fit measures for three models estimated on the BFI dataset in the psych
R package. CFA is the correlated five-factor model. RNM is the same model as
the CFA model with a residual network. RLNM denotes the same model as the
RNM model in which edges of the latent network have been removed.

Table 7.1 shows the fit of the three models. The CFA model fits poorly. The
RNM model has substantively improved fit and resulted in good fit indices overall.
The estimated RLNM model showed that 5 edges could be removed from the
latent network after taking residual interactions into account. Figure 7.10 shows
the factor structure and residual network of the final RLNM model. It can be
seen that Agreeableness is now only connected to extraversion: after taking into
account someone’s level of extraversion agreeableness is independent of the other
three personality traits. Extraversion is the most central node in this network and
the only trait that is directly linked to all other traits. The residual network shows
many meaningful connections. While seemingly densely connected, this network
only has 30% of all possible edges in a network of that size, leading the model to
have 176 degrees of freedom. The corresponding residual covariance structure is
fully populated with no zero elements.

It should be noted that the procedures used in this example are highly explo-
rative. While Table 7.1 shows that the RNM fits better than the CFA model,

138



7.5. Empirical Example: Personality Inventory

A1
A2

A3

A4

A5

C
1 C

2

C
3

C
4

C
5

E1

E2
E3

E4
E5

N
1

N
2

N
3

N
4

N
5O

1

O
2

O
3

O
4

O
5

A

C

E

N

O

Fa
ct

or
 s

tru
ct

ur
e 

& 
la

te
nt

 n
et

wo
rk

A1 A2

A3

A4

A5

C
1

C
2

C
3

C
4

C
5

E1

E2

E3

E4

E5

N
1

N
2

N
3

N
4

N
5

O
1

O
2

O
3

O
4

O
5

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

A
gr
ee
ab
le
ne
ss

A1
: A

m
 in

di
ffe

re
nt

 to
 th

e 
fe

el
in

gs
 o

f o
th

er
s.

A2
: I

nq
ui

re
 a

bo
ut

 o
th

er
s' 

we
ll−

be
in

g.
A3

: K
no

w
 h

ow
 to

 c
om

fo
rt 

ot
he

rs
.

A4
: L

ov
e 

ch
ild

re
n.

A5
: M

ak
e 

pe
op

le
 fe

el
 a

t e
as

e.

C
on
sc
ie
nt
io
us
ne
ss

C
1:

 A
m

 e
xa

ct
in

g 
in

 m
y 

wo
rk

.
C

2:
 C

on
tin

ue
 u

nt
il 

ev
er

yt
hi

ng
 is

 p
er

fe
ct

.
C

3:
 D

o 
th

in
gs

 a
cc

or
di

ng
 to

 a
 p

la
n.

C
4:

 D
o 

th
in

gs
 in

 a
 h

al
f−

wa
y 

m
an

ne
r.

C
5:

 W
as

te
 m

y 
tim

e.

Ex
tr
av
er
si
on

E1
: D

on
't 

ta
lk

 a
 lo

t.
E2

: F
in

d 
it 

di
ffi

cu
lt 

to
 a

pp
ro

ac
h 

ot
he

rs
.

E3
: K

no
w

 h
ow

 to
 c

ap
tiv

at
e 

pe
op

le
.

E4
: M

ak
e 

fri
en

ds
 e

as
ily

.
E5

: T
ak

e 
ch

ar
ge

.

N
eu
ro
tic
is
m

N
1:

 G
et

 a
ng

ry
 e

as
ily

.
N

2:
 G

et
 ir

rit
at

ed
 e

as
ily

.
N

3:
 H

av
e 

fre
qu

en
t m

oo
d 

sw
in

gs
.

N
4:

 O
fte

n 
fe

el
 b

lu
e.

N
5:

 P
an

ic
 e

as
ily

.

O
pe
nn
es
s

O
1:

 A
m

 fu
ll 

of
 id

ea
s.

O
2:

 A
vo

id
 d

iff
ic

ul
t r

ea
di

ng
 m

at
er

ia
l.

O
3:

 C
ar

ry
 th

e 
co

nv
er

sa
tio

n 
to

 a
 h

ig
he

r l
ev

el
.

O
4:

 S
pe

nd
 ti

m
e 

re
fle

ct
in

g 
on

 th
in

gs
.

O
5:

 W
ill 

no
t p

ro
be

 d
ee

pl
y 

in
to

 a
 s

ub
je

ct
.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

A
gr
ee
ab
le
ne
ss

A1
: A

m
 in

di
ffe

re
nt

 to
 th

e 
fe

el
in

gs
 o

f o
th

er
s.

A2
: I

nq
ui

re
 a

bo
ut

 o
th

er
s' 

we
ll−

be
in

g.
A3

: K
no

w
 h

ow
 to

 c
om

fo
rt 

ot
he

rs
.

A4
: L

ov
e 

ch
ild

re
n.

A5
: M

ak
e 

pe
op

le
 fe

el
 a

t e
as

e.

C
on
sc
ie
nt
io
us
ne
ss

C
1:

 A
m

 e
xa

ct
in

g 
in

 m
y 

wo
rk

.
C

2:
 C

on
tin

ue
 u

nt
il 

ev
er

yt
hi

ng
 is

 p
er

fe
ct

.
C

3:
 D

o 
th

in
gs

 a
cc

or
di

ng
 to

 a
 p

la
n.

C
4:

 D
o 

th
in

gs
 in

 a
 h

al
f−

wa
y 

m
an

ne
r.

C
5:

 W
as

te
 m

y 
tim

e.

Ex
tr
av
er
si
on

E1
: D

on
't 

ta
lk

 a
 lo

t.
E2

: F
in

d 
it 

di
ffi

cu
lt 

to
 a

pp
ro

ac
h 

ot
he

rs
.

E3
: K

no
w

 h
ow

 to
 c

ap
tiv

at
e 

pe
op

le
.

E4
: M

ak
e 

fri
en

ds
 e

as
ily

.
E5

: T
ak

e 
ch

ar
ge

.

N
eu
ro
tic
is
m

N
1:

 G
et

 a
ng

ry
 e

as
ily

.
N

2:
 G

et
 ir

rit
at

ed
 e

as
ily

.
N

3:
 H

av
e 

fre
qu

en
t m

oo
d 

sw
in

gs
.

N
4:

 O
fte

n 
fe

el
 b

lu
e.

N
5:

 P
an

ic
 e

as
ily

.

O
pe
nn
es
s

O
1:

 A
m

 fu
ll 

of
 id

ea
s.

O
2:

 A
vo

id
 d

iff
ic

ul
t r

ea
di

ng
 m

at
er

ia
l.

O
3:

 C
ar

ry
 th

e 
co

nv
er

sa
tio

n 
to

 a
 h

ig
he

r l
ev

el
.

O
4:

 S
pe

nd
 ti

m
e 

re
fle

ct
in

g 
on

 th
in

gs
.

O
5:

 W
ill 

no
t p

ro
be

 d
ee

pl
y 

in
to

 a
 s

ub
je

ct
.

R
es

id
ua

l n
et

wo
rk

F
ig
u
re

7.
10
:
V
is
u
al
iz
at
io
n
of

th
e
fa
ct
or

st
ru
ct
u
re

a
n
d
la
te
n
t
n
et
w
o
rk

(l
ef
t)

a
n
d
th
e
re
si
d
u
a
l
n
et
w
o
rk

(r
ig
h
t)

o
f
th
e
B
F
I
p
er
so
n
a
li
ty

d
at
as
et

fr
om

th
e
p
sy
ch

p
ac
ka
ge

in
R
.
L
A
S
S
O

es
ti
m
at
io
n
w
it
h
10
0
d
i↵
er
en
t
tu
n
in
g
p
a
ra
m
et
er
s
in

co
m
b
in
a
ti
o
n
w
it
h
E
B
IC

m
o
d
el

se
le
ct
io
n
w
as

u
se
d
to

fi
rs
t
es
ti
m
at
e
th
e
re
si
d
u
al

n
et
w
o
rk

st
ru
ct
u
re

a
n
d
fo
ll
ow

in
g
th
e
la
te
n
t
n
et
w
o
rk

st
ru
ct
u
re
.

139
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the CFA model is solely based on theory whereas the RNM model was found
through high-dimensional model search. As a result, to substantially interpret the
structure found in Figure 7.10 it should first be replicated in independent samples.

7.6 Conclusion

In this chapter we introduced a formal psychometric model for network modeling
of multivariate normal data. We contrasted this model with latent variable mod-
els as commonly used in CFA and SEM. Furthermore, using the CFA and SEM
frameworks, we proposed two generalizations of the network model to encompass
latent variable structures within the network paradigm. In the first generalization,
LNM, we construct a network among the latent variables, whereas in the second
generalization, RNM, a network is formed among residuals of indicators. Both
frameworks o↵er powerful benefits over both latent variable and network model-
ing. From the perspective of latent variable modeling, the LNM framework allows
one to exploratively search for conditional independence relationships between la-
tent variables without the need for prior theory, and the RNM framework allows
one to model latent common causes without assuming local independence. From
the perspective of network modeling, the LNM framework allows one to model
network structures while taking measurement error into account, and the RNM
framework allows one to estimate a network structure, even when all nodes are in
part caused by unobserved or latent variables. In addition, both frameworks allow
for network models to be fitted and compared to SEM models. The discussed
methodology has been implemented in the freely available R package lvnet.

Simulation studies showed that step-wise search and penalized maximum like-
lihood estimation of the residual or latent network structures resulted in high
specificity all around—the methods did not result often in false positives—and
rapidly increasing sensitivity as a function of the sample size; the higher the sam-
ple size, the more true edges were detected in the algorithm. These numbers are
comparable to state-of-the-art network estimation techniques in sample and model
sizes that are plausible in psychological settings (van Borkulo et al., 2014). In all
four simulation studies, using AIC as the model selection criterion led to the best
sensitivity and using EBIC led to the best specificity. However, it is important
to note that the choice of a particular information criterion cannot be argued by
these numbers alone, and depends on the relative importance one assigns to the
side of discovery (optimizing sensitivity) or the side of caution (optimizing speci-
ficity; Dziak et al., 2012). Furthermore, it should be noted that these simulation
results are specific for the particular model setup and sample sizes used; results
might be di↵erent for other kinds of models or sample size ranges.

In addition to the LNM and RNM frameworks, other combinations of CFA,
SEM and network modeling are possible as well. For example, a framework can be
constructed which contains both a latent and a residual network (as shown in our
empirical example), or directed regression paths as in the SEM model can be added
to the LNM model. While these models are all estimable in the lvnet software,
in the current chapter we chose to focus on the distinct benefits that modeling a
residual or latent network presents. Thus, in this chapter, we only described the
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modeling of multivariate normal data. More advanced models are possible, but
not yet implemented in the lvnet software. In the case of binary variables, the
appropriate model to use is the Ising model, which has been shown to be equivalent
to multivariate item response models (see Chapter 8). Future research could aim
at constructing Ising models among binary latent variables in latent class analysis,
or constructing residual networks in models with binary indicators. Finally, the
expressions optimized in Equations (7.1) and (7.7) are based on summary statistics
and therefore only truly applicable to complete data. With incomplete data,
the appropriate estimation method is to use full-information maximum likelihood
(FIML; Arbuckle, Marcoulides, & Schumacker, 1996); however, FIML has not yet
been implemented in the lvnet software.

In our view, the presented modeling framework is a versatile and promising
addition to the spectrum of psychometric models. The GGM, which has a central
place in this modeling framework, acts as a natural interface between correlation
and causality, and we think this representation should receive more attention in
psychometrics. From the point of view a↵orded by the current chapter, the typical
attempt to determine directed SEMs from correlation structures in fact appears
somewhat haphazard in psychology, a historical accident in a field that has been
prematurely directed to hypothesis testing at the expense of systematic explo-
ration. Perhaps, psychometrics as a field should consider taking a step back to
focus on the consistent identification of GGMs, instead of wanting to jump to the
causal conclusion immediately. In this regard, the fact that GGMs do not have
equivalent models would appear to be a major benefit, as they allow us to focus
on charting connections between variables systematically, without being forced to
adhere to one particular causal interpretation or another. In addition, because the
GGM does not specify the nature or direction of interactions between variables, it
appears a natural model for research situations where no temporal information or
experimental interventions are present, so that associations may arise for a mul-
titude of reasons: the GGM can be consistently interpreted regardless of whether
associations arise from direct causal relations, reciprocal causation, latent common
causes, semantic overlap between items, or homeostatic couplings of parameters.
While this can be seen as a downside of the GGM—the lack of directionality leads
to less falsifiable hypotheses—it can also be a major asset in a field like psychology,
where strong causal theory is sparse and the identification of DAGs often appears
a bridge too far.
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Chapter 8

The Ising Model in Psychometrics

Abstract

This chapter provides a general introduction of network modeling in
psychometrics. The chapter starts with an introduction to the statistical
model formulation of pairwise Markov random fields (PMRF), followed by
an introduction of the PMRF suitable for binary data: the Ising model. The
Ising model is a model used in ferromagnetism to explain phase transitions in
a field of particles. Following the description of the Ising model in statistical
physics, the chapter continues to show that the Ising model is closely related
to models used in psychometrics. The Ising model can be shown to be
equivalent to certain kinds of logistic regression models, loglinear models and
multi-dimensional item response theory (MIRT) models. The equivalence
between the Ising model and the MIRT model puts standard psychometrics
in a new light and leads to a strikingly di↵erent interpretation of well-known
latent variable models. The chapter gives an overview of methods that can
be used to estimate the Ising model, and concludes with a discussion on
the interpretation of latent variables given the equivalence between the Ising
model and MIRT.

8.1 Introduction

In recent years, network models have been proposed as an alternative way of
looking at psychometric problems (Van Der Maas et al., 2006; Cramer et al.,
2010; Borsboom & Cramer, 2013). In these models, psychometric item responses
are conceived of as proxies for variables that directly interact with each other. For
example, the symptoms of depression (such as loss of energy, sleep problems, and
low self esteem) are traditionally thought of as being determined by a common
latent variable (depression, or the liability to become depressed; Aggen, Neale, &

This chapter has been adapted from: Epskamp, S., Maris, G., Waldorp, L.J., and Borsboom,
D. (in press). Network Psychometrics. In Irwing, P., Hughes, D., and Booth, T. (Eds.), Handbook
of Psychometrics. New York: Wiley.
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Kendler, 2005). In network models, these symptoms are instead hypothesized to
form networks of mutually reinforcing variables (e.g., sleep problems may lead to
loss of energy, which may lead to low self esteem, which may cause rumination
that in turn may reinforce sleep problems). On the face of it, such network models
o↵er an entirely di↵erent conceptualization of why psychometric variables cluster
in the way that they do. However, it has also been suggested in the literature that
latent variables may somehow correspond to sets of tightly intertwined observables
(e.g., see the Appendix of Van Der Maas et al., 2006).

In the current chapter, we aim to make this connection explicit. As we will
show, a particular class of latent variable models (namely, multidimensional Item
Response Theory models) yields exactly the same probability distribution over the
observed variables as a particular class of network models (namely, Ising models).
In the current chapter, we exploit the consequences of this equivalence. We will
first introduce the general class of models used in network analysis called Markov
Random Fields. Specifically, we will discuss the Markov random field for binary
data called the Ising Model, which originated from statistical physics but has since
been used in many fields of science. We will show how the Ising Model relates to
psychometrical practice, with a focus on the equivalence between the Ising Model
and multidimensional item response theory. We will demonstrate how the Ising
model can be estimated and finally, we will discuss the conceptual implications of
this equivalence.

Notation

Throughout this chapter we will denote random variables with capital letters and
possible realizations with lower case letters; vectors will be represented with bold-
faced letters. For parameters, we will use boldfaced capital letters to indicate
matrices instead of vectors whereas for random variables we will use boldfaced
capital letters to indicate a random vector. Roman letters will be used to denote
observable variables and parameters (such as the number of nodes) and Greek
letters will be used to denote unobservable variables and parameters that need to
be estimated.

In this chapter we will mainly model the random vector X:

X

> =
⇥

X
1

X
2

. . . XP

⇤

,

containing P binary variables that take the values 1 (e.g., correct, true or yes)
and −1 (e.g., incorrect, false or no). We will denote a realization, or state, of
X with x

> =
⇥

x
1

x
2

. . . xp

⇤

. Let N be the number of observations and
n(xxx) the number of observations that have response pattern xxx. Furthermore,
let i denote the subscript of a random variable and j the subscript of a dif-
ferent random variable (j 6= i). Thus, Xi is the ith random variable and xi

its realization. The superscript −(. . . ) will indicate that elements are removed

from a vector; for example, X−(i) indicates the random vector XXX without Xi:
X

−(i) =
⇥

X
1

, . . . , Xi−1

, Xi+1

, . . . .XP

⇤

, and x

−(i) indicates its realization. Sim-

ilarly, X

−(i,j) indicates XXX without Xi and Xj and x

−(i,j) its realization. An
overview of all notations used in this chapter can be seen in Appendix B.
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X1

X2

X3

Figure 8.1: Example of a PMRF of three nodes, X
1

, X
2

and X
3

, connected by
two edges, one between X

1

and X
2

and one between X
2

and X
3

.

8.2 Markov Random Fields

A network, also called a graph, can be encoded as a set G consisting of two sets:
V , which contains the nodes in the network, and E, which contains the edges
that connect these nodes. For example, the graph in Figure 8.1 contains three
nodes: V = {1, 2, 3}, which are connected by two edges: E = {(1, 2), (2, 3)}.
We will use this type of network to represent a pairwise Markov random field
(PMRF; Lauritzen, 1996; Murphy, 2012), in which nodes represent observed ran-
dom variables1 and edges represent (conditional) association between two nodes.
More importantly, the absence of an edge represents the Markov property that
two nodes are conditionally independent given all other nodes in the network:

Xi ?? Xj | X−(i,j) = x

−(i,j) () (i, j) 62 E (8.1)

Thus, a PMRF encodes the independence structure of the system of nodes. In the
case of Figure 8.1, X

1

and X
3

are independent given that we know X
2

= x
2

. This
could be due to several reasons; there might be a causal path from X

1

to X
3

or
vise versa, X

2

might be the common cause of X
1

and X
3

, unobserved variables
might cause the dependencies between X

1

and X
2

and X
2

and X
3

, or the edges in
the network might indicate actual pairwise interactions between X

1

and X
2

and
X

2

and X
3

.
Of particular interest to psychometrics are models in which the presence of

latent common causes induces associations among the observed variables. If such
a common cause model holds, we cannot condition on any observed variable to
completely remove the association between two nodes (Pearl, 2000). Thus, if an
unobserved variable acts as a common cause to some of the observed variables, we
should find a fully connected clique in the PMRF that describes the associations

1Throughout this chapter, nodes in a network designate variables, hence the terms are used
interchangeably.
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among these nodes. The network in Figure 8.1, for example, cannot represent
associations between three nodes that are subject to the influence of a latent
common cause; if that were the case, it would be impossible to obtain conditional
independence between X

1

and X
3

by conditioning on X
2

.

Parameterizing Markov Random Fields

A PMRF can be parameterized as a product of strictly positive potential functions
φ(x) (Murphy, 2012):

Pr (XXX = xxx) =
1

Z

Y

i

φi (xi)
Y

<ij>

φij (xi, xj) , (8.2)

in which
Q

i takes the product over all nodes, i = 1, 2, . . . , P ,
Q

<ij> takes the
product over all distinct pairs of nodes i and j (j > i), and Z is a normalizing
constant such that the probability function sums to unity over all possible patterns
of observations in the sample space:

Z =
X

xxx

Y

i

φi (xi)
Y

<ij>

φij (xi, xj) .

Here,
P

xxx takes the sum over all possible realizations of XXX. All φ(x) functions
result in positive real numbers, which encode the potentials : the preference for
the relevant part of XXX to be in some state. The φi(xi) functions encode the node
potentials of the network; the preference of node Xi to be in state xi, regardless
of the state of the other nodes in the network. Thus, φi(xi) maps the potential
for Xi to take the value xi regardless of the rest of the network. If φi(xi) = 0,
for instance, then Xi will never take the value xi, while φi(xi) = 1 indicates that
there is no preference for Xi to take any particular value and φi(xi) = 1 indicates
that the system always prefers Xi to take the value xi. The φij(xi, xj) functions
encode the pairwise potentials of the network; the preference of nodes Xi and Xj

to both be in states xi and xj . As φij(xi, xj) grows higher we would expect to
observe Xj = xj whenever Xi = xi. Note that the potential functions are not
identified; we can multiply both φi(xi) or φij(xi, xj) with some constant for all
possible outcomes of xi, in which case this constant becomes a constant multiplier
to (8.2) and is cancelled out in the normalizing constant Z. A typical identification
constraint on the potential functions is to set the marginal geometric means of all
outcomes equal to 1; over all possible outcomes of each argument, the logarithm
of each potential function should sum to 0:

X

x
i

lnφi(xi) =
X

x
i

lnφij(xi, xj) =
X

x
j

lnφij(xi, xj) = 0 8xi, xj (8.3)

in which
P

x
i

denotes the sum over all possible realizations for Xi, and
P

x
j

denotes the sum over all possible realizations of Xj .
We assume that every node has a potential function φi(xi) and nodes only

have a relevant pairwise potential function φij(xi, xj) when they are connected by
an edge; thus, two unconnected nodes have a constant pairwise potential function
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which, due to identification above, is equal to 1 for all possible realizations of Xi

and Xj :
φij(xi, xj) = 1 8xi, xj () (i, j) 62 E. (8.4)

From Equation (8.2) it follows that the distribution of XXX marginalized over

Xk and Xl, that is, the marginal distribution of XXX−(k,l) (the random vector XXX
without elements Xk and Xl), has the following form:

Pr
⇣
XXX−(k,l) = xxx−(k,l)

⌘
=

X

x

k

,x

l

Pr (XXX = xxx)

=
1

Z

Y

i62{k,l}
φ
i

(x
i

)
Y

<ij 62{k,l}>
φ
ij

(x
i

, x
j

) (8.5)

X

x

k

,x

l

0

@φ
k

(x
k

)φ
l

(x
l

)φ
kl

(x
k

, x
l

)
Y

i 62{k,l}
φ
ik

(x
i

, x
k

)φ
il

(x
i

, x
l

)

1

A ,

in which
Q

i62{k,l} takes the product over all nodes except node k and l and
Q

<ij 62{k,l}> takes the product over all unique pairs of nodes that do not involve

k and l. The expression in (8.5) has two important consequences. First, (8.5)
does not have the form of (8.2); a PMRF is not a PMRF under marginalization.
Second, dividing (8.2) by (8.5) an expression can be obtained for the conditional

distribution of {Xk, Xl} given that we know XXX−(k,l) = xxx−(k,l):

Pr
⇣

Xk, Xl |XXX−(k,l) = xxx−(k,l)
⌘

=
Pr (XXX = xxx)

Pr
⇣

XXX−(k,l) = xxx−(k,l)
⌘

=
φ⇤
k(xk)φ

⇤
l (xl)φkl(xk, xl)

P

x
k

,x
l

φ⇤
k(xk)φ⇤

l (xl)φkl(xk, xl)
, (8.6)

in which:
φ⇤
k(xk) = φk(xk)

Y

i62{k,l}

φik(xi, xk)

and:
φ⇤
l (xl) = φl(xl)

Y

i62{k,l}

φil(xi, xl).

Now, (8.6) does have the same form as (8.2); a PMRF is a PMRF under condi-
tioning. Furthermore, if there is no edge between nodes k and l, φkl(xk, xl) = 1
according to (8.4), in which case (8.6) reduces to a product of two independent
functions of xk and xl which renders Xk and Xl independent; thus proving the
Markov property in (8.1).

The Ising Model

The node potential functions φi(xi) can map a unique potential for every possible
realization of Xi and the pairwise potential functions φij(xi, xj) can likewise map
unique potentials to every possible pair of outcomes for Xi and Xj . When the
data are binary, only two realizations are possible for xi, while four realizations
are possible for the pair xi and xj . Under the constraint that the log potential
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functions should sum to 0 over all marginals, this means that in the binary case
each potential function has one degree of freedom. If we let all X’s take the
values 1 and −1, there exists a conveniently loglinear model representation for the
potential functions:

lnφi(xi) = ⌧ixi

lnφij(xi, xj) = !ijxixj .

The parameters ⌧i and !ij are real numbers. In the case that xi = 1 and xj = 1,
it can be seen that these parameters form an identity link with the logarithm of
the potential functions:

⌧i = lnφi(1)

!ij = lnφij(1, 1).

These parameters are centered on 0 and have intuitive interpretations. The ⌧i pa-
rameters can be interpreted as threshold parameters. If ⌧i = 0 the model does not
prefer to be in one state or the other, and if ⌧i is higher (lower) the model prefers
node Xi to be in state 1 (-1). The !ij parameters are the network parameters and
denote the pairwise interaction between nodes Xi and Xj ; if !ij = 0 there is no
edge between nodes Xi and Xj :

!ij

(

= 0 if (i, j) 62 E

2 R if (i, j) 2 E
. (8.7)

The higher (lower) !ij becomes, the more nodes Xi and Xj prefer to be in the
same (di↵erent) state. Implementing these potential functions in (8.2) gives the
following distribution for XXX:

Pr (X = x) =
1

Z
exp

0

@

X

i

⌧ixi +
X

<ij>

!ijxixj

1

A (8.8)

Z =
X

x

exp

0

@

X

i

⌧ixi +
X

<ij>

!ijxixj

1

A ,

which is known as the Ising model (Ising, 1925).
For example, consider the PMRF in Figure 8.1. In this network there are

three nodes (X
1

, X
2

and X
3

), and two edges (between X
1

and X
2

, and between
X

2

and X
3

). Suppose these three nodes are binary, and take the values 1 and −1.
We can then model this PMRF as an Ising model with 3 threshold parameters,
⌧
1

, ⌧
2

and ⌧
3

and two network parameters, !
12

and !
23

. Suppose we set all
threshold parameters to ⌧

1

= ⌧
2

= ⌧
3

= −0.1, which indicates that all nodes
have a general preference to be in the state −1. Furthermore we can set the
two network parameters to !

12

= !
23

= 0.5. Thus, X
1

and X
2

prefer to be in
the same state, and X

2

and X
3

prefer to be in the same state as well. Due to
these interactions, X

1

and X
3

become associated; these nodes also prefer to be in
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Table 8.1: Probability of all states from the network in Figure 8.1.

x
1

x
2

x
3

Potential Probability
-1 -1 -1 3.6693 0.3514
1 -1 -1 1.1052 0.1058
-1 1 -1 0.4066 0.0389
1 1 -1 0.9048 0.0866
-1 -1 1 1.1052 0.1058
1 -1 1 0.3329 0.0319
-1 1 1 0.9048 0.0866
1 1 1 2.0138 0.1928

N

S

S

N

(a)

S

N

S

N

(b)

N

S

N

S

(c)

S

N

N

S

(d)

Figure 8.2: Example of the e↵ect of holding two magnets with a north and south
pole close to each other. The arrows indicate the direction the magnets want to
move; the same poles, as in (b) and (c), repulse each other and opposite poles, as
in (a) and (d), attract each other.

the same state, even though they are independent once we condition on X
2

. We

can then compute the non-normalized potentials exp
⇣

P

i ⌧ixi +
P

<ij> !ijxixj

⌘

for all possible outcomes of XXX and finally divide that value by the sum over all
non-normalized potentials to compute the probabilities of each possible outcome.
For instance, for the state X

1

= −1, X
2

= 1 and X
3

= −1, we can compute the
potential as exp (−0.1 + 0.1 +−0.1 +−0.5 +−0.5) ⇡ 0.332. Computing all these
potentials and summing them leads to the normalizing constant of Z ⇡ 10.443,
which can then be used to compute the probabilities of each state. These values can
be seen in Table 8.1. Not surprisingly, the probability P (X

1

= −1, X
2

= −1, X
3

=
−1) is the highest probable state in Table 8.1, due to the threshold parameters
being all negative. Furthermore, the probability P (X

1

= 1, X
2

= 1, X
3

= 1) is
the second highest probability in Table 8.1; if one node is put into state 1 then all
nodes prefer to be in that state due to the network structure.

The Ising model was introduced in statistical physics, to explain the phe-
nomenon of magnetism. To this end, the model was originally defined on a field
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(a)

X1 = 1

X2 = 1

X3 = −1

X4 = 1

X5 = 1

X6 = 1

X7 = −1

X8 = 1

X9 = 1

X10 = 1

X11 = −1

X12 = 1

X13 = 1

X14 = −1

X15 = −1

X16 = 1

(a)

Figure 8.3: A field of particles (a) can be represented by a network shaped as a
lattice as in (b). +1 indicates that the north pole is alligned upwards and −1
indicates that the south pole is aligned upwards. The lattice in (b) adheres to
a PMRF in that the probability of a particle (node) being in some state is only
dependent on the state of its direct neighbors.

of particles connected on a lattice. We will give a short introduction on this ap-
plication in physics because it exemplifies an important aspect of the Ising model;
namely, that the interactions between nodes can lead to synchronized behavior
of the system as a whole (e.g., spontaneous magnetization). To explain how this
works, note that a magnet, such as a common household magnet or the arrow in a
compass, has two poles: a north pole and a south pole. Figure 8.2 shows the e↵ect
of pushing two such magnets together; the north pole of one magnet attracts to
the south pole of another magnet and vise versa, and the same poles on both mag-
nets repulse each other. This is due to the generally tendency of magnets to align,
called ferromagnetism. Exactly the same process causes the arrow of a compass
to align with the magnetic field of the Earth itself, causing it to point north. Any
material that is ferromagnetic, such as a plate of iron, consists of particles that
behave in the same way as magnets; they have a north and south pole and lie in
some direction. Suppose the particles can only lie in two directions: the north pole
can be up or the south pole can be up. Figure 8.3 shows a simple 2-dimensional
representation of a possible state for a field of 4⇥ 4 particles. We can encode each
particle as a random variable, Xi, which can take the values −1 (south pole is
up) and 1 (north pole is up). Furthermore we can assume that the probability of
Xi being in state xi only depends on the direct neighbors (north, south east and
west) of particle i. With this assumption in place, the system in Figure 8.3 can
be represented as a PMRF on a lattice, as represented in Figure 8.3.

A certain amount of energy is required for a system of particles to be in some
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state, such as in Figure 8.2. For example, in Figure 8.3 the node X
7

is in the
state −1 (south pole up). Its neighbors X

3

and X
11

are both in the same state
and thus aligned, which reduces stress on the system and thus reduces the energy
function. The other neighbors of X

7

, X
6

and X
8

, are in the opposite state of X
7

,
and thus are not aligned, which increasing the stress on the system. The total
energy configuration can be summarized in the Hamiltonian function:

H(x) = −
X

i

⌧ixi −
X

<i,j>

!ijxixj ,

which is used in the Gibbs distribution (Murphy, 2012) to model the probability
of XXX being in some state xxx:

Pr (X = x) =
exp (−βH(x))

Z
. (8.9)

The parameter β indicates the inverse temperature of the system, which is not
identifiable since we can multiply β with some constant and divide all ⌧ and !
parameters with that same constant to obtain the same probability. Thus, it can
arbitrarily be set to β = 1. Furthermore, the minus signs in the Gibbs distribution
and Hamiltonian cancel out, leading to the Ising model as expressed in (8.8).

The threshold parameters ⌧i indicate the natural deposition for particle i to
point up or down, which could be due to the influence of an external magnetic
field not part of the system of nodes in XXX. For example, suppose we model a
single compass, there is only one node thus the Hamiltonian reduces to −⌧x. Let
X = 1 indicate the compass points north and X = −1 indicate the compass
points south. Then, ⌧ should be positive as the compass has a natural tendency
to point north due to the presence of the Earth’s magnetic field. As such, the ⌧
parameters are also called external fields. The network parameters !ij indicate
the interaction between two particles. Its sign indicates if particles i and j tend to
be in the same state (positive; ferromagnetic) or in di↵erent states (negative; anti-
ferromagnetic). The absolute value, |!ij |, indicates the strength of interaction.
For any two non-neighboring particles !ij will be 0 and for neighboring particles
the stronger !ij the stronger the interaction between the two. Because the closer
magnets, and thus particles, are moved together the stronger the magnetic force,
we can interpret |!ij | as a measure for closeness between two nodes.

While the inverse temperature β is not identifiable in the sense of parameter
estimation, it is an important element in the Ising model; in physics the tempera-
ture can be manipulated whereas the ferromagnetic strength or distance between
particles cannot. The inverse temperature plays a crucial part in the entropy of
(8.9) (Wainwright & Jordan, 2008):

Entropy (XXX) = E [− ln Pr (X = x)]

= −βE


− ln
exp (−H(x))

Z⇤

�

, (8.10)

in which Z⇤ is the rescaled normalizing constant without inverse temperature

β. The expectation E
h

− ln exp(−H(x))

Z⇤

i

can be recognized as the entropy of the
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Ising model as defined in (8.8). Thus, the inverse temperature β directly scales
the entropy of the Ising model. As β shrinks to 0, the system is “heated up”
and all states become equally likely, causing a high level of entropy. If β is subse-
quently increased, then the probability function becomes concentrated on a smaller
number of states, and the entropy shrinks to eventually only allow the state in
which all particles are aligned. The possibility that all particles become aligned
is called spontaneous magnetization (Lin, 1992; Kac, 1966); when all particles are
aligned (all X are either 1 or −1) the entire field of particles becomes magnetized,
which is how iron can be turned into a permanent magnet. We take this behav-
ior as a particular important aspect of the Ising model; behavior on microscopic
level (interactions between neighboring particles) can cause noticeable behavior
on macroscopic level (the creation of a permanent magnet).

In our view, psychological variables may behave in the same way. For example,
interactions between components of a system (e.g., symptoms of depression) can
cause synchronized e↵ects of the system as a whole (e.g., depression as a disorder).
Do note that, in setting up such analogies, we need to interpret the concepts of
closeness and neighborhood less literally than in the physical sense. Concepts
such as “sleep deprivation” and “fatigue” can be said to be close to each other,
in that they mutually influence each other; sleep deprivation can lead to fatigue
and in turn fatigue can lead to a disrupted sleeping rhythm. The neighborhood
of these symptoms can then be defined as the symptoms that frequently co-occur
with sleep deprivation and fatigue, which can be seen in a network as a cluster
of connected nodes. As in the Ising model, the state of these nodes will tend to
be the same if the connections between these nodes are positive. This leads to
the interpretation that a latent trait, such as depression, can be seen as a cluster
of connected nodes (Borsboom et al., 2011). In the next section, we will prove
that there is a clear relationship between network modeling and latent variable
modeling; indeed, clusters in a network can cause data to behave as if they were
generated by a latent variable model.

8.3 The Ising Model in Psychometrics

In this section, we show that the Ising model is equivalent or closely related to
prominent modeling techniques in psychometrics. We will first discuss the rela-
tionship between the Ising model and loglinear analysis and logistic regressions,
next show that the Ising model can be equivalent to Item Response Theory (IRT)
models that dominate psychometrics. In addition, we highlight relevant earlier
work on the relationship between IRT and the Ising model.

To begin, we can gain further insight in the Ising model by looking at the
conditional distribution of Xi given that we know the value of the remaining
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in which
P

x
i

takes the sum over both possible outcomes of xi. We can recognize
this expression as a logistic regression model (Agresti, 1990). Thus, the Ising
model can be seen as the joint distribution of response and predictor variables,
where each variable is predicted by all other variables in the network. The Ising
model therefore forms a predictive network in which the neighbors of each node,
the set of connected nodes, represent the variables that predict the outcome of the
node of interest.

Note that the definition of Markov random fields in (8.2) can be extended to
include higher order interaction terms:
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all the way up to the P -th order interaction term, in which case the model becomes
saturated. Specifying ⌫...(. . . ) = lnφ...(. . . ) for all potential functions, we obtain
a log-linear model:
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Let n(xxx) be the number of respondents with response pattern xxx from a sample
of N respondents. Then, we may model the expected frequency n(xxx) as follows:

E [n(xxx)] = N Pr (XXX = xxx)
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in which ⌫ = lnN − lnZ. The model in (8.12) has extensively been used in
loglinear analysis (Agresti, 1990; Wickens, 1989)2. In loglinear analysis, the same
constrains are typically used as in (8.3); all ⌫ functions should sum to 0 over
all margins. Thus, if at most second-order interaction terms are included in the
loglinear model, it is equivalent to the Ising model and can be represented exactly
as in (8.8). The Ising model, when represented as a loglinear model with at most
second-order interactions, has been used in various ways. Agresti (1990) and
Wickens (1989) call the model the homogeneous association model. Because it

2both Agresti and Wickens used λ rather than ⌫ to denote the log potentials, which we
changed in this chapter to avoid confusion with eigenvalues and the LASSO tuning parameter.

153



8. The Ising Model in Psychometrics

does not include three-way or higher order interactions, the association between
Xi andXj—the odds-ratio—is constant for any configuration ofXXX−(i,j). Also, Cox
(1972; Cox & Wermuth, 1994) used the same model, but termed it the quadratic
exponential binary distribution, which has since often been used in biometrics and
statistics (e.g., Fitzmaurice, Laird, & Rotnitzky, 1993; Zhao & Prentice, 1990).
Interestingly, none of these authors mention the Ising model.

The Relation Between the Ising Model and Item Response
Theory

In this section we will show that the Ising model is a closely related modeling
framework of Item Response Theory (IRT), which is of central importance to
psychometrics. In fact, we will show that the Ising model is equivalent to a special
case of the multivariate 2-parameter logistic model (MIRT). However, instead of
being hypothesized common causes of the item responses, in our representation
the latent variables in the model are generated by cliques in the network.

In IRT, the responses on a set of binary variables XXX are assumed to be deter-
mined by a set of M (M  P ) latent variables ⇥⇥⇥:

⇥⇥⇥> =
⇥

⇥
1

⇥
2

. . . ⇥M

⇤

.

These latent variables are often denoted as abilities, which betrays the roots of the
model in educational testing. In IRT, the probability of obtaining a realization xi

on the variable Xi—often called items—is modeled through item response func-
tions, which model the probability of obtaining one of the two possible responses
(typically, scored 1 for correct responses and 0 for incorrect responses) as a func-
tion of ✓✓✓. For instance, in the Rasch (1960) model, also called the one parameter
logistic model (1PL), only one latent trait is assumed (M = 1 and ⇥⇥⇥ = ⇥) and
the conditional probability of a response given the latent trait takes the form of a
simple logistic function:

Pr(Xi = xi | ⇥ = ✓)
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x
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exp (xi↵ (✓ − δi))
,

in which δi acts as a difficulty parameter and ↵ is a common discrimination pa-
rameter for all items. A typical generalization of the 1PL is the Birnbaum (1968)
model, often called the two-parameter logistic model (2PL), in which the discrim-
ination is allowed to vary between items:

Pr(Xi = xi | ⇥ = ✓)
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The 2PL reduces to the 1PL if all discrimination parameters are equal: ↵
1
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=
. . . = ↵. Generalizing the 2PL model to more than 1 latent variable (M > 1) leads
to the 2PL multidimensional IRT model (MIRT; Reckase, 2009):
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in which ✓✓✓ is a vector of length M that contains the realization of ⇥⇥⇥, while ↵↵↵i is a
vector of length M that contains the discrimination of item i on every latent trait
in the multidimensional space. The MIRT model reduces to the 2PL model if ↵↵↵i

equals zero in all but one of its elements.
Because IRT assumes local independence—the items are independent of each

other after conditioning on the latent traits—the joint conditional probability of
XXX = xxx can be written as a product of the conditional probabilities of each item:

Pr(XXX = xxx | ⇥⇥⇥ = ✓✓✓) =
Y

i

Pr(Xi = xi | ⇥⇥⇥ = ✓✓✓). (8.14)

The marginal probability, and thus the likelihood, of the 2PL MIRT model can be
obtained by integrating over distribution f(✓✓✓) of ⇥⇥⇥:

Pr(XXX = xxx) =

Z 1

−1
f(✓✓✓) Pr(XXX = xxx | ⇥⇥⇥ = ✓✓✓) d✓✓✓, (8.15)

in which the integral is over all M latent variables. For typical distributions of
⇥⇥⇥, such as a multivariate Gaussian distribution, this likelihood does not have a
closed form solution. Furthermore, as M grows it becomes hard to numerically
approximate (8.15). However, if the distribution of ⇥⇥⇥ is chosen such that it is
conditionally Gaussian—the posterior distribution of ⇥⇥⇥ given that we observed
XXX = xxx takes a Gaussian form—we can obtain a closed form solution for (8.15).
Furthermore, this closed form solution is, in fact, the Ising model as presented in
(8.8).

As also shown by Marsman et al. (2015) and in more detail in Appendix A of
this chapter, after reparameterizing ⌧i = −δi and −2

p

λj/2qij = ↵ij , in which qij
is the ith element of the jth eigenvector of ⌦⌦⌦ (with an arbitrary diagonal chosen
such that ⌦⌦⌦ is positive definite), the Ising model is equivalent to a MIRT model
in which the posterior distribution of the latent traits is equal to the product of
univariate normal distributions with equal variance:
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The mean of these univariate posterior distributions for ⇥j is equal to the weighted
sumscore ± 1

2

P

i aijxi. Finally, since

f(✓✓✓) =
X

xxx

f(✓✓✓ |XXX = xxx) Pr(XXX = xxx),

we can see that the marginal distribution of ⇥⇥⇥ in (8.15) is a mixture of multivari-
ate Gaussian distributions with homogenous variance–covariance, with the mixing
probability equal to the marginal probability of observing each response pattern.

Whenever ↵ij = 0 for all i and some dimension j—i.e., none of the items
discriminate on the latent trait—we can see that the marginal distribution of
⇥j becomes a Gaussian distribution with mean 0 and standard-deviation

p

1/2.
This corresponds to complete randomness; all states are equally probable given
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the latent trait. When discrimination parameters diverge from 0, the probability
function becomes concentrated on particular response patterns. For example,
in case X

1

designates the response variable for a very easy item, while X
2

is the
response variable for a very hard item, the state in which the first item is answered
correctly and the second incorrectly becomes less likely. This corresponds to a
decrease in entropy and, as can be seen in (8.10), is related to the temperature of
the system. The lower the temperature, the more the system prefers to be in states
in which all items are answered correctly or incorrectly. When this happens, the
distribution of ⇥j diverges from a Gaussian distribution and becomes a bi-modal
distribution with two peaks, centered on the weighted sumscores that correspond
to situations in which all items are answered correctly or incorrectly. If the entropy
is relatively high, f(⇥j) can be well approximated by a Gaussian distribution,
whereas if the entropy is (extremely) low a mixture of two Gaussian distributions
best approximates f(⇥j).

For example, consider again the network structure of Figure 8.1. When we
parameterized all threshold functions ⌧

1

= ⌧
2

= ⌧
3

= −0.1 and all network pa-
rameters !

12

= !
23

= 0.5 we obtained the probability distribution as specified in
Table 8.1. We can form the matrix ⌦⌦⌦ first with zeroes on the diagonal:

2

4

0 0.5 0
0.5 0 0.5
0 0.5 0

3

5 ,

which is not positive semi-definite. Subtracting the lowest eigenvalue, −0.707,
from the diagonal gives us a positive semi-definite ⌦⌦⌦ matrix:

⌦⌦⌦ =

2

4

0.707 0.5 0
0.5 0.707 0.5
0 0.5 0.707

3

5 .

It’s eigenvalue decomposition is as follows:

QQQ =
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0.500 0.707 0.500
0.707 0.000 −0.707
0.500 −0.707 0.500

3
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λλλ =
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1.414 0.707 0.000
⇤

.

Using the transformations ⌧i = −δi and −2
p

λj/2qij = ↵ij (arbitrarily using the
negative root) defined above we can then form the equivalent MIRT model with
discrimination parameters AAA and difficulty parameters δδδ:

δδδ =
⇥

0.1 0.1 0.1
⇤

AAA =

2

4

0.841 0.841 0
1.189 0 0
0.841 −0.841 0

3

5 .

Thus, the model in Figure 8.1 is equivalent to a model with two latent traits:
one defining the general coherence between all three nodes and one defining the
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Figure 8.4: The distributions of the three latent traits in the equivalent MIRT
model to the Ising model from Figure 8.1

contrast between the first and the third node. The distributions of all three latent
traits can be seen in Figure 8.4. In Table 8.1, we see that the probability is the
highest for the two states in which all three nodes take the same value. This is
reflected in the distribution of the first latent trait in 8.4: because all discrim-
ination parameters relating to this trait are positive, the weighted sumscores of
X

1

= X
2

= X
3

= −1 and X
1

= X
2

= X
3

= 1 are dominant and cause a small
bimodality in the distribution. For the second trait, 8.4 shows an approximately
normal distribution, because this trait acts as a contrast and cancels out the pref-
erence for all variables to be in the same state. Finally, the third latent trait is
nonexistent, since all of its discrimination parameters equal 0; 8.4 simply shows a

Gaussian distribution with standard deviation
q

1

2

.

This proof serves to demonstrate that the Ising model is equivalent to a MIRT
model with a posterior Gaussian distribution on the latent traits; the discrimi-
nation parameter column vector ↵j↵j↵j—the item discrimination parameters on the
jth dimension—is directly related to the jth eigenvector of the Ising model graph
structure ⌦⌦⌦, scaled by its jth eigenvector. Thus, the latent dimensions are orthog-
onal, and the rank of ⌦⌦⌦ directly corresponds to the number of latent dimensions.
In the case of a Rasch model, the rank of ⌦⌦⌦ should be 1 and all !ij should have
exactly the same value, corresponding to the common discrimination parameter;
for the uni-dimensional Birnbaum model the rank of ⌦⌦⌦ still is 1 but now the !ij

parameters can vary between items, corresponding to di↵erences in item discrim-
ination.

The use of a posterior Gaussian distribution to obtain a closed form solution
for (8.15) is itself not new in the psychometric literature, although it has not
previously been linked to the Ising model and the literature related to it. Olkin
and Tate (1961) already proposed to model binary variables jointly with condi-
tional Gaussian distributed continuous variables. Furthermore, Holland (1990)
used the “Dutch identity” to show that a representation equivalent to an Ising
model could be used to characterize the marginal distribution of an extended
Rasch model (Cressie & Holland, 1983). Based on these results, Anderson and
colleagues proposed an IRT modeling framework using log-multiplicative associ-
ation models and assuming conditional Gaussian latents (Anderson & Vermunt,
2000; Anderson & Yu, 2007); this approach has been implemented in the R package
“plRasch” (Anderson, Li, & Vermunt, 2007; Li & Hong, 2014).
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With our proof we furthermore show that the clique factorization of the net-
work structure generated a latent trait with a functional distribution through a
mathematical trick. Thus, the network perspective and common cause perspec-
tives could be interpreted as two di↵erent explanations of the same phenomena:
cliques of correlated observed variables. In the next section, we show how the
Ising model can be estimated.

8.4 Estimating the Ising Model

We can use (8.8) to obtain the log-likelihood function of a realization xxx:

L (⌧⌧⌧ ,⌦⌦⌦;xxx) = lnPr (XXX = xxx) =
X

i

⌧ixi +
X

<ij>

!ijxixj − lnZ. (8.16)

Note that the constant Z is only constant with regard to xxx (as it sums over all
possible realizations) and is not a constant with regard to the ⌧ and ! parameters;
Z is often called the partition function because it is a function of the parameters.
Thus, while when sampling from the Ising distribution Z does not need to be eval-
uated, but it does need to be evaluated when maximizing the likelihood function.
Estimating the Ising model is notoriously hard because the partition function Z
is often not tractable to compute (Kolaczyk, 2009). As can be seen in (8.8), Z re-
quires a sum over all possible configurations of xxx; computing Z requires summing
over 2k terms, which quickly becomes intractably large as k grows. Thus, maxi-
mum likelihood estimation of the Ising model is only possible for trivially small
data sets (e.g., k < 10). For larger data sets, di↵erent techniques are required
to estimate the parameters of the Ising model. Markov samplers can be used to
estimate the Ising model by either approximating Z (Sebastiani & Sørbye, 2002;
Green & Richardson, 2002; Dryden, Scarr, & Taylor, 2003) or circumventing Z
entirely via sampling auxiliary variables (Møller, Pettitt, Reeves, & Berthelsen,
2006; Murray, 2007; Murray, Ghahramani, & MacKay, 2006). Such sampling
algorithms can however still be computationally costly.

Because the Ising model is equivalent to the homogeneous association model
in log-linear analysis (Agresti, 1990), the methods used in log-linear analysis can
also be used to estimate the Ising model. For example, the iterative proportional
fitting algorithm (Haberman, 1972), which is implemented in the loglin function
in the statistical programming language R (R Core Team, 2016), can be used to
estimate the parameters of the Ising model. Furthermore, log-linear analysis can
be used for model selection in the Ising model by setting certain parameters to zero.
Alternatively, while the full likelihood in (8.8) is hard to compute, the conditional
likelihood for each node in (8.11) is very easy and does not include an intractable
normalizing constant; the conditional likelihood for each node corresponds to a
multiple logistic regression (Agresti, 1990):

Li (⌧⌧⌧ ,⌦⌦⌦;xxx) = xi
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Here, the subscript i indicates that the likelihood function is based on the con-
ditional probability for node i given the other nodes. Instead of optimizing the
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full likelihood of (8.8), the pseudolikelihood (PL; Besag, 1975) can be optimized
instead. The pseudolikelihood approximates the likelihood with the product of
univariate conditional likelihoods in (8.11):

ln PL =
k

X

i=1

Li (⌧⌧⌧ ,⌦⌦⌦;xxx)

Finally, disjoint pseudolikelihood estimation can be used. In this approach, each
conditional likelihood is optimized separately (Liu & Ihler, 2012). This routine
corresponds to repeatedly performing a multiple logistic regression in which one
node is the response variable and all other nodes are the predictors; by predicting
xi from xxx(−i) estimates can be obtained for !!!i and ⌧i. After estimating a mul-
tiple logistic regression for each node on all remaining nodes, a single estimate
is obtained for every ⌧i and two estimates are obtained for every !ij–the latter
can be averaged to obtain an estimate of the relevant network parameter. Many
statistical programs, such as the R function glm, can be used to perform logis-
tic regressions. Estimation of the Ising model via log-linear modeling, maximal
pseudolikelihood, and repeated multiple logistic regressions and have been imple-
mented in the EstimateIsing function in the R package IsingSampler (Epskamp,
2014).

While the above-mentioned methods of estimating the Ising model are tractable,
they all require a considerable amount of data to obtain reliable estimates. For
example, in log-linear analysis, cells in the 2P contingency table that are zero—
which will occur often if N < 2P—can cause parameter estimates to grow to 1
(Agresti, 1990), and in logistic regression predictors with low variance (e.g., a very
hard item) can substantively increase standard errors (Whittaker, 1990). To esti-
mate the Ising model, P thresholds and P (P − 1)/2 network parameter have to
be estimated, while in standard log linear approaches, rules of thumb suggest that
the sample size needs to be three times higher than the number of parameters to
obtain reliable estimates. In psychometrics, the number of data points is often
far too limited for this requirement to hold. To estimate parameters of graphical
models with limited amounts of observations, therefore, regularization methods
have been proposed (Meinshausen & Bühlmann, 2006; Friedman et al., 2008).

When regularization is applied, a penalized version of the (pseudo) likeli-
hood is optimized. The most common regularization method is `

1

regularization–
commonly known as the least absolute shrinkage and selection operator (LASSO;
Tibshirani, 1996)–in which the sum of absolute parameter values is penalized to
be under some value. Ravikumar, Wainwright, and La↵erty (2010) employed `

1

-
regularized logistic regression to estimate the structure of the Ising model via
disjoint maximum pseudolikelihood estimation. For each node i the following
expression is maximized (Friedman, Hastie, & Tibshirani, 2010):

max
⌧
i

,!!!
i

[Li (⌧⌧⌧ ,⌦⌦⌦;xxx)− λPen (!!!i)] (8.17)

Where !!!i is the ith row (or column due to symmetry) of ⌦⌦⌦ and Pen (!!!i) denotes
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the penalty function, which is defined in the LASSO as follows:

Pen`1 (!!!i) = ||!!!i||1=
k

X

j=1,j!=i

|!ij |

The λ in (8.17) is the regularization tuning parameter. The problem in above is
equivalent to the constrained optimization problem:

max
⌧
i

,!!!
i

[Li (⌧⌧⌧ ,⌦⌦⌦;xxx)] , subject to ||!!!i||1< C

in which C is a constant that has a one-to-one monotone decreasing relationship
with λ (Lee, Lee, Abbeel, & Ng, 2006). If λ = 0, C will equal the sum of abso-
lute values of the maximum likelihood solution; increasing λ will cause C to be
smaller, which forces the estimates of !!!i to shrink. Because the penalization uses
absolute values, this causes parameter estimates to shrink to exactly zero. Thus,
in moderately high values for λ a sparse solution to the logistic regression problem
is obtained in which many coefficients equal zero; the LASSO results in simple
predictive models including only a few predictors.

Ravikumar et al. (2010) used LASSO to estimate the neighborhood—the con-
nected nodes—of each node, resulting in an unweighted graph structure. In this
approach, an edge is selected in the model if either !ij and !ji is nonzero (the
OR-rule) or if both are nonzero (the AND-rule). To obtain estimates for the
weights !ij and !ji can again be averaged. The λ parameter is typically speci-
fied such that an optimal solution is obtained, which is commonly done through
cross-validation or, more recently, by optimizing the extended Bayesian informa-
tion criterion (EBIC; Chen & Chen, 2008; Foygel & Drton, 2010; Foygel Barber
& Drton, 2015; van Borkulo et al., 2014).

In K-fold cross-validation, the data are subdivided in K (usually K = 10)
blocks. For each of these blocks a model is fitted using only the remaining K − 1
blocks of data, which are subsequently used to construct a prediction model for the
block of interest. For a suitable range of λ values, the predictive accuracy of this
model can be computed, and subsequently the λ under which the data were best
predicted is chosen. If the sample size is relatively low, the predictive accuracy is
typically much better for λ > 0 than it is at the maximum likelihood solution of
λ = 0; it is preferred to regularize to avoid over-fitting.

Alternatively, an information criterion can be used to directly penalize the like-
lihood for the number of parameters. The EBIC (Chen & Chen, 2008) augments
the Bayesian information Criterion (BIC) with a hyperparameter γ to additionally
penalize the large space of possible models (networks):

EBIC = −2Li (⌧⌧⌧ ,⌦⌦⌦;xxx) + |!!!i| ln (N) + 2γ |!!!i| ln (k − 1)

in which |!!!i| is the number of nonzero parameters in !!!i. Setting γ = 0.25 works
well for the Ising model (Foygel Barber & Drton, 2015). An optimal λ can be
chosen either for the entire Ising model, which improves parameter estimation, or
for each node separately in disjoint pseudolkelihood estimation, which improves
neighborhood selection. While K-fold cross-validation does not require the com-
putation of the intractable likelihood function, EBIC does. Thus, when using
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EBIC estimation λ need be chosen per node. We have implemented `
1

-regularized
disjoint pseudolikelihood estimation of the Ising model using EBIC to select a
tuning parameter per node in the R package IsingFit (van Borkulo & Epskamp,
2014; van Borkulo et al., 2014), which uses glmnet for optimization (Friedman et
al., 2010).

The LASSO works well in estimating sparse network structures for the Ising
model and can be used in combination with cross-validation or an information
criterion to arrive at an interpretable model. However, it does so under the as-
sumption that the true model in the population is sparse. So what if reality is not
sparse, and we would not expect many missing edges in the network? As discussed
earlier in this chapter, the absence of edges indicate conditional independence be-
tween nodes; if all nodes are caused by an unobserved cause we would not expect
missing edges in the network but rather a low-rank network structure. In such
cases, `

2

regularization—also called ridge regression—can be used which uses a
quadratic penalty function:

Pen`2 (!!!i) = ||!!!i||2=
k

X

j=1,j!=i

!2

ij

With this penalty parameters will not shrink to exactly zero but more or less
smooth out; when two predictors are highly correlated the LASSO might pick
only one where ridge regression will average out the e↵ect of both predictors. Zou
and Hastie (2005) proposed a compromise between both penalty functions in the
elastic net, which uses another tuning parameter, ↵, to mix between `

1

and `
2

regularization:

Pen
ElasticNet

(!!!i) =

k
X

j=1,j!=i

1

2
(1− ↵)!2

ij + ↵|!ij |

If ↵ = 1, the elastic net reduces to the LASSO penalty, and if ↵ = 0 the elastic
net reduces to the ridge penalty. When ↵ > 0 exact zeroes can still be obtained in
the solution, and sparsity increases both with λ and ↵. Since moving towards `

2

regularization reduces sparsity, selection of the tuning parameters using EBIC is
less suited in the elastic net. Crossvalidation, however, is still capable of sketching
the predictive accuracy for di↵erent values of both ↵ and λ. Again, the R package
glmnet (Friedman et al., 2010) can be used for estimating parameters using the
elastic net. We have implemented a procedure to compute the Ising model for
a range of λ and ↵ values and obtain the predictive accuracy in the R package
elasticIsing (Epskamp, 2016).

One issue that is currently debated is inference of regularized parameters. Since
the distribution of LASSO parameters is not well-behaved (Bühlmann & van de
Geer, 2011; Bühlmann, 2013), Meinshausen, Meier, and Bühlmann (2009) devel-
oped the idea of using repeated sample splitting, where in the first sample the
sparse set of variables are selected, followed by multiple comparison corrected
p-values in the second sample. Another interesting idea is to remove the bias in-
troduced by regularization, upon which ‘standard’ procedures can be used (van de
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Geer, Bühlmann, & Ritov, 2013). As a result the asymptotic distribution of the so-
called de-sparsified LASSO parameters is normal with the true parameter as mean
and efficient variance (i.e., achieves the Cramér-Rao bound).. Standard techniques
are then applied and even confidence intervals with good coverage are obtained.
The limitations here are (i) the sparsity level, which has to be 

p

n/ln(P ), and
(ii) the ’beta-min’ assumption, which imposes a lower bound on the value of the
smallest obtainable coefficient (Bühlmann & van de Geer, 2011).

Finally, we can use the equivalence between MIRT and the Ising model to es-
timate a low-rank approximation of the Ising Model. MIRT software, such as the
R package mirt (Chalmers, 2012), can be used for this purpose. More recently,
Marsman et al. (2015) have used the equivalence also presented in this chapter
as a method for estimating low-rank Ising model using Full-data-information es-
timation. A good approximation of the Ising model can be obtained if the true
Ising model is indeed low-rank, which can be checked by looking at the eigenvalue
decomposition of the elastic Net approximation or by sequentially estimating the
first eigenvectors through adding more latent factors in the MIRT analysis or es-
timating sequentially higher rank networks using the methodology of Marsman et
al. (2015).

Example Analysis

To illustrate the methods described in this chapter we simulated two datasets,
both with 500 measurements on 10 dichotomous scored items. The first dataset,
dataset A, was simulated according to a multidimensional Rasch model, in which
the first five items are determined by the first factor and the last five items by the
second factor. Factor levels where sampled from a multivariate normal distribution
with unit variance and a correlation of 0.5, while item difficulties where sampled
from a standard normal distribution. The second dataset, dataset B, was sampled
from a sparse network structure according to a Boltzmann Machine. A scale-free
network was simulated using the Barabasi game algorithm (Barabási & Albert,
1999) in the R package igraph (Csardi & Nepusz, 2006) and a random connection
probability of 5%. The edge weights where subsequently sampled from a uniform
distribution between 0.75 and 1 (in line with the conception that most items in
psychometrics relate positively with each other) and thresholds where sampled
from a uniform distribution between −3 and −1. To simulate the responses the R
package IsingSampler was used. The datasets where analyzed using the elasticIs-
ing package in R (Epskamp, 2016); 10-fold cross-validation was used to estimate
the predictive accuracy of tuning parameters λ and ↵ on a grid of 100 logarith-
mically spaced λ values between 0.001 and 1 and 100 ↵ values equally spaced
between 0 and 1.

Figure 8.5 shows the results of the analyses. The left panels show the results
for dataset A and the right panel shows the result for dataset B. The top panels
show the negative mean squared prediction error for di↵erent values of λ and ↵.
In both datasets, regularized models perform better than unregularized models.
The plateaus on the right of the graphs show the performance of the indepen-
dence graph in which all network parameters are set to zero. Dataset A obtained
a maximum accuracy at ↵ = 0 and λ = 0.201, thus in dataset A `

2

-regularization
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Figure 8.5: Analysis results of two simulated datasets; left panels show results
based on a dataset simulated according to a 2-factor MIRT Model, while right
panels show results based on a dataset simulated with a sparse scale-free network.
Panels (a) and (b) show the predictive accuracy under di↵erent elastic net tuning
parameters λ and ↵, panels (c) and (d) the estimated optimal graph structures
and panels (e) and (f) the eigenvalues of these graphs.
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is preferred over `
1

regularization, which is to be expected since the data were
simulated under a model in which none of the edge weights should equal zero. In
dataset B a maximum was obtained at ↵ = 0.960 and λ = 0.017, indicating that
in dataset B regularization close to `

1

is preferred. The middle panels show visual-
izations of the obtained best performing networks made with the qgraph package
(Epskamp et al., 2012); green edges represent positive weights, red edges nega-
tive weights and the wider and more saturated an edge the stronger the absolute
weight. It can be seen that dataset A portrays two clusters while Dataset B por-
trays a sparse structure. Finally, the bottom panels show the eigenvalues of both
graphs; Dataset A clearly indicates two dominant components whereas Dataset B
does not indicate any dominant component.

These results show that the estimation techniques perform adequately, as ex-
pected. As discussed earlier in this chapter, the eigenvalue decomposition directly
corresponds to the number of latent variables present if the common cause model
is true, as is the case in dataset A. Furthermore, if the common cause model is
true the resulting graph should not be sparse but low rank, as is the case in the
results on dataset A.

8.5 Interpreting Latent Variables in Psychometric Models

Since Spearman’s (1904) conception of general intelligence as the common deter-
minant of observed di↵erences in cognitive test scores, latent variables have played
a central role in psychometric models. The theoretical status of the latent variable
in psychometric models has been controversial and the topic of heated debates in
various subfields of psychology, like those concerned with the study of intelligence
(e.g., Jensen, 1998) and personality (McCrae & Costa, 2008). The pivotal issue in
these debates is whether latent variables posited in statistical models have refer-
ents outside of the model; that is, the central question is whether latent variables
like g in intelligence or “extraversion” in personality research refer to a property of
individuals that exists independently of the model fitting exercise of the researcher
(Borsboom et al., 2003; Van Der Maas et al., 2006; Cramer et al., 2010). If they do
have such independent existence, then the model formulation appears to dictate a
causal relation between latent and observed variables, in which the former cause
the latter; after all, the latent variable has all the formal properties of a common
cause because it screens o↵ the correlation between the item responses (a prop-
erty denoted local independence in the psychometric literature; Borsboom, 2005;
Reichenbach, 1991). The condition of vanishing tetrads, that Spearman (1904)
introduced as a model test for the veracity of the common factor model is cur-
rently seen as one of the hallmark conditions of the common cause model (Bollen
& Lennox, 1991).

This would suggest that the latent variable model is intimately intertwined
with a so-called reflective measurement model interpretation (Edwards & Bagozzi,
2000; Howell, Breivik, & Wilcox, 2007), also known as an e↵ect indicators model
(Bollen & Lennox, 1991) in which the measured attribute is represented as the
cause of the test scores. This conceptualization is in keeping with causal accounts
of measurement and validity (Borsboom et al., 2003; Markus & Borsboom, 2013b)
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and indeed seems to fit the intuition of researchers in fields where psychometric
models dominate, like personality. For example, McCrae and Costa (2008) note
that they assume that extraversion causes party-going behavior, and as such this
trait determines the answer to the question “do you often go to parties” in a causal
fashion. Jensen (1998) o↵ers similar ideas on the relation between intelligence and
the g-factor. Also, in clinical psychology, Reise and Waller (2009, p. 26) note that
“to model item responses to a clinical instrument [with IRT], a researcher must
first assume that the item covariation is caused by a continuous latent variable”.

However, not all researchers are convinced that a causal interpretation of the re-
lation between latent and observed variable makes sense. For instance, McDonald
(2003) notes that the interpretation is somewhat vacuous as long as no substantive
theoretical of empirical identification of the latent variable can be given; a similar
point is made by Borsboom and Cramer (2013). That is, as long as the sole evi-
dence for the existence of a latent variable lies in the structure of the data to which
it is fitted, the latent variable appears to have a merely statistical meaning and
to grant such a statistical entity substantive meaning appears to be tantamount
to overinterpreting the model. Thus, the common cause interpretation of latent
variables at best enjoys mixed support.

A second interpretation of latent variables that has been put forward in the
literature is one in which latent variables do not figure as common causes of the
item responses, but as so-called behavior domains. Behavior domains are sets of
behaviors relevant to substantive concepts like intelligence, extraversion, or cogni-
tive ability (Mulaik & McDonald, 1978; McDonald, 2003). For instance, one can
think of the behavior domain of addition as being defined through the set of all
test items of the form x + y = . . .. The actual items in a test are considered to
be a sample from that domain. A latent variable can then be conceptualized as
a so-called tail-measure defined on the behavior domain (Ellis & Junker, 1997).
One can intuitively think of this as the total test score of a person on the infinite
set of items included in the behavior domain. Ellis and Junker (1997) have shown
that, if the item responses included in the domain satisfy the properties of mono-
tonicity, positive association, and vanishing conditional independence, the latent
variable can indeed be defined as a tail measure. The relation between the item
responses and the latent variable is, in this case, not sensibly construed as causal,
because the item responses are a part of the behavior domain; this violates the re-
quirement, made in virtually all theories of causality, that cause and e↵ect should
be separate entities (Markus & Borsboom, 2013b). Rather, the relation between
item responses and latent variable is conceptualized as a sampling relation, which
means the inference from indicators to latent variable is not a species of causal
inference, but of statistical generalization.

Although in some contexts the behavior domain interpretation does seem plau-
sible, it has several theoretical shortcomings of its own. Most importantly, the
model interpretation appears to beg the important explanatory question of why
we observe statistical associations between item responses. For instance, Ellis and
Junker (1997) manifest conditions specify that the items included in a behavior do-
main should look exactly as if they were generated by a common cause; in essence,
the only sets of items that would qualify as behavior domains are infinite sets of
items that would fit a unidimensional IRT model perfectly. The question of why

165



8. The Ising Model in Psychometrics

such sets would fit a unidimensional model is thus left open in this interpretation.
A second problem is that the model specifies infinite behavior domains (measures
on finite domains cannot be interpreted as latent variables because the axioms
of Ellis and Junker will not be not satisfied in this case). In many applications,
however, it is quite hard to come up with more than a few dozen of items before
one starts repeating oneself (e.g., think of psychopathology symptoms or attitude
items), and if one does come up with larger sets of items the unidimensionality
requirement is typically violated. Even in applications that would seem to nat-
urally suit the behavior domain interpretation, like the addition ability example
given earlier, this is no trivial issue. Thus, the very property that buys the be-
havior domain interpretation its theoretical force (i.e., the construction of latent
variables as tail measures on an infinite set of items that satisfies a unidimensional
IRT model) is its substantive Achilles’ heel.

Thus, the common cause interpretation of the latent variable model seems too
make assumptions about the causal background of test scores that appear overly
ambitious given the current scientific understanding of test scores. The behavior
domain interpretation is much less demanding, but appears to be of limited use
in situations where only a limited number of items is of interest and in addition
o↵ers no explanatory guidance with respect to answering the question why items
hang together as they do. The network model may o↵er a way out of this theoret-
ical conundrum because it specifies a third way of looking at latent variables, as
explained in this chapter. As Van Der Maas et al. (2006) showed, data generated
under a network model could explain the positive manifold often found in intelli-
gence research which is often described as the g factor or general intelligence; a g
factor emerged from a densely connected network even though it was not “real”.
This idea suggests the interpretation of latent variables as functions defined as
cliques in a network of interacting components (Borsboom et al., 2011; Cramer et
al., 2010; Cramer, Sluis, et al., 2012). As we have shown in this chapter, this rela-
tion between networks and latent variables is quite general: given simple models of
the interaction between variables, as encoded in the Ising model, one expects data
that conform to psychometric models with latent variables. The theoretical im-
portance of this result is that (a) it allows for a model interpretation that invokes
no common cause of the item responses as in the reflective model interpretation,
but (b) does not require assumptions about infinite behavior domains either.

Thus, network approaches can o↵er a theoretical middle ground between causal
and sampling interpretations of psychometric models. In a network, there clearly
is nothing that corresponds to a causally e↵ective latent variable, as posited in the
reflective measurement model interpretation (Bollen & Lennox, 1991; Edwards
& Bagozzi, 2000). The network model thus evades the problematic assignment
of causal force to latent variables like the g-factor and extraversion. These arise
out of the network structure as epiphenomena; to treat them as causes of item
responses involves an unjustified reification. On the other hand, however, the la-
tent variable model as it arises out of a network structure does not require the
antecedent identification of an infinite set of response behaviors as hypothesized
to exist in behavior domain theory. Networks are typically finite structures that
involve a limited number of nodes engaged in a limited number of interactions.
Each clique in the network structure will generate one latent variable with entirely
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transparent theoretical properties and an analytically tractable distribution func-
tion. Of course, for a full interpretation of the Ising model analogous to that in
physics, one has to be prepared to assume that the connections between nodes in
the network signify actual interactions (i.e., they are not merely correlations); that
is, connections between nodes are explicitly not spurious as they are in the reflec-
tive latent variable model, in which the causal e↵ect of the latent variable produces
the correlations between item responses. But if this assumption is granted, the
theoretical status of the ensuing latent variable is transparent and may in many
contexts be less problematic than the current conceptions in terms of reflective
measurement models and behavior domains are.

Naturally, even though the Ising and IRT models have statistically equivalent
representations, the interpretations of the model in terms of common causes and
networks are not equivalent. That is, there is a substantial di↵erence between the
causal implications of a reflective latent variable model and of an Ising model.
However, because for a given dataset the models are equivalent, distinguishing
network models from common cause models requires the addition of (quasi-) ex-
perimental designs into the model. For example, suppose that in reality an Ising
model holds for a set of variables; say we consider the depression symptoms “in-
somnia” and “feelings of worthlessness”. The model implies that, if we were to
causally intervene on the system by reducing or increasing insomnia, a change in
feelings of worthlessness should ensue. In the latent variable model, in which the
association between feelings of worthlessness and insomnia is entirely due to the
common influence of a latent variable, an experimental intervention that changes
insomnia will not be propagated through the system. In this case, the interven-
tion variable will be associated only with insomnia, which means that the items
will turn out to violate measurement invariance with respect to the intervention
variable (Mellenbergh, 1989; Meredith, 1993). Thus, interventions on individ-
ual nodes in the system can propagate to other nodes in a network model, but
not in a latent variable model. This is a testable implication in cases where one
has experimental interventions that plausibly target a single node in the system.
Fried, Nesse, Zivin, Guille, and Sen (2014) have identified a number of factors in
depression that appear to work in this way.

Note that a similar argument does not necessarily work with variables that
are causal consequences of the observed variables. Both in a latent variable model
and in a network model, individual observed variables might have distinct outgoing
e↵ects, i.e., a↵ect unique sets of external variables. Thus, insomnia may directly
cause bags under the eyes, while feelings of worthlessness do not, without violating
assumptions of either model. In the network model, this is because the outgoing
e↵ects of nodes do not play a role in the network if they do not feed back into
the nodes that form the network. In the reflective model, this is because the
model only speaks on the question of where the systematic variance in indicator
variables comes from (i.e., this is produced by a latent variable), but not on what
that systematic variance causes. As an example, one may measure the temperature
of water by either putting a thermometer into the water, or by testing whether
one can boil an egg in it. Both the thermometer reading and the boiled egg are
plausibly construed as e↵ects of the temperature in the water (the common cause
latent variable in the system). However, only the boiled egg has the outgoing
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e↵ect of satisfying one’s appetite.
In addition to experimental interventions on the elements of the system, a

network model rather than a latent variable model allows one to deduce what
would happen upon changing the connectivity of the system. In a reflective latent
variable model, the associations between variables are a function of the e↵ect of
the latent variable and the amount of noise present in the individual variables.
Thus, the only ways to change the correlation between items is by changing the
e↵ect of the latent variable (e.g., by restricting the variance in the latent variable
so as to produce restriction of range e↵ects in the observables) or by increasing
noise in the observed variables (e.g., by increasing variability in the conditions
under which the measurements are taken). Thus, in a standard reflective latent
variable model, the connection between observed variables is purely a correlation,
and one can only change it indirectly through the variable that have proper causal
roles in the system (i.e., latent variables and error variables).

However, in a network model, the associations between observed variables are
not spurious; they are real, causally potent pathways, and thus externally forced
changes in connection strengths can be envisioned. Such changes will a↵ect the
behavior of the system in a way that can be predicted from the model structure.
For example, it is well known that increasing the connectivity of an Ising model
can change its behavior from being linear (in which the total number of active
nodes grows proportionally to the strength of external perturbations of the sys-
tem) to being highly nonlinear. Under a situation of high connectivity, an Ising
network features tipping points: in this situation, very small perturbations can
have catastrophic e↵ects. To give an example, a weakly connected network of de-
pression symptoms could only be made depressed by strong external e↵ects (e.g.,
the death of a spouse), whereas a strongly connected network could tumble into
a depression through small perturbations (e.g., an annoying phone call from one’s
mother in law). Such a vulnerable network will also feature very specific behav-
ior; for instance, when the network is approaching a transition, it will send out
early warning signals like increased autocorrelation in a time series (Sche↵er et al.,
2009). Recent investigations suggest that such signals are indeed present in time
series of individuals close to a transition (van de Leemput et al., 2014). Latent
variable models have no such consequences.

Thus, there are at least three ways in which network models and reflective
latent variable models can be distinguished: through experimental manipulations
of individual nodes, through experimental manipulations of connections in the
network, and through investigation of the behavior of systems under highly fre-
quent measurements that allow one to study the dynamics of the system in time
series. Of course, a final and direct refutation of the network model would occur
if one could empirically identify a latent variable (e.g., if one could show that the
latent variable in a model for depression items was in fact identical with a prop-
erty of the system that could be independently identified; say, serotonin shortage
in the brain). However, such identifications of abstract psychometric latent vari-
ables with empirically identifiable common causes do not appear forthcoming.
Arguably, then, psychometrics may do better to bet on network explanations of
association patterns between psychometric variables than to hope for the empirical
identification of latent common causes.
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8.6 Conclusion

The correspondence between the Ising model and the MIRT model o↵ers novel
interpretations of long standing psychometric models, but also opens a gateway
through which the psychometric can be connected to the physics literature. Al-
though we have only begun to explore the possibilities that this connection may
o↵er, the results are surprising and, in our view, o↵er a fresh look on the problems
and challenges of psychometrics. In the current chapter, we have illustrated how
network models could be useful in the conceptualization of psychometric data. The
bridge between network models and latent variables o↵ers research opportunities
that range from model estimation to the philosophical analysis of measurement in
psychology, and may very well alter our view of the foundations on which psycho-
metric models should be built.

As we have shown, network models may yield probability distributions that
are exactly equivalent to this of IRT models. This means that latent variables
can receive a novel interpretation: in addition to an interpretation of latent vari-
ables as common causes of the item responses (Bollen & Lennox, 1991; Edwards
& Bagozzi, 2000), or as behavior domains from which the responses are a sam-
ple (Ellis & Junker, 1997; McDonald, 2003), we can now also conceive of latent
variables as mathematical abstractions that are defined on cliques of variables in
a network. The extension of psychometric work to network modeling fits current
developments in substantive psychology, in which network models have often been
motivated by critiques of the latent variable paradigm. This has for instance hap-
pened in the context of intelligence research (Van Der Maas et al., 2006), clinical
psychology (Cramer et al., 2010; Borsboom & Cramer, 2013), and personality
(Cramer, Sluis, et al., 2012; Costantini, Epskamp, et al., 2015). It should be
noted that, in view of the equivalence between latent variable models and network
models proven here, even though these critiques may impinge on the common
cause interpretation of latent variable models, they do not directly apply to latent
variable models themselves. Latent variable models may in fact fit psychometric
data well because these data result from a network of interacting components. In
such a case, the latent variable should be thought of as a convenient fiction, but
the latent variable model may nevertheless be useful; for instance, as we have
argued in the current chapter, the MIRT model can be profitably used to esti-
mate the parameters of a (low rank) network. Of course, the reverse holds as
well: certain network structures may fit the data because cliques of connected
network components result from unobserved common causes in the data. An im-
portant question is under which circumstances the equivalence between the MIRT
model and the Ising model breaks down, i.e., which experimental manipulations
or extended datasets could be used to decide between a common cause versus a
network interpretation of the data. In the current chapter, we have o↵ered some
suggestions for further work in this direction, which we think o↵ers considerable
opportunities for psychometric progress.

As psychometrics starts to deal with network models, we think the Ising model
o↵ers a canonical form for network psychometrics, because it deals with binary
data and is equivalent to well-known models from IRT. The Ising model has sev-
eral intuitive interpretations: as a model for interacting components, as an asso-
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ciation model with at most pairwise interactions, and as the joint distribution of
response and predictor variables in a logistic regression. Especially the analogy
between networks of psychometric variables (e.g., psychopathology symptoms such
as depressed mood, fatigue, and concentration loss) and networks of interacting
particles (e.g., as in the magnetization examples) o↵ers suggestive possibilities for
the construction of novel theoretical accounts of the relation between constructs
(e.g., depression) and observables as modeled in psychometrics (e.g., symptoma-
tology). In the current chapter, we only focused on the Ising model for binary
data, but of course the work we have ignited here invites extensions in various
other directions. For example, for polymotous data, the generalized Potts model
could be used, although it should be noted that this model does require the re-
sponse options to be discrete values that are shared over all variables, which may
not suit typical psychometric applications. Another popular type of PMRF is the
Gaussian Random Field (GRF; Lauritzen, 1996), which has exactly the same form
as the model in (8.18) except that now x is continuous and assumed to follow a
multivariate Gaussian density. This model is considerably appealing as it has a
tractable normalizing constant rather than the intractable partition function of
the Ising model. The inverse of the covariance matrix—the precision matrix—can
be standardized as a partial correlation matrix and directly corresponds to the
⌦ matrix of the Ising model. Furthermore, where the Ising model reduces to a
series of logistic regressions for each node, the GRF reduces to a multiple linear
regression for each node. It can easily be proven that also in the GRF the rank of
the (partial) correlation matrix—cliques in the network—correspond to the latent
dimensionality if the common cause model is true (Chandrasekaran et al., 2012).
A great body of literature exists on estimating and fitting GRFs even when the
amount of observations is limited versus the amount of nodes (Meinshausen &
Bühlmann, 2006; Friedman et al., 2008; Foygel & Drton, 2010). Furthermore,
promising methods are now available for the estimation of a GRF even in non-
Gaussian data, provided the data are continuous (Liu et al., 2009, 2012).

8.7 Appendix A: Proof of Equivalence Between the Ising
Model and MIRT

To prove the equivalence between the Ising model and MIRT, we first need to
rewrite the Ising Model in matrix form:

p(XXX = xxx) =
1

Z
exp

✓

⌧⌧⌧>xxx+
1

2
xxx>⌦⌦⌦xxx

◆

, (8.18)

in which ⌦⌦⌦ is an P ⇥P matrix containing network parameters !ij as its elements,
which corresponds in graph theory to the adjacency or weights matrix. Note that,
in this representation, the diagonal values of ⌦⌦⌦ are used. However, since xi can be
only −1 or 1, x2

i = 1 for any combination, and the diagonal values are cancelled
out in the normalizing constant Z. Thus, arbitrary values can be used in the
diagonal of ⌦⌦⌦. Since ⌦⌦⌦ is a real and symmetrical matrix, we can take the usual
eigenvalue decomposition:

⌦⌦⌦ =QQQ⇤⇤⇤QQQ>,
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in which ⇤⇤⇤ is a diagonal matrix containing eigenvalues λ
1

,λ
2

, . . . ,λP on its di-
agonal, and QQQ is an orthonormal matrix containing eigenvectors qqq

1

, . . . , qqqP as its
columns. Inserting the eigenvalue decomposition into (8.18) gives:
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Due to the unidentified and arbitrary diagonal of ⌦⌦⌦ we can force ⌦⌦⌦ to be pos-
itive semi-definite—requiring all eigenvalues to be nonnegative—by shifting the
eigenvalues with some constant c:

⌦⌦⌦+ cIII =QQQ (⇤⇤⇤+ cIII)QQQ>.

Following the work of Kac (1966), we can use the following identity:
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and t = ✓j to rewrite (8.19) as follows:
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Reparameterizing ⌧i = −δi and −2
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qij = ↵ij we obtain:
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The same transformations can be used to obtain a di↵erent expression for Z:
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Finally, inserting (8.21) into (8.20), multiplying by
Q
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rearranging gives:
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The first part of the integral on the right hand side of (8.22) corresponds to a
distribution that sums to 1 for a P -dimensional random vector ⇥⇥⇥:

f(✓✓✓) /
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i
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i

exp
�
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i ✓✓✓ − δi

��

,

and the second part corresponds to the 2-parameter logistic MIRT probability of
the response vector as in (8.13):

P (XXX = xxx | ⇥⇥⇥ = ✓✓✓) =
Y

i

exp
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xi
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We can look further at this distribution by using Bayes’ rule to examine the
conditional distribution of ✓✓✓ given XXX = xxx:

f(✓✓✓ |XXX = xxx) / Pr (XXX = xxx | ⇥⇥⇥ = ✓✓✓) f (✓✓✓)

/ exp
⇣

xxx>AAA✓✓✓ − ✓✓✓>✓✓✓
⌘

/ exp
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2III
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and see that the posterior distribution of⇥⇥⇥ is a multivariate Gaussian distribution:

⇥⇥⇥ |XXX = xxx ⇠ NP
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, (8.23)

in which AAA is a matrix containing the discrimination parameters ↵↵↵i as its rows
and ± indicates that columns aj could be multiplied with −1 due to that both the

positive and negative root can be used in
q

λ
j

2

, simply indicating whether the items

overall are positively or negatively influenced by the latent trait ✓. Additionally,
Since the variance–covariance matrix of ✓ equals zero in all nondiagonal elements,
✓ is orthogonal. Thus, the multivariate density can be decomposed as the product
of univariate densities:

⇥j | X = x ⇠ N
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aijxi,

r

1

2

!

.

172



8.8. Appendix B: Glossary of Notation

8.8 Appendix B: Glossary of Notation

Symbol Dimension Description

{. . .} Set of distinct values.
(a, b) Interval between a and b.
P N Number of variables.
N N Number of observations.

X {−1, 1}P Random vector of binary variables.

x {−1, 1}P A possible realization of X.

n(xxx) N Number of observations with response
pattern xxx.

i, j, k and l {1, 2, . . . , P} , j 6= i Subscripts of random variables.

X

−(i) {−1, 1}P−1 Random vector of binary variables
without X

i

.

x

−(i) {−1, 1}P−1 A possible realization of X−(i).

X

−(i,j) {−1, 1}P−2 Random vector of binary variables
without X

i

and X
j

.

x

−(i,j) {−1, 1}P−2 A possible realization of X−(i).
Pr (. . .) ! (0, 1) Probability function.
φ
i

(x
i

) {−1, 1} ! R
>0 Node potential function.

φ
i

(x
i

, x
j

) {−1, 1}2 ! R
>0 Pairwise potential function.

⌧
i

R
Threshold parameter for node X

i

in
the Ising model. Defined as
⌧
i

= lnφ
i

(1).

⌧⌧⌧ RP

Vector of threshold parameters,
containing ⌧

i

as its ith element.

!
ij

R
Network parameter between nodes X

i

and X
j

in the Ising model. Defined as
!
ij

= lnφ
ij

(1, 1).

⌦⌦⌦
RP⇥P and
symmetrical

Matrix of network parameters,
containing !

ij

as its ijth element.
!!!
i

RP The ith row or column of ⌦⌦⌦.
Pen (!!!

i

) RP ! R Penalization function of !!!
i

.

β R
>0

Inverse temperature in the Ising
model.

H(xxx) {−1, 1}P ! R Hamiltonian function denoting the
energy of state xxx in the Ising model.

⌫
...

(. . .) ! R The log potential functions, used in
loglinear analysis.

M N The number of latent factors.

⇥ RM

Random vector of continuous latent
variables.

✓ RM Realization of ⇥⇥⇥.

L (⌧⌧⌧ ,⌦⌦⌦;xxx) ! R Likelihood function based on
Pr (XXX = xxx).

L
i

(⌧⌧⌧ ,⌦⌦⌦;xxx) ! R
Likelihood function based on
Pr

⇣
X

i

= x
i

|XXX−(i) = xxx−(i)
⌘
.

λ R
>0 LASSO tuning parameter

↵ (0, 1) Elastic net tuning parameter
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Chapter 9

Network Visualizations of

Relationships in Psychometric Data

Abstract

We present the qgraph package for R, which provides an interface to visu-
alize data through network modeling techniques. For instance, a correlation
matrix can be represented as a network in which each variable is a node
and each correlation an edge; by varying the width of the edges according
to the magnitude of the correlation, the structure of the correlation matrix
can be visualized. A wide variety of matrices that are used in statistics can
be represented in this fashion, for example matrices that contain (implied)
covariances, factor loadings, regression parameters and p values. qgraph can
also be used as a psychometric tool, as it performs exploratory and confir-
matory factor analysis, using sem (Fox, 2006) and lavaan (Rosseel, 2012);
the output of these packages is automatically visualized in qgraph, which
may aid the interpretation of results. In this article, we introduce qgraph by
applying the package functions to data from the NEO-PI-R, a widely used
personality questionnaire.

9.1 Introduction

The human visual system is capable of processing highly dimensional informa-
tion naturally. For instance, we can immediately spot suggestive patterns in a
scatterplot, while these same patterns are invisible when the data is numerically
represented in a matrix.

We present qgraph1, an R package that accommodates this capacity for spotting
patterns by visualizing data in a novel way: through networks. Networks consist

This chapter has been adapted from: Epskamp, S., Cramer, A.O.J., Waldorp, L.J.,
Schmittmann, V.D., and Borsboom, D. (2012). qgraph: Network Visualizations of Relation-
ships in Psychometric Data. Journal of Statistical Software, 48 (1), 1–18.

1http://cran.r-project.org/web/packages/qgraph/index.html
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9. Network Visualizations of Relationships in Psychometric Data

of nodes (also called ‘vertices’) that are connected by edges (Harary, 1969). Each
edge has a certain weight, indicating the strength of the relevant connection, and
in addition edges may or may not be directed. In most applications of network
modeling, nodes represent entities (e.g., people in social networks, or genes in
gene networks). However, in statistical analysis it is natural to represent variables
as nodes. This representation has a longstanding tradition in econometrics and
psychometrics (e.g., see Bollen & Lennox, 1991; Edwards & Bagozzi, 2000), and
was a driving force behind the development of graphical models for causal analysis
(Spirtes, Glymour, & Scheines, 2000; Pearl, 2000). By representing relationships
between variables (e.g., correlations) as weighted edges important structures can
be detected that are hard to extract by other means. In general, qgraph enables
the researcher to represent complex statistical patterns in clear pictures, without
the need for data reduction methods.

qgraph was developed in the context of network approaches to psychomet-
rics (Cramer et al., 2010; Borsboom, 2008; Schmittmann et al., 2013), in which
theoretical constructs in psychology are hypothesized to be networks of causally
coupled variables. In particular, qgraph automates the production of graphs such
as those proposed in Cramer et al. (2010). However, the techniques in the package
have also proved useful as a more general tool for visualizing data, and include
methods to visualize output from several psychometric packages like sem (Fox,
2006) and lavaan (Rosseel, 2012).

A number of R packages can be used for the visualization and analysis of
networks (e.g., network, Butts, Handcock, & Hunter, 2011; statnet Handcock,
Hunter, Butts, Goodreau, & Morris, 2008; igraph Csardi & Nepusz, 2006). In
visualizing graphs qgraph distinguishes itself by being specifically aimed at the
visualization of statistical information. This usually leads to a special type of
graph: a non-sparse weighted graph. Such graphs typically contain many edges
(e.g., a fully connected network with 50 nodes has 2450 edges) thereby making it
hard to interpret the graph; as well as inflating the file size of vector type image
files (e.g., PDF, SVG, EPS). qgraph is specifically aimed at presenting such graphs
in a meaningful way (e.g., by using automatic scaling of color and width, cuto↵
scores and ordered plotting of edges) and to minimize the file size of the output
in vector type image files (e.g., by minimizing the amount of polygons needed).
Furthermore, qgraph is designed to be usable by researchers new to R, while at the
same time o↵ering more advanced customization options for experienced R users.

qgraph is not designed for numerical analysis of graphs (Boccaletti, Latora,
Moreno, Chavez, & Hwang, 2006), but can be used to compute the node centrality
measures of weighted graphs proposed by Opsahl et al. (2010). Other R packages as
well as external software can be used for more detailed analyses. qgraph facilitates
these methods by using commonly used methods as input. In particular, the
input is the same as used in the igraph package for R, which can be used for many
di↵erent analyses.

In this article we introduce qgraph using an included dataset on personality
traits. We describe how to visualize correlational structures, factor loadings and
structural equation models and how these visualizations should be interpreted.
Finally we will show how qgraph can be used as a simple unified interface to
perform several exploratory and confirmatory factor analysis routines available in
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R.

9.2 Creating Graphs

Throughout this article we will be working with a dataset concerning the five
factor model of personality (Benet-Martinez & John, 1998; Digman, 1989; Gold-
berg, 1990a, 1993; McCrae & Costa, 1997). This is a model in which correlations
between responses to personality items (i.e., questions of the type ‘do you like
parties?’, ‘do you enjoy working hard?’) are explained by individual di↵erences in
five personality traits: neuroticism, extraversion, agreeableness, openness to expe-
rience and conscientiousness. These traits are also known as the ‘Big Five’. We
use an existing dataset in which the Dutch translation of a commonly used person-
ality test, the NEO-PI-R (Costa & McCrae, 1992; Hoekstra, de Fruyt, & Ormel,
2003), was administered to 500 first year psychology students (Dolan, Oort, Stoel,
& Wicherts, 2009). The NEO-PI-R consists of 240 items designed to measure the
five personality factors with items that cover six facets per factor2. The scores
of each subject on each item are included in qgraph, as well as information on
the factor each item is designed to measure (this information is in the column
names). All graphs in this chapter were made using R version 2.14.1 (2011-12-22)
and qgraph version 1.0.0.

First, we load qgraph and the NEO-PI-R dataset:

library("qgraph")

data("big5")

Input Modes

The main function of qgraph is called qgraph(), and its first argument is used as
input for making the graph. This is the only mandatory argument and can either
be a weights matrix, an edge-list or an object of class "qgraph", "loadings" and
"factanal" (stats; R Core Team, 2016), "principal" (psych; Revelle, 2010),
"sem" and "semmod" (sem; Fox, 2006), "lavaan" (lavaan; Rosseel, 2012), "graph-
NEL" (Rgraphviz ; Gentry et al., 2011) or "pcAlgo" (pcalg ; Kalisch, Maechler, &
Colombo, 2010). In this chapter we focus mainly on weights matrices, information
on other input modes can be found in the documentation.

A weights matrix codes the connectivity structure between nodes in a network
in matrix form. For a graph with n nodes its weights matrix A is a square n by n
matrix in which element aij represents the strength of the connection, or weight,
from node i to node j. Any value can be used as weight as long as (a) the value
zero represents the absence of a connection, and (b) the strength of connections is
symmetric around zero (so that equal positive and negative values are comparable
in strength). By default, if A is symmetric an undirected graph is plotted and
otherwise a directed graph is plotted. In the special case where all edge weights
are either 0 or 1 the weights matrix is interpreted as an adjacency matrix and an
unweighted graph is made.

2A facet is a subdomain of the personality factor; e.g., the factor neuroticism has depression
and anxiety among its subdomains.
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9. Network Visualizations of Relationships in Psychometric Data

1

23

Figure 9.1: A directed graph based on a 3 by 3 weights matrix with three edges
of di↵erent strengths.

For example, consider the following weights matrix:
2

4

0 1 2
0 0 3
0 0 0

3

5

This matrix represents a graph with 3 nodes with weighted edges from node 1 to
nodes 2 and 3, and from node 2 to node 3. The resulting graph is presented in
Figure 9.1.

Many statistics follow these rules and can be used as edge weights (e.g., cor-
relations, covariances, regression parameters, factor loadings, log odds). Weights
matrices themselves also occur naturally (e.g., as a correlation matrix) or can eas-
ily be computed. Taking a correlation matrix as the argument of the function
qgraph() is a good start to get acquainted with the package.

With the NEO-PI-R dataset, the correlation matrix can be plotted with:

qgraph(cor(big5))

This returns the most basic graph, in which the nodes are placed in a circle. The
edges between nodes are colored according to the sign of the correlation (green
for positive correlations, and red for negative correlations), and the thickness of
the edges represents the absolute magnitude of the correlation (i.e., thicker edges
represent higher correlations).

Visualizations that aid data interpretation (e.g., are items that supposedly
measure the same construct closely connected?) can be obtained either by using
the groups argument, which groups nodes according to a criterion (e.g., being
in the same psychometric subtest) or by using a layout that is sensitive to the
correlation structure. First, the groups argument can be used to specify which
nodes belong together (e.g., are designed to measure the same factor). Nodes
belonging together have the same color, and are placed together in smaller circles.
The groups argument can be used in two ways. First, it can be a list in which each
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Figure 9.2: A visualization of the correlation matrix of the NEO-PI-R dataset.
Each node represents an item and each edge represents a correlation between
two items. Green edges indicate positive correlations, red edges indicate negative
correlations, and the width and color of the edges correspond to the absolute value
of the correlations: the higher the correlation, the thicker and more saturated is
the edge.

element is a vector containing the numbers of nodes belonging together. Secondly,
it can be a factor in which the levels belong together. The names of the elements
in the list or the levels in the factor are used in a legend of requested.

For the Big 5 dataset, the grouping of the variables according to the NEO-PI-R
manual is included in the package. The result of using the groups argument is a
network representation that readily facilitates interpretation in terms of the five
personality factors:

data("big5groups")

Q <- qgraph(cor(big5), groups = big5groups)

Note that we saved the graph in the object Q, to avoid specifying these argu-
ments again in future runs. It is easy to subsequently add other arguments: for
instance, we may further optimize the representation by using the minimum argu-
ment to omit correlations we are not interested in (e.g., very weak correlations),
borders to omit borders around the nodes, and vsize to make the nodes smaller:

Q <- qgraph(Q, minimum = 0.25, borders = FALSE, vsize = 2)
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9. Network Visualizations of Relationships in Psychometric Data

The resulting graph is represented in Figure 9.2.

Layout Modes

Instead of predefined circles (as was used in Figure 9.2), an alternative way of
facilitating interpretations of correlation matrices is to let the placement of the
nodes be a function of the pattern of correlations. Placement of the nodes can be
controlled with the layout argument. If layout is assigned "circular", then the
nodes are placed clockwise in a circle, or in smaller circles if the groups argument
is specified (as in Figure 9.2). If the nodes are placed such that the length of the
edges depends on the strength of the edge weights (i.e., shorter edges for stronger
weights), then a picture can be generated that shows how variables cluster. This
is a powerful exploratory tool, that may be used as a visual analogue to factor
analysis. To make the length of edges directly correspond to the edge weights
an high dimensional space would be needed, but a good alternative is the use of
force-embedded algorithms (Di Battista, Eades, Tamassia, & Tollis, 1994) that
iteratively compute the layout in two-dimensional space.

A modified version of the Fruchterman and Reingold (1991) algorithm is in-
cluded in qgraph. This is a C function that was ported from the sna package
(Butts, 2010). A modification of this algorithm for weighted graphs was taken
from igraph (Csardi & Nepusz, 2006). This algorithm uses an iterative process to
compute a layout in which the length of edges depends on the absolute weight of
the edges. To use the Fruchterman-Reingold algorithm in qgraph() the layout

argument needs to be set to "spring". We can do this for the NEO-PI-R dataset,
using the graph object Q that we defined earlier, and omitting the legend:

qgraph(Q, layout = "spring", legend = FALSE)

Figure 9.3 shows the correlation matrix of the Big Five dataset with the nodes
placed according to the Fruchterman-Reingold algorithm. This allows us inspect
the clustering of the variables. The figure shows interesting structures that are far
harder to detect with conventional analyses. For instance, neuroticism items (i.e.,
red nodes) cluster to a greater extent when compared to other traits; especially
openness is less strongly organized than the other factors. In addition, agreeable-
ness and extraversion items are literally intertwined, which o↵ers a suggestive way
of thinking about the well known correlation between these traits.

The placement of the nodes can also be specified manually by assigning the
layout argument a matrix containing the coordinates of each node. For a graph
of n nodes this would be a n by 2 matrix in which the first column contains the x
coordinates and the second column contains the y coordinates. These coordinates
can be on any scale and will be rescaled to fit the graph by default. For example,
the following matrix describes the coordinates of the graph in Figure 9.1:

2

4

2 2
3 1
1 1

3

5
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Figure 9.3: A graph of the correlation matrix of the NEO-PI-R dataset in which
the nodes are placed by the Fruchterman-Reingold algorithm. The specification
of the nodes and edges are identical to Figure 9.2
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9. Network Visualizations of Relationships in Psychometric Data

This method of specifying the layout of a graph is identical to the one used in the
igraph (Csardi & Nepusz, 2006) package, and thus any layout obtained through
igraph can be used3.

One might be interested in creating not one graph but an animation of several
graphs that are similar to each other. Such animations can, for example, illustrate
the growth of a network over time or show the change of correlational structures
in repeated measures. For such similar but not equal graphs the Fruchterman-
Reingold algorithm might return completely di↵erent layouts, which will make
the animation unnecessary hard to interpret. This problem can be solved by
limiting the amount of space a node may move in each iteration. The function
qgraph.animate() automates this process and can be used for various types of
animations.

Output Modes

To save the graphs, any output device in R can be used to obtain high resolution,
publication-ready image files. Some devices can be called directly by qgraph()

through the filetype argument, which must be assigned a string indicating what
device should be used. Currently filetype can be "R" or "x11"4 to open a new
plot in R, raster types "tiff", "png" and "jpg", vector types "eps", "pdf" and
"svg" and "tex". A PDF file is advised, and this can thus be created with
qgraph(\ldots, filetype = "pdf").

Often, the number of nodes makes it potentially hard to track which variables
are represented by which nodes. To address this problem, one can define mouseover
tooltips for each node, so that the name of the corresponding variable (e.g., the
item content in the Big Five graph) is shown when one places the cursor over
the relevant node. In qgraph, mouseover tooltips can be placed on the nodes in
two ways. The "svg" filetype creates a SVG image using the RSVGTipsDevice
package (Plate, 2009)5. This filetype can be opened using most browsers (best
viewed in Firefox) and can be used to include mouseover tooltips on the node
labels. The tooltips argument can be given a vector containing the tooltip for
each node. Another option for mouseover tooltips is to use the "tex" filetype.
This uses the tikzDevice package (Sharpsteen & Bracken, 2010) to create a .tex file
that contains the graph6, which can then be built using pdfLATEX. The tooltips
argument can also be used here to create mouseover tool tips in a PDF file7.

3To do this, first create an "igraph" object by calling graph.adjacency() on the weights
matrix with the arguments= weighted=TRUE. Then, use one of the layout functions (e.g.,
layout.spring()) on the "igraph" object. This returns the matrix with coordinates which
can be used in qgraph()

4RStudio users are advised to use filetype="x11" to plot in R
5RSVGTipsDevice is only available for 32bit versions of R
6Note that this will load the tikzdevice package which upon loading checks for a LATEX

compiler. If this is not available the package might fail to load
7We would like to thank Charlie Sharpsteen for supplying the tikz codes for these tooltips
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9.3. Visualizing Statistics as Graphs

Standard visual parameters

In weighted graphs green edges indicate positive weights and red edges indicate
negative weights8. The color saturation and the width of the edges corresponds
to the absolute weight and scale relative to the strongest weight in the graph (i.e.,
the edge with the highest absolute weight will have full color saturation and be
the widest). It is possible to control this behavior by using the maximum argument:
when maximum is set to a value above any absolute weight in the graph then the
color and width will scale to the value of maximum instead9. Edges with an absolute
value under the minimum argument are omitted, which is useful to keep filesizes
from inflating in very large graphs.

In larger graphs the above edge settings can become hard to interpret. With
the cut argument a cuto↵ value can be set which splits scaling of color and width.
This makes the graphs much easier to interpret as you can see important edges and
general trends in the same picture. Edges with absolute weights under the cuto↵
score will have the smallest width and become more colorful as they approach the
cuto↵ score, and edges with absolute weights over the cuto↵ score will be full red
or green and become wider the stronger they are.

In addition to these standard arguments there are several arguments that can
be used to graphically enhance the graphs to, for example, change the size and
shape of nodes, add a background or Venn diagram like overlay and visualize test
scores of a subject on the graph. The documentation of the qgraph() function
has detailed instructions and examples on how these can be used.

9.3 Visualizing Statistics as Graphs

Correlation Matrices

In addition to the representations in Figures 9.2 and 9.3, qgraph o↵ers various
other possibilities for visualizing association structures. If a correlation matrix is
used as input, the graph argument of qgraph() can be used to indicate what type
of graph should be made. By default this is "association" in which correlations
are used as edge weights (as in Figures 9.2 and 9.3).

Another option is to assign "concentration" to graph, which will create a
graph in which each edge represents the partial correlation between two nodes:
partialling out all other variables. For normally distributed continuous variables,
the partial correlation can be obtained from the inverse of the correlation (or
covariance) matrix. If P is the inverse of the correlation matrix, then the partial
correlation !ij of variables i and j is given by:

!ij =
−pijp
piipjj

Strong edges in a resulting concentration graph indicate correlations between
variables that cannot be explained by other variables in the network, and are there-
fore indicative of causal relationships (e.g., a real relationship between smoking

8The edge colors can currently not be changed except to grayscale colors using gray=TRUE

9This must be done to compare di↵erent graphs; a good value for correlations is 1
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(b)

Figure 9.4: Additional visualizations based on the correlations of the NEO-PI-
R dataset. Panel (a) shows a concentration graph with partial correlations and
panel (b) shows a graph in which connections are based on an exploratory factor
analysis.

and lung cancer that cannot be explained by other factors, for example gender),
provided that all relevant variables are included in the network.

The left panel of Figure 9.4 shows a concentration graph for the NEO-PI-R
dataset. This graph shows quite a few partial correlations above 0.3. Within
the factor model, these typically indicate violations of local independence and/or
simple structure.

A third option for the graph argument is "factorial", which creates an un-
weighted graph based on an exploratory factor analysis on the correlation (or co-
variance) matrix with promax rotation (using factanal() from stats). By default
the number of factors that are extracted in the analysis is equal to the number of
eigenvalues over 1 or the number of groups in the groups argument (if supplied).
Variables are connected with an edge if they both load higher on the same factor
than the cuto↵ score that is set with the cut argument. As such, the "factorial"
option can be used to investigate the structure as detected with exploratory factor
analysis.

The right panel of Figure 9.4 shows the factorial graph of the NEO-PI-R
dataset. This graph shows five clusters, as expected, but also displays some overlap
between the extraversion and agreeableness items.

qgraph has two functions that are designed to make all of the above graphs in a
single run. The first option is to use the qgraph.panel() function to create a four-
panel plot that contains the association graph with circular and spring layouts, a
concentration graph with the spring layout, and a factorial graph with the spring
layout. We can apply this function to the Big Five data to obtain all graphs at
once:
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9.3. Visualizing Statistics as Graphs

qgraph.panel(cor(big5), groups = big5groups, minimum = 0.25,

borders = FALSE, vsize = 1, cut = 0.3)

A second option to represent multiple graphs at once is to use the qgraph.svg()
function to produce an interactive graph. This function uses RSVGTipsDevice
(only available for 32bit versions of R; Plate, 2009) to create a host of SVG files
for all three types of graphs, using circular and spring layouts and di↵erent cuto↵
scores. These files contain hyperlinks to each other (which can also be used to
show the current graph in the layout of another graph) and can contain mouseover
tool tips as well. This can be a useful interface to quickly explore the data. A
function that does the same in tex format will be included in a later version of
qgraph, which can then be used to create a multi-page pdf file containing the same
graphs as qgraph.panel().

Matrices that are similar to correlation matrices, like covariance matrices and
lag-1 correlations in time series, can also be represented in qgraph. If the matrix
is not symmetric (as is for instance the case for lag-1 correlations) then a directed
graph is produced. If the matrix has values on the diagonal (e.g., a covariance
matrix) these will be omitted by default. To show the diagonal values the diag

argument can be used. This can be set to TRUE to include edges from and to
the same node, or "col" to color the nodes according to the strength of diagonal
entries. Note that it is advisable to only use standardized statistics (e.g., corre-
lations instead of covariances) because otherwise the graphs can become hard to
interpret.

Significance

Often a researcher is interested in the significance of a statistic (p value) rather
than the value of the statistic itself. Due to the strict cuto↵ nature of significance
levels, the usual representation then might not be adequate because small di↵er-
ences (e.g., the di↵erence between edges based on t statistics of 1.9 and 2) are
hard to see.

In qgraph statistical significance can be visualized with a weights matrix that
contains p values and assigning "sig" to the mode argument. Because these values
are structurally di↵erent from the edge weights we have used so far, they are first
transformed according to the following function:

wi = 0.7(1− pi)
log0.95

0.4
0.7

where wi is the edge weight of edge i and pi the corresponding significance level.
The resulting graph shows di↵erent levels of significance in di↵erent shades of blue,
and omits any insignificant value. The levels of significance can be specified with
the alpha argument. For a black and white representations, the gray argument
can be set to TRUE.

For correlation matrices the fdrtool package (Strimmer., 2011) can be used to
compute p values of a given set of correlations. Using a correlation matrix as
input the graph argument should be set to "sig", in which case the p values are
computed and a graph is created as if mode="sig" was used. For the Big 5 data,
a significance graph can be produced through the following code:
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9. Network Visualizations of Relationships in Psychometric Data

qgraph(cor(big5), groups = big5groups, vsize = 2,

graph = "sig", alpha = c(1e-04, 0.001, 0.01))

Factor Loadings

A factor-loadings matrix contains the loadings of each item on a set of factors
obtained through factor analysis. Typical ways of visualizing such a matrix is
to boldface factor loadings that exceed, or omit factor loadings below, a given
cuto↵ score. With such a method smaller, but interesting, loadings might easily
be overlooked. In qgraph, factor-loading matrices can be visualized in a similar
way as correlation matrices: by using the factor loadings as edge weights in a
network. The function for this is |qgraph.loadings()— which uses the factor-
loadings matrix to create a weights matrix and a proper layout and sends that
information to qgraph().

There are two functions in qgraph that perform an exploratory analysis based
on a supplied correlation (or covariance) matrix and send the results to |qgraph-
.loadings()—. The first is qgraph.efa() which performs an exploratory factor
analysis (EFA; Stevens, 1996) using factanal() (stats ; R Core Team, 2016). This
function requires three arguments plus any additional argument that will be sent
to |qgraph.loadings()— and qgraph(). The first argument must be a correlation
or covariance matrix, the second the number of factors to be extracted and the
third the desired rotation method.

To perform an EFA on the Big 5 dataset we can use the following code:

qgraph.efa(big5, 5, groups = big5groups, rotation = "promax",

minimum = 0.2, cut = 0.4, vsize = c(1, 15),

borders = FALSE, asize = 0.07, esize = 4, vTrans = 200)

Note that we supplied the groups list and that we specified a promax rotation
allowing the factors to be correlated.

The resulting graph is shown in the left panel of Figure 9.5. The factors are
placed in an inner circle with the variables in an outer circle around the factors10.
The factors are placed clockwise in the same order as the columns in the loadings
matrix, and the variables are placed near the factor they load the highest on.
Because an EFA is a reflective measurement model, the arrows point towards the
variables and the graph has residuals (Bollen & Lennox, 1991; Edwards & Bagozzi,
2000).

The left panel of Figure 9.5 shows that the Big 5 dataset roughly conforms
to the 5 factor model. That is, most variables in each group of items tend to
load on the same factor. However, we also see many crossloadings, indicating
departures from simple structure. Neuroticism seems to be a strong factor, and
most crossloadings are between extraversion and agreeableness.

The second function that performs an analysis and sends the results to |qgraph-
.loadings()— is qgraph.pca(). This function performs a principal component
analysis (PCA; Jolli↵e, 2002) using princomp() of the psych package (Revelle,
2010). A PCA di↵ers from an EFA in that it uses a formative measurement model

10For a more traditional layout we could set layout="tree"
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9. Network Visualizations of Relationships in Psychometric Data

(i.e., it does not assume a common cause structure). It is used in the same way as
qgraph.efa(); we can perform a PCA on the big 5 dataset using the same code
as with the EFA:

qgraph.pca(big5, 5, groups = big5groups, rotation = "promax",

minimum = 0.2, cut = 0.4, vsize = c(1, 15),

borders = FALSE, asize = 0.07, esize = 4, vTrans = 200)

The right panel of Figure 9.5 shows the results. Notice that the arrows now
point towards the factors, and that there are no residuals, as is the case in a forma-
tive measurement model11. Note that the correlations between items, which are
not modeled in a formative model, are omitted from the graphical representation
to avoid clutter.

Confirmatory Factor Analysis

Confirmatory factor models and regression models involving latent variables can
be tested using structural equation modeling (SEM; Bollen, 1989; Pearl, 2000).
SEM can be executed in R with three packages: sem (Fox, 2006), OpenMx (Boker
et al., 2011) and lavaan (Rosseel, 2012). qgraph currently supports sem and
lavaan, with support for OpenMx expected in a future version. The output of
sem (a "sem" object) can be sent to (1) qgraph() for a representation of the
standardized parameter estimates, (2) qgraph.semModel() for a path diagram of
the specified model, and (3) qgraph.sem() for a 12 page pdf containing fit indices
and several graphical representations of the model, including path diagrams and
comparisons of implied and observed correlations. Similarly, the output of lavaan
(a "lavaan" object) can be sent to qgraph() or qgraph.lavaan().

SEM is often used to perform a confirmatory factory analysis (CFA; Stevens,
1996) in which variables each load on only one of several correlated factors. Often
this model is identified by either fixing the first factor loading of each factor
to 1, or by fixing the variance of each factor to 1. Because this model is so
common, it should not be necessary to fully specify this model for each and every
run. However, this is currently still the case. Especially using sem the model
specification can be quite long.

The qgraph.cfa() function can be used to generate a CFA model for either
the sem package or the lavaan package and return the output of these packages
for further inspection. This function uses the groups argument as a measurement
model and performs a CFA accordingly. The results can be sent to another func-
tion, and are also returned. This is either a "sem" or "lavaan" object which can
be sent to qgraph(), qgraph.sem(), qgraph.lavaan() or any function that can
handle the object. We can perform the CFA on our dataset using lavaan with the
following code:

fit <- qgraph.cfa(cov(big5), N = nrow(big5),

groups = big5groups, pkg = "lavaan",

opts = list(se = "none"), fun = print)

11In qgraph.loadings there are no arrows by default, but these can be set by setting the
model argument to "reflective" or "formative".
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Figure 9.6: Standardized parameter estimations of a confirmatory factor analysis
performed on the NEO-PI-R dataset.

lavaan (0.4-11) converged normally after 128 iterations

Number of observations 500

Estimator ML

Minimum Function Chi-square 60838.192

Degrees of freedom 28430

P-value 0.000

Note that we did not estimate standard errors to save some computing time. We
can send the results of this to qgraph.lavaan to get an output document.

Figure 9.6 shows part of this output: a visualization of the standardized pa-
rameter estimates. We see that the first loading of each factor is fixed to 1 (dashed
lines) and that the factors are correlated (bidirectional arrows between the fac-
tors). This is the default setup of qgraph.cfa() for both sem and lavaan12. From

12Using lavaan allows to easily change some options by passing arguments to cfa() using
the opts argument. For example, we could fix the variance of the factors to 1 by specifying
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Figure 9.7: The observed correlations in the NEO-PI-R dataset (left) and the
correlations that are implied by the model of Figure 9.6 (right).

the output above, we see that this model does not fit very well, and inspection
of another part of the output document shows why this is so: Figure 9.7 shows
a comparison of the correlations that are implied by the CFA model and the ob-
served correlations, which indicates the source of the misfit. The model fails to
explain the high correlations between items that load on di↵erent factors; this
is especially true for extraversion and agreeableness items. The overlap between
these items was already evident in the previous figures, and this result shows that
this overlap cannot be explained by correlations among the latent factors in the
current model.

9.4 Conclusion

The network approach o↵ers novel opportunities for the visualization and analysis
of vast datasets in virtually all realms of science. The qgraph package exploits these
opportunities by representing the results of well-known statistical models graph-
ically, and by applying network analysis techniques to high-dimensional variable
spaces. In doing so, qgraph enables researchers to approach their data from a new
perspective.

qgraph is optimized to accommodate both inexperienced and experienced R

users: The former can get a long way by simply applying qgraph.panel() to a
correlation matrix of their data, while the latter may utilize the more complex
functions in qgraph to represent the results of time series modeling. Overall,
however, the package is quite accessible and works with carefully chosen defaults,

qgraph.cfa(\ldots,opts=list(std.lv=TRUE)).
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9.4. Conclusion

so that it almost always produces reasonable graphs. Hopefully, this will allow the
network approach to become a valuable tool in data visualization and analysis.

Since qgraph is developed in a psychometric context, its applications are most
suitable for this particular field. In this chapter we have seen that qgraph can
be used to explore several thousands of correlations with only a few lines of code.
This resulted in figures that not only showed the structure of these correlations but
also suggested where exactly the five-factor model did not fit the data. Another
example is the manual of a test battery for intelligence (IST; Liepmann, Beauducel,
Brocke, & Amthauer, 2010) in which such graphs were used to argue for the validity
of the test. Instead of examining full datasets qgraph can also be used to check
for statistical assumptions. For example, these methods can be used to examine
multicollinearity in a set of predictors or the local independence of the items of a
subtest.

Clearly, we are only beginning to scratch the surface of what is possible in the
use of networks for analyzing data, and the coming years will see considerable de-
velopments in this area. Especially in psychometrics, there are ample possibilities
for using network concepts (such as centrality, clustering, and path lengths) to
gain insight in the functioning of items in psychological tests.
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Chapter 10

State of the aRt Personality

Research

Abstract

Network analysis represents a novel theoretical approach to personal-
ity. Network approaches motivate alternative ways of analyzing data, and
suggest new ways of modeling and simulating personality processes. In the
present chapter, we provide an overview of network analysis strategies as
they apply to personality data. We discuss di↵erent ways to construct net-
works from typical personality data, and show how to compute and interpret
important measures of centrality and clustering. All analyses are illustrated
using a data set on the commonly used HEXACO questionnaire using ele-
mentary R-code that readers may easily adapt to apply to their own data.

10.1 Introduction

A network is an abstract model composed of a set of nodes or vertices, a set of
edges, links or ties that connect the nodes, together with information concern-
ing the nature of the nodes and edges (e.g., De Nooy, Mrvar, & Batagelj, 2011).
Figure 10.1 reports the example of a simple network, with six nodes and seven
edges. The nodes usually represent entities and the edges represent their rela-
tions. This simple model can be used to describe many kinds of phenomena, such
as social relations, technological and biological structures, and information net-
works (e.g., Newman, 2010, Chapters 2–5). Recently networks of relations among
thoughts, feelings and behaviors have been proposed as models of personality and
of psychopathology: in this framework, traits have been conceived of as emerging

This chapter has been adapted from: Costantini, G., Epskamp, S., Borsboom, D., Perugini,
M., Mõttus, R., Waldorp, L. J., and Cramer, A. O. J. (2014). State of the aRt personality
research: A tutorial on network analysis of personality data in R. Journal of Research in Per-
sonality 54, 13–29. (The first two authors contributed equally to this work).
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Figure 10.1: A network with six nodes and seven edges. Positive edges are green
and negative edges are red. The letters identify the nodes, the numbers represent
weights associated to the edges

phenomena that arise from such networks (Borsboom & Cramer, 2013; Cramer,
Sluis, et al., 2012; Schmittmann et al., 2013). An R package, qgraph, has been
developed for the specific purpose of analyzing personality and psychopathology
data (Epskamp et al., 2012).

The aim of this contribution is to provide the reader with the necessary theoret-
ical and methodological tools to analyze personality data using network analysis,
by presenting key network concepts, instructions for applying them in R (R Core
Team, 2016), and examples based on simulated and on real data. First, we show
how a network can be defined from personality data. Second, we present a brief
overview of important network concepts. Then, we discuss how network concepts
can be applied to personality data using R. In the last part of the chapter, we
outline how network-based simulations can be performed that are specifically rel-
evant for personality psychology. Both the data and the R code are available for
the reader to replicate our analyses and to perform similar analyses on his/her
own data.

10.2 Constructing Personality Networks

A typical personality data set consists of cross-sectional measures of multiple sub-
jects on a set of items designed to measure several facets of personality. In stan-
dard approaches in personality research, such data are used in factor analysis to
search for an underlying set of latent variables that can explain the structural
covariation in the data. In a causal interpretation of latent variables (Borsboom
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10.2. Constructing Personality Networks

et al., 2003), responses to items such as “I like to go to parties” and “I have
many friends” are viewed as being causally dependent on a latent variable (e.g.,
extraversion). For example, McCrae and Costa’s (2008) interpretation of the re-
lation between extraversion and its indicators is explicitly causal: “extraversion
causes party-going behavior in individuals” (McCrae & Costa, 2008, p. 288). This
approach has culminated in currently influential models such as the Five Factor
Model of personality (McCrae & Costa, 2008), in which five dominant latent vari-
ables are ultimately held responsible for most of the structural covariation between
responses to personality items (additional latent factors such as facets may cause
some of the covariation).

Recently, however, this perspective has been challenged in the literature (Cramer,
Sluis, et al., 2012). In particular, it has been put forward that the default reliance
on latent variable models in personality may be inappropriate, because it may well
be that the bulk of the structural covariation in personality scales results from di-
rect interactions between the variables measured through personality items. For
instance, one may suppose that people who like to go to parties gain more friends
because they meet more people, and people who have more friends get invited
to good parties more often. In this way, one can achieve an explanation of the
relevant pattern of covariation without having to posit latent variables.

Thus, in this scheme of thinking, one may suppose that, instead of reflecting the
pervasive influence of personality factors, the structural covariance in personality
is actually due to local interactions between the variables measured. In this way
of thinking, personality resembles an ecosystem in which some characteristics and
behaviors stimulate each other, while others have inhibitory relations. Under this
assumption, the proper way to analyze personality data is not through the a priori
imposition of a latent variable structure, but through the construction of a network
that represents the most important relations between variables; this way, one may
get a hold of the structure of the ecosystem of personality.

It is important to stress that not all personality scholars have embraced a
causal view of latent factors. Some researchers for instance consider factors as the
common elements shared by many observable variables and not as their causes
(Ashton & Lee, 2005; Funder, 1991; Lee, 2012). Also from this di↵erent theoretical
perspective, the heuristic value of network analysis remains important. Factor
and network analysis di↵er, at the very least, in the fact that they direct the
researcher’s attention toward di↵erent aspects of personality. While factor analysis
focuses almost exclusively on the elements shared among the indicators, whether
or not interpreted causally, network analysis shifts the focus towards the direct
relationships among the observable variables. We do not challenge the use of factor
analysis as a statistical technique by itself: network analysis and factor analysis
can in principle be combined (Cramer, Sluis, et al., 2012; Lee, 2012)1. However,
a network perspective may foster important insights in the field that are unlikely
to come by relying exclusively on a latent variable perspective.

The current section explains how a network structure can be estimated and vi-
sualized in R based on typical personality research data. We explain how networks

1See also Chapter 7 and Chapter 8 for recent discussions on this topic.
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are encoded in weights matrices, discuss the most important kinds of networks and
show how to estimate these network.

Directed and Undirected Networks

There are di↵erent types of networks, which yield di↵erent kinds of information
and are useful in di↵erent situations. In a directed network, relationships between
nodes are asymmetrical. Research on directed networks has seen extensive de-
velopments in recent years since the work of Pearl and Verma (1995) and others
on causal systems. Methodology based on directed networks is most useful if one
is willing to accept that the network under consideration is acyclic, which means
that there are no feedback loops in the system (if A influences B, then B can-
not influence A). A directed network without feedback loops is called a Directed
Acyclic Graph (DAG). In contrast, in an undirected network, all relationships are
symmetrical. These networks are most useful in situations where (a) one cannot
make the strong assumption that the data-generating model is a DAG, (b) one
suspects that some of the relations between elements in the network are recipro-
cal, and (c) one’s research is of an exploratory character and is mainly oriented to
visualizing the salient relations between nodes. Since the latter situation appears
more realistic for personality research, the current chapter focuses primarily on
undirected networks.

Encoding a Network in a Weights Matrix

The structure of a network depends on the relations between its elements. Un-
weighted networks represent only the presence or absence of the edges, while
weighted networks encode additional information about the magnitude of the con-
nections. When it is important to distinguish large from small connections—such
as in personality—weighted networks are preferred. A weighted network can be
encoded in a weights matrix, which is a square matrix in which each row and
column indicate a node in the network. The elements of the matrix indicate the
strength of connection between two nodes; a zero in row i and column j indicates
that there is no edge between node i and node j. For example, the network of
Figure 10.1 can be represented with the following weights matrix:

A B C D E F

A 0 0.3 0 -0.3 0.2 0.3
B 0.3 0 -0.9 0 0 0
C 0 -0.9 0 0.8 0 0
D -0.3 0 0.8 0 0.3 0
E 0.2 0 0 0.3 0 0
F 0.3 0 0 0 0 0

In this network there are positive connections, for instance between nodes A
and B, and negative connections, for instance between nodes A and D. The zeroes
in the matrix indicate that there are absent connections in the network, such as

198



10.2. Constructing Personality Networks

between nodes A and C. Furthermore, we may note that the matrix is symmetric
and that the diagonal values are not used in the network.

The qgraph package (Epskamp et al., 2012) can be used to visualize such a
weights matrix as a network:

mat <- matrix(c(

0, 0.3, 0, -0.3, 0.2, 0.3,

0.3, 0, -0.9, 0, 0, 0,

0, -0.9, 0, 0.8, 0, 0,

-0.3, 0, 0.8, 0, 0.3, 0,

0.2, 0, 0, 0.3, 0, 0,

0.3, 0, 0, 0, 0, 0), ncol = 6, nrow = 6,

byrow = TRUE)

library("qgraph")

qgraph(mat, layout = "spring", edge.labels = TRUE,

labels = LETTERS[1:6], fade = FALSE)

Here, the first argument in the qgraph function—the (mat) argument—calls
the weights matrix to plot. The other arguments specify graphical layout.

Correlation Networks, Partial Correlation Networks, and
LASSO Networks

To illustrate network analysis on personality data we made public a dataset in
which nine-hundred-sixty-four participants (704 female and 256 male, M age =
21.1, SD = 4.9, plus four participants who did not indicate gender and age) were
administered the HEXACO-60 (Ashton & Lee, 2009). The HEXACO-60 is a short
60-items inventory that assesses six major dimensions of personality: honesty-
humility, emotionality, extraversion, Agreeableness vs. anger, conscientiousness
and openness to experience (Ashton & Lee, 2007). Each of the major dimensions
subsumes four facets, which can be computed as the average of two or three
items. Participants indicated their agreement with each statement on a scale
from 1 (strongly disagree) to 5 (strongly agree). An example of an item (of trait
emotionality) is “When I su↵er from a painful experience, I need someone to make
me feel comfortable”.

We can load the HEXACO dataset into R as follows:

Data <- read.csv("HEXACOfacet.csv")

The reader may use str(Data) to get an overview of the variables in the dataset.
Exploratory factor analysis can be performed to inspect the structure of the
dataset, using package psych (Revelle, 2010). The command fa.parallel(Data)

executes parallel analysis, which suggests six factors. The command fa(r=Data,

nfactors=6, rotate="Varimax") can be used to extract six orthogonal factors.
Factor loadings are reported in Table 10.1 and reproduce the expected structure
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E C O X H A Uniq. Compl. Smc
Hsi -.05 .11 .11 .05 .60 -.05 .61 1.17 .26
Hfa .14 .22 .15 -.04 .63 .19 .48 1.69 .39
Hga .11 -.01 .24 .03 .54 .14 .62 1.65 .29
Hmo .04 -.01 .05 -.05 .44 .07 .79 1.12 .16
Efe .48 .03 -.16 -.22 -.07 -.04 .69 1.72 .27
Ean .55 .17 .08 -.12 .11 -.11 .63 1.54 .30
Ede .66 -.01 -.11 -.08 -.01 -.03 .55 1.10 .34
Ese .68 .07 .02 .10 .13 .08 .50 1.18 .36
Xss -.36 .18 .06 .53 -.08 .00 .54 2.14 .38
Xsb -.05 .08 .07 .63 -.02 -.25 .52 1.40 .36
Xso .17 -.02 .03 .65 .06 .01 .55 1.17 .33
Xli -.11 .06 .02 .67 .00 .12 .52 1.13 .37
Afo .09 -.09 .04 .13 .16 .43 .75 1.68 .20
Age .09 -.06 -.02 .04 .13 .54 .68 1.21 .23
Afl -.06 -.02 -.01 -.10 .06 .67 .53 1.08 .29
Apa -.11 .10 .14 -.01 .09 .49 .71 1.45 .22
Cor .01 .73 -.07 .06 .01 .00 .46 1.03 .37
Cdi .19 .58 .19 .21 .18 -.03 .51 1.99 .41
Cpe .08 .70 .18 .05 .06 -.08 .46 1.22 .41
Cpr -.21 .52 .12 -.12 .15 .12 .62 1.87 .32
Oaa -.04 .17 .71 -.04 .15 .04 .44 1.23 .42
Oin -.25 .09 .59 .04 .15 -.01 .56 1.55 .35
Ocr .15 .01 .62 .14 .01 .08 .56 1.26 .32
Oun -.07 .01 .57 .10 .11 -.08 .65 1.22 .29

Table 10.1: Factor loadings. Factors are labeled according to their highest load-
ings. Note: E = loading on emotionality, C = loading on conscientiousness, O
= loading on openness to experience, X = loading on extraversion, H = loading
on honesty-humility, A = loading on agreeableness versus anger. Smc = squared
multiple correlation of each facet with all the others. Uniq. = uniqueness. Compl.
= Hofmann’s row-complexity index (1978).

(Ashton & Lee, 2009). For each facet Table 10.1 reports also the squared multi-
ple correlation with all the other facets and the Hofmann’s row-complexity index,
which represents the number of latent variables needed to account for each mani-
fest variable (Hofmann, 1978; Pettersson & Turkheimer, 2010) and is included in
the output of function fa.

Correlation networks. We will construct networks by representing measured
variables as nodes, connected by an edge if two variables interact with each other.
To do this we can use a simple heuristic: node A is connected to node B if node
A is associated with node B. A correlation matrix describes pairwise associations
between the facets of the HEXACO and therefore can be used for estimating such
a network structure. We can compute Pearson correlations on this dataset using
the cor function:
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cor(Data)

Notice that a correlation matrix is symmetric and that a value of zero indicates
no connection. Thus, a correlation matrix, by default, has properties that allow
it to be used as a weights matrix to encode an undirected network. Using this
connection opens up the possibility to investigate correlation matrices visually
as networks. To do so, we can use the qgraph package and ask it to plot the
correlation matrix as a network; in the remainder, we will indicate this network
as a correlation network. To facilitate interpretation, we color nodes according to
the assignment of facets to traits as specified in the HEXACO manual:

groups <- factor(c(

rep("Honesty Humility", 4),

rep("Emotionality", 4),

rep("Extraversion", 4),

rep("Agreeableness vs. anger", 4),

rep("Conscientiousness", 4),

rep("Openness to experience", 4)))

qgraph(cor(Data), layout = "spring", labels = colnames(Data),

groups = groups)

Figure 10.2A represents the correlation structure of the facets of the HEXACO
dataset. Green lines represent positive correlations, while red lines represent neg-
ative correlations. The wider and more saturated an edge is drawn, the stronger
the correlation. As the reader may expect, the figure shows that the correlations
of facets within traits are generally higher than the correlations of facets between
traits, which is likely to reflect the fact that in psychometric practice items are
typically grouped and selected on the basis of convergent and discriminant validity
(Campbell & Fiske, 1959).

In recent literature correlation networks have been applied to grasp complex
co-variation patterns in personality data that would be harder to notice otherwise
in, say, factor loading matrices. Epskamp et al. (2012) showed how qgraph can
be used to visualize the correlational structure of a 240 node dataset (Dolan et
al., 2009) in which the NEO-PI-R (Costa & McCrae, 1992; Hoekstra et al., 2003)
was used to assess the five factor model for personality (McCrae & Costa, 2008).
Cramer, Sluis, et al. (2012) further analyzed this network and showed that it did
not correspond to a correlation network that should arise had the data been gen-
erated by the five factor model for personality. Ziegler et al. (2013) constructed
a correlation network on 113 personality facet scale scores from the NEO-PI-R,
HEXACO, 6FPQ, 16PF, MPQ, and JPI and interpreted this network as a nomo-
logical network usable in scale development. Schlegel, Grandjean, and Scherer
(2013) investigated the overlap of social and emotional e↵ectiveness constructs
and found the correlation network to display four meaningful components. Fi-
nally, Franić, Borsboom, Dolan, and Boomsma (2014) used correlation networks
to show the similarity between genetic and environmental covariation between
items of the NEO-FFI.
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Partial correlation networks. Correlation networks are highly useful to visu-
alize interesting patterns in the data that might otherwise be very hard to spot.
However, they are not necessarily optimal for the application of network analysis
if the goal is to extract the structure of a data-generating network. The reason
is that correlations between nodes in the network may be spurious, rather than
being due to a genuine interaction between two nodes. For instance, spurious cor-
relations may arise as the consequence of shared connections with a third node.
Often, therefore, a network is constructed using the partial correlation matrix,
which gives the association that is left between any two variables after condition-
ing on all other variables. The partial correlation coefficients are directly related
to the inverse of the correlation matrix, also called the precision matrix (Lauritzen,
1996; Pourahmadi, 2011). Networks constructed on this basis are called partial
correlation networks or concentration graphs (Cox &Wermuth, 1993), and the sta-
tistical data-generating structures that they encode are known as Markov random
fields (Kindermann, Snell, et al., 1980).

The partial correlation network can be obtained in qgraph by setting the ar-
gument graph to "concentration":

qgraph(cor(Data), layout = "spring", labels = colnames(Data),

groups = groups, graph = "concentration")

The partial correlation network is shown in Figure 10.2B. We can see that nodes
still cluster together; the partial correlations within traits are generally stronger
than the partial correlations between traits. Comparing figures 2A and 2B we can
see structure emerging in for example the Openess (purple) cluster: the creativity
node (Ocr) is no longer directly connected to the inquisitiveness (Oin) and uncon-
ventionality (Oun) nodes but now indirectly via the aesthetic appreciation (Oaa)
node. Furthermore, we can see that the conscientiousness node prudence (Cpr)
now has a more central role in the network and obtained relatively stronger con-
nections with nodes of di↵erent traits: flexibility (Afl) and patience (Apa) of the
Agreeableness vs. anger trait and sociability (Xso) and Social self-esteem (Xss) of
the extroversion trait.

Adaptive LASSO networks. In weighted networks, two nodes are connected
if and only if the strength of connection between them is nonzero; a value of
zero in the weights matrix encodes no connection between two nodes. Both the
correlation and the partial correlation networks have been estimated based on an
empirical sample and will therefore not result in exact zeroes. Thus, both networks
will always be fully connected networks, possibly with arbitrarily small weights on
many of the edges.

It has been argued that in social sciences everything is to some extent correlated
with everything. This is akin to what Meehl and Lykken have called the crud factor
or ambient noise level (Lykken, 1968, 1991; Meehl, 1990) and what may at least
partly be responsible for the controversial general factor of personality (Musek,
2007). If a network model of pairwise interactions is assumed to underlie the
data then all nodes that are indirectly connected will be correlated, mainly due
to spurious connections. Therefore, even at the population level we can assume
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C. Adaptive lasso Network

Figure 10.2: Networks of the HEXACO-60. Nodes represent personality facets (a
description of each facet is provided in Table 10.2), green lines represent positive
connections and red lines represent negative connections. Thicker lines represent
stronger connections and thinner lines represent weaker connections. The node
placement of all graphs is based on the adaptive LASSO network to facilitate
comparison. The width and color are scaled to the strongest edge and not com-
parable between graphs; edge strengths in the correlation network are generally
stronger than edge strengths in the partial correlation network.
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that most correlations in personality research will be nonzero, resulting in a fully
connected correlation network.

While correlation networks of personality measures are likely to be fully con-
nected in the population, partial correlation networks are not necessarily so. This
is of specific interest since the absence of an edge in a partial correlation network
entails that two nodes are conditionally independent given all other nodes in the
network—they cannot directly interact. The model in which partial correlations
are set to zero is called the Gaussian graphical model (GGM; Lauritzen, 1996) as
it can be visualized as a network. An optimal GGM is both sparse (many absent
edges) while maintaining a high likelihood. Finding such a model corresponds to
checking which connections are absent in the population network. Default sig-
nificance tests can be used for this purpose (Drton & Perlman, 2004). However,
significance tests require an arbitrary choice of significance level; di↵erent choices
yield di↵erent results, with more stringent significance levels resulting in sparser
networks. If one ignores this issue, one has a multiple testing problem, whereas
if one deals with it in standard ways (e.g., through a Bonferroni correction), one
faces a loss of power.

A practical way to deal with the issue of arbitrary choices is to construct
networks based on di↵erent choices and to see how stable the main results are;
however, a more principled alternative is to use a LASSO penalty (Friedman,
Hastie, & Tibshirani, 2008) in estimating the partial correlation networks. This
causes small connections to automatically shrink to be exactly zero and results
in a parsimonious network. If the data indeed arose from a sparse network with
pairwise interactions, such a procedure will in fact converge on the generating
network (Foygel & Drton, 2011).

The adaptive LASSO is a generalization of the LASSO that assigns di↵erent
penalty weights for di↵erent coefficients (Zou, 2006) and outperforms the LASSO
in the estimation of partial correlation networks, especially if the underlying net-
work is sparse (Fan, Feng, & Wu, 2009; Krämer et al., 2009). The penalty weights
can be chosen in a data-dependent manner, relying on the LASSO regression coeffi-
cients (Krämer et al., 2009). In simulation studies, the likelihood of false positives
using this method resulted even smaller than that obtained with the LASSO pe-
nalization (Krämer et al., 2009), so if an edge is present in the adaptive LASSO
network one can reasonably trust that there is a structural relation between the
variables in question (of course, the network does not specify the exact nature
of the relation, which may for instance be due to a direct causal e↵ect, a logical
relation pertaining to item content, a reciprocal e↵ect, or the common e↵ect of an
unmodeled latent variable).

The adaptive LASSO is also convenient practically, as it is implemented in
the R-package parcor (Krämer et al., 2009). Since the adaptive LASSO, as im-
plemented in package parcor, relies on k-fold validation, set.seed can be used
to ensure the exact replicability of the results, which might be slightly di↵erent
otherwise. To estimate the network structure of the HEXACO dataset according
to the adaptive LASSO, the following code can be used:

library("parcor")

library("Matrix")
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set.seed(100)

adls <- adalasso.net(Data)

network <- as.matrix(forceSymmetric(adls$pcor.adalasso))

qgraph(network, layout = "spring", labels = colnames(Data),

groups = groups)

The adaptive LASSO network is shown in Figure 10.2C. One can see that, com-
pared to the partial correlation network, the adaptive LASSO yields a more parsi-
monious graph (fewer connections) that encodes only the most important relations
in the data; In this network 134 (48.6%) of the edges are identified as zero.

10.3 Analyzing the Structure of Personality Networks

Once a network is estimated, several indices can be computed that convey infor-
mation about network structure2. Two types of structure are important. First,
one is typically interested in the global structure of the network: how large is it?
Does it feature strong clusters? Does it reveal a specific type of structure, like
a small-world (Watts & Strogatz, 1998)? Second, one may be interested in local
patterns, i.e., one may want to know how nodes di↵er in various characteristics:
which nodes are most central? Which nodes are specifically strongly connected?
What is the shortest path from node A to node B? Here we discuss a limited
selection of indices that we regard as relevant to personality research, focusing
especially on centrality and clustering coefficients. More extensive reviews of net-
work indices may be found in Boccaletti et al. (2006); Butts (2008); de De Nooy
et al. (2011); Kolaczyk (2009); and Newman (2010).

Descriptive Statistics

Before the computation of centrality measures, a number of preparatory com-
putations on the data are in order. The network is undirected, therefore the
corresponding weights matrix is symmetric and each edge weight is represented
twice, above and below the main diagonal. The function upper.tri can be used
to extract the unique edge weights3 and save them in a vector:

ew <- network[upper.tri(network)]

To compute the number of edges in the network, it is sufficient to define a logical
vector that has value TRUE ( = 1) if the edge is di↵erent from zero and FALSE (

2The adaptive LASSO networks, the correlation and the partial correlation networks are
characterized by the presence of both positive and negative edges. The importance of signed
networks is apparent not only in the study of social phenomena, in which it is important to make a
distinction between liking and disliking relationships (e.g., Leskovec, Huttenlocher, & Kleinberg,
2010), but also in the study of personality psychology (e.g., Costantini & Perugini, 2014). Some
network indices have been generalized to the signed case (e.g., Costantini & Perugini, 2014;
Kunegis, Lommatzsch, & Bauckhage, 2009), however most indices are designed to unsigned
networks. For the computation of the latter kind of indices, we will consider the edge weights in
absolute value.

3The function upper.tri extracts the elements above the main diagonal. One could equally
consider those below the diagonal using the function lower.tri.
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= 0) if the edge is exactly zero (i.e., absent). The sum of this vector gives the
number of nonzero edges. With a similar procedure, it is possible to count the
positive and the negative edges: it is sufficient to replace != with > or <:

sum(ew != 0) # the number of edges

sum(ew > 0) # the number of positive edges

sum(ew < 0) # the number of negative edges

The network has 142 edges, of which 100 are positive and 42 are negative. The
function t.test can be used to compare the absolute weights of the positive versus
the negative edges:

t.test(abs (ew [ew > 0]), abs(ew [ew < 0]) , var.equal = TRUE)

In our network, positive edges are generally associated to larger weights (M = .11,
SD = .09) than the negative edges (M = .06, SD = .04), and the t-test indicates
that this di↵erence is significant, t(140) = 3.13, p = .0022.

Centrality Measures

Not all nodes in a network are equally important in determining the network’s
structure and, if processes run on the network, in determining its dynamic charac-
teristics (Kolaczyk, 2009). Centrality indices can be conceived of as operational-
izations of a node’s importance, which are based on the pattern of the connections
in which the node of interest plays a role. In network analysis, centrality in-
dices are used to model or predict several network processes, such as the amount
of flow that traverses a node or the tolerance of the network to the removal of
selected nodes (Borgatti, 2005; Crucitti, Latora, Marchiori, & Rapisarda, 2004;
Jeong, Mason, Barabási, & Oltvai, 2001) and can constitute a guide for network
interventions (Valente, 2012). Several indices of centrality have been proposed,
based on di↵erent models of the processes that characterize the network and on a
di↵erent conception of what makes a node important (Borgatti & Everett, 2006;
Borgatti, 2005) The following gives a succinct overview of the most often used
centrality measures4.

Degree and strength. First, degree centrality is arguably the most common
centrality index and it is defined as the number of connections incident to the
node of interest (Freeman, 1978). The degree centrality of node C in Figure 10.1
is 2 because it has two connections, with nodes B and D. Degree can be straight-
forwardly generalized to weighted networks by considering the sum of the weights
of the connections (in absolute value), instead of their number. This generaliza-
tion is called strength (Barrat, Barthelemy, Pastor-Satorras, & Vespignani, 2004;
Newman, 2004). For instance, strength of node C in Figure 10.1 is 1.7, which is

4The functions to implement centrality indices, clustering coefficients and small-worldness
are implemented in the R package qgraph (Epskamp et al., 2012). Some of the functions rely
on procedures originally implemented in packages igraph (Csardi & Nepusz, 2006), sna (Butts,
2010), and WGCNA (Langfelder & Horvath, 2012). These packages are in our experience among
the most useful for network analysis.
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the highest in the network. Degree and strength focus only on the paths of uni-
tary length (Borgatti, 2005). A strength-central personality characteristic (e.g.,
an item, a facet or a trait) is one that can influence many other personality char-
acteristics (or be influenced by them) directly, without considering the mediating
role of other nodes.

Closeness and betweenness. Several other measures exist that, di↵erently
from degree centrality and the related indices, consider edges beyond those inci-
dent to the focal node. An important class of these indices rely on the concepts of
distance and of geodesics (Brandes, 2001; Dijkstra, 1959). The distance between
two nodes is defined as the length of the shortest path between them. Since, in
typical applications in personality psychology, weights represent the importance of
an edge, weights are first converted to lengths, usually by taking the inverse of the
absolute weight (Brandes, 2008; Opsahl et al., 2010). The geodesics between two
nodes are the paths that connect them that have the shortest distance. Closeness
centrality (Freeman, 1978; Sabidussi, 1966) is defined as the inverse of the sum
of the distances of the focal node from all the other nodes in the network5. In
terms of network flow, closeness can be interpreted as the expected speed of arrival
of something flowing through the network (Borgatti, 2005). A closeness-central
personality characteristic is one that is likely to be quickly a↵ected by changes in
another personality characteristic, directly or through the changes in other person-
ality features. Its influence can reach other personality features more quickly than
the influence of those that are peripheral according to closeness, because of the
short paths that connect itself and the other traits. In the network in Figure 10.1,
node D has the highest closeness. To compute the exact value of closeness, one
should first compute the distances between D and all the other nodes: A (1/0.3),
B (1/0.8 + 1/0.9), C (1/0.8), E (1/0.3) and F (1/.3 + 1/.3). The sum of all the
distances is 16.94 and the inverse, 0.59, is the closeness centrality of D.

Betweenness centrality is defined as the number of the geodesics between any
two nodes that pass through the focal one. To account for the possibility of several
geodesics between two nodes, if two geodesics exist, each one is counted as a half
path and similarly for three or more (Brandes, 2001; Freeman, 1978). Betweenness
centrality assumes that shortest paths are particularly important (Borgatti, 2005):
if a node high in betweenness centrality is removed, the distances among other
nodes will generally increase. Both closeness and betweenness centrality can be
applied to weighted and directed networks, as long as the weights and/or the
directions of the edges are taken into account when computing the shortest paths
(e.g., Opsahl et al., 2010).

The betweenness centrality of node A in Figure 10.1 is 4 and is the highest
in the network. The four shortest paths that pass through A are those between
F and the nodes B, C, D, and E. Betweenness centrality can also be extended
to evaluate the centrality of edges instead of nodes, by considering the geodesics

5The computation of closeness assumes that the network is connected (i.e., a path exists
between any two nodes), otherwise, being the distance of disconnected nodes infinite, the index
will result to zero for all the nodes. Variations of closeness centrality that address this issue have
been proposed (Kolaczyk, 2009; Opsahl et al., 2010). Alternatively it can be computed only for
the largest component of the network (Opsahl et al., 2010).
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that pass through an edge: this generalization is called edge betweenness centrality
(Brandes, 2008; Newman, 2004; Newman & Girvan, 2004). For instance, the edge-
betweenness centrality of the edge (D,E) is 3 and the three shortest paths that pass
through (D,E) are the one between D and E, the one between C and E (through
D), and the between B and E (through C and D).

Betweenness-central personality characteristics and betweenness-central edges
are particularly important for other personality characteristics to quickly influence
each other. It is interesting to investigate the conditions in which some nodes be-
come more or less central. For instance, a study that analyzed a network of moods
showed that the mood “worrying” played a more central role for individuals high
in neuroticism than for those with low neuroticism (Bringmann et al., 2013): the
prominent role of worrying for neuroticism was recently confirmed by an experi-
mental fMRI study (Servaas, Riese, Ormel, & Aleman, 2014).

Brandes (2008) discusses several other variants of the shortest-paths between-
ness, some of which are implemented in package sna (Butts et al., 2008). Gener-
alizations of betweenness centrality that account for paths other than the shortest
ones have been also proposed (Brandes & Fleischer, 2005; Freeman, Borgatti, &
White, 1991; Newman, 2005). In addition, Opsahl and colleagues (2010) proposed
generalizations of degree, closeness, and betweenness centralities by combining in
the formula both the number and the weights of the edges. They introduced a
tuning parameter that allows setting their relative importance: a higher value of
the tuning parameter emphasizes the importance of the weights over the mere
presence of the ties and vice versa. Another important family of centrality indices
defines the centrality of a node as recursively dependent on the centralities of their
neighbors. Among the most prominent of those indices are eigenvector central-
ity (Bonacich, 1972, 2007), Bonacich power (Bonacich, 1987) and alpha centrality
(Bonacich & Lloyd, 2001).

Clustering Coefficients

Besides centrality, other network properties have been investigated that are rel-
evant also for personality networks. The local clustering coefficient is a node
property defined as the number of connections among the neighbors of a focal
node over the maximum possible number of such connections (Watts & Strogatz,
1998). If we define a triangle as a triple of nodes all connected to each other, the
clustering coefficient can be equally defined as the number of triangles to which
the focal node belongs, normalized by the maximum possible number of such tri-
angles. The clustering coefficient is high for a node i if most of i’s neighbors are
also connected to each other and it is important to assess the small-world prop-
erty (Watts & Strogatz, 1998; Humphries & Gurney, 2008), as we detail below.
Consider for instance the node D in Figure 10.1, which has three neighbors, A C,
and E. Of the three possible connections among its neighbors, only one is present
(the one between A and E), therefore its clustering coefficient is 1/3.

The clustering coefficient can be also interpreted as a measure of how much
a node is redundant (Latora, Nicosia, & Panzarasa, 2013; Newman, 2010): if
most of a node’s neighbors are also connected with each other, removing that
node will not make it harder for its neighbors to reach or influence each other. A

208



10.3. Analyzing the Structure of Personality Networks

personality characteristic that has a high clustering coefficient is mainly connected
to other personality features that are directly related to each other. In personality
questionnaires the strongest connections are usually among nodes of the same
subscale: in these cases, having a high clustering coefficient may coincide with
having most connections with other nodes belonging to the same subscale, while
having no large connection with nodes of other scales.

While in its original formulation the clustering coefficient can be applied only
to unweighted networks (or to weighted networks, disregarding the information
about weights), it has been recently generalized to consider positive edge weights
(Saramäki, Kivelä, Onnela, Kaski, & Kertesz, 2007). The first of such general-
izations was proposed by Barrat and colleagues (2004) and has been already dis-
cussed in the context of personality psychology and psychopathology (Borsboom
& Cramer, 2013). Onnela and colleagues (2005) proposed a generalization that is
based on the geometric averages of edge weights of each triangle centered on the
focal node. A di↵erent generalization has been proposed in the context of gene
co-expression network analysis by Zhang and Horvath, which is particularly suited
for networks based on correlations (Kalna & Higham, 2007; Zhang, Horvath, et
al., 2005). All of these generalizations coincide with the unweighted clustering
coefficient when edge weights become binary (Saramäki et al., 2007). Recently
three formulations of clustering, the unweighted clustering coefficient (Watts &
Strogatz, 1998), the index proposed by Onnela et al. (2005) and the one proposed
by Zhang et al. (2005) have been generalized to signed networks and the prop-
erties of such indices have been discussed in the context of personality networks
(Costantini & Perugini, 2014).

Transitivity (or global clustering coefficient) is a concept closely connected
to clustering coefficient that considers the tendency for two nodes that share a
neighbor to be connected themselves for the entire network, instead than for the
neighborhood of each node separately. It is defined as three times the number of
triangles, over the number of connected triples in the network, where a connected
triple is a node with two edges that connect it to an unordered pair of other nodes
(Newman, 2003). Di↵erently from the local clustering coefficient, transitivity is a
property of the network and not of the single nodes. For instance, the network
in Figure 10.1 has one triangle (A, D, E) and 12 connected triples, therefore
its transitivity is 3⇥ 1)/12 = 1/4. Transitivity has been extended by Opsahl and
Panzarasa (2009) to take into account edge weights and directions, and by Kunegis
and collaborators to signed networks (Kunegis et al., 2009).

Small Worlds

The transitivity and clustering coefficient can be used to assess the network small-
world property. The small-world property was initially observed in social networks
as the tendency for any two people to be connected by a very short chain of
acquaintances (Milgram, 1967). The small-world property is formally defined as
the tendency of a network to have both a high clustering coefficient and a short
average path length (Watts & Strogatz, 1998). Small-world networks are therefore
characterized by both the presence of dense local connections among the nodes
and of links that connect portions of the network otherwise far away from each
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other. An index of small-worldness for unweighted and undirected networks has
been proposed as the ratio of transitivity to the average distance between two
nodes. Both transitivity and path length are standardized before the computation
of small-worldness, by comparing them to the corresponding values obtained in
equivalent random networks (with the same N and the same degree distribution).
Alternatively, the index can be computed using the average of local clustering
coefficients instead of transitivity. A network with a small-worldness value higher
than three can be considered as having the small-world property, while a small-
worldness between one and three is considered a borderline value (Humphries &
Gurney, 2008). Because the assessment of small-worldness relies on shortest paths
between all the pairs of nodes, it can be computed only for a connected network
or the giant component of a disconnected network.

Application to the HEXACO Data

Centrality analyses. The function centrality_auto allows to quickly com-
pute several centrality indices. It requires the weights matrix as input. The
function automatically detects the type of network and can handle both un-
weighted and weighted networks, and both directed and undirected networks.
For a weighted and undirected network, the function gives as output the node
strength, the weighted betweenness and the weighted closeness centralities. The
edge betweenness centrality is also computed.

centrality <- centrality_auto(network)

nc <- centrality$node.centrality

ebc <- centrality$edge.betweenness.centrality

The centrality values are computed and stored in variable centrality. Node cen-
tralities are then saved in the variable nc while edge betweenness centralities are
saved in the variable ebc. The values of centrality for each node are reported in
Table 10.2. The command centralityPlot(network) can be used to plot the cen-
trality indices in a convenient way, that allows to quickly compare them. Table 10.3
reports the correlations among the three indices of node centrality together with
Hofmann’s (1978) row-complexity and the squared multiple correlation of each
facet with all the others. All the indices of centrality have positive significant cor-
relations with each other. Strength centrality and, to a lower extent, betweenness
centrality, seem to be favored by row-complexity: sharing variance with more than
one factor allows a facet to play a more central role. These results suggest that, in
this network, facets tend to be central to the whole network and not only to their
purported parent traits. All centrality indices, especially strength and closeness,
correlate with the squared multiple correlations: The more variance a facet shares
with other facets, the stronger are its connections and the more central results the
corresponding node6.

6Despite being substantial, the correlations of centrality indices with row-complexity and
squared multiple correlations do not suggest that the indices fully overlap. Moreover, the rela-
tions can vary substantially and it is possible to imagine situations in which the relations are
absent or even in the opposite direction.
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Node Dimension Facet Betweenness Closeness Strength
Hsi Honesty-Humility Sincerity 5 2.66 0.73
Hfa Honesty-Humility Fairness 31 3.03 1.46
Hga Honesty-Humility Greed-avoidance 14 2.83 1.13
Hmo Honesty-Humility Modesty 0 2.14 0.45
Efe Emotionality Fearfulness 6 2.70 1.03
Ean Emotionality Anxiety 2 3.04 1.10
Ede Emotionality Dependence 3 3.02 1.05
Ese Emotionality Sentimentality 17 3.17 1.40
Xss Extraversion Social self-esteem 11 3.11 1.35
Xsb Extraversion Social boldness 23 3.33 1.21
Xso Extraversion Sociability 7 3.19 1.07
Xli Extraversion Liveliness 12 3.12 1.29
Afo Agreeableness vs. anger Forgiveness 5 2.70 1.00
Age Agreeableness vs. anger Gentleness 5 2.66 0.80
Afl Agreeableness vs. anger Flexibility 14 2.90 1.02
Apa Agreeableness vs. anger Patience 5 2.85 0.85
Cor Conscientiousness Organization 7 3.09 0.99
Cdi Conscientiousness Diligence 26 3.34 1.30
Cpe Conscientiousness Perfectionism 5 3.13 1.26
Cpr Conscientiousness Prudence 19 3.52 1.45
Oaa Openness to experience Aesthetic appreciation 14 2.95 1.24
Oin Openness to experience Inquisitiveness 5 2.71 1.08
Ocr Openness to experience Creativity 10 3.00 1.26
Oun Openness to experience Unconventionality 3 2.63 0.98

Table 10.2: Centrality Indices. Note: the four most central nodes according to
each index are reported in bold.

1 2 3 4 5
1. Betweenness 1 .61⇤⇤ .72⇤⇤⇤ .32 .54⇤⇤

2. Closeness .61⇤⇤ 1 .75⇤⇤⇤ .15 .69⇤⇤⇤

3. Strength .70⇤⇤⇤ .82⇤⇤⇤ 1 .47⇤ .75⇤⇤⇤

4. Complexity .41⇤ .28 .43⇤ 1 .11
5. SMC .56⇤⇤ .73⇤⇤⇤ .79⇤⇤⇤ .12 1

Table 10.3: Correlation of node centralities, row-complexity and squared multiple
correlation (SMC). Note: ⇤ = p < .05, ⇤⇤ = p < .01, ⇤ ⇤ ⇤ = p < .001. Pearson
correlations are reported below the diagonal, Spearman correlations are reported
above the diagonal. Complexity = Hofmann’s row-complexity index. SMC =
squared multiple correlation.
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The three indices of centrality converge in indicating that node Cpr (prudence)
is among the four most central nodes in this network. Cpr is also the more closeness
central node and owes its high centrality to the very short paths that connect it to
other traits. For instance, facets Apa (patience), Xso (sociability), and Xss (social
self-esteem) are even closer to Cpr than other conscientiousness facets are7. This
suggests that in the personality network it is very easy that a change in some
portion of the network will eventually make a person either more reckless or more
prudent. On the other hand, if a person becomes more reckless or more prudent,
we can expect important changes in the overall network. This result, although it
should be considered as preliminary, is in line with studies that investigated the
evolution of conscientiousness. Impulse-control, a facet of conscientiousness that
is very similar to prudence (Cpr), shows the most marked variation through the
individual development compared to other conscientiousness facets (Jackson et al.,
2009). It is possible that this is the case also because changes in other personality
traits are expected to a↵ect prudence more quickly than other facets, as revealed
by its high closeness.

Hfa (fairness) is the most betweenness-central and strength-central node, but
it is not particularly closeness-central (it is ranked 10th in closeness centrality).
Figure 10.3 highlights the edges lying on the shortest paths that travel through
node Hfa, in a convenient layout (the code for producing this figure is in the sup-
plemental materials). The high betweenness centrality of Hfa is due the role that
Hfa plays in transmitting the influence of other honesty-humility facets to di↵er-
ent traits, and vice versa. The edge between nodes Hsi (sincerity) and Hfa is also
the most betweenness-central in the whole network: most of the shortest paths
between Hsi and other personality traits travel through this edge and therefore
through Hfa. These results suggest that, if it was possible to reduce the possi-
bility for fairness (Hfa) to vary, the influence of the other honesty-humility facets
would propagate less easily to the rest of personality facets and vice versa. Such
hypotheses could be tested for instance by comparing the personality networks
of individuals that typically face situations in which their fairness is allowed to
become active to the networks of individuals that usually face situations in which
their fairness cannot be activated (Tett & Guterman, 2000). The characteristics
of situations for instance could be assessed by using valid instruments such as the
Riverside Situational Q-sort (Sherman, Nave, & Funder, 2010), which includes
items such as “It is possible for P to deceive someone”, or “Situation raises moral

7As an anonymous reviewer pointed out, one could wonder how can the length of the path
between Cpr and other conscientiousness facets be longer than the path between Cpr and other
nodes, given that Cpr’s strongest correlations are those with the other conscientiousness facets.
This happens because we did not consider the network defined by the zero-order correlations,
but the adaptive LASSO penalized network of partial correlations (Krämer et al., 2009). As an
example, consider the shortest path between Cpr and Cdi (diligence), which is slightly longer
(8.80) than the shortest path between Cpr and Apa (patience; 6.82). Although the correlation
between Cpr and Cdi is stronger (r = .26) than the correlation between Cpr and Apa (r = .22), in
the adaptive LASSO network, the direct connection between Cpr and Cdi is smaller (pr = .04)
than the one with Apa (pr = .15). While the shortest path between Cpr and Apa travels
through their direct connection, the shortest path between Cpr and Cdi travels through node
Cor (organization): prudence seems to influence (or to be influenced by) diligence especially
through changes in orderliness, but this path of influence is longer than the direct path between
Cpr and Apa.
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Figure 10.3: Shortest paths that pass through node Hfa (fairness). The edges
belonging to the shortest-paths are full, while the other edges are dashed.

or ethical issues” that would be relevant for this case.

Clustering coefficients. Many indices of clustering coefficient can be easily
computed using function clustcoef_auto. The function requires the same input
as centrality_auto and is similarly programmed to recognize the kind of data
given as input and to choose an appropriate network representation for the data.
By applying the function, we can immediately collect the results:

clustcoef <- clustcoef_auto(network)

The command clusteringPlot(network, signed = TRUE) can be used to plot
the clustering coefficients in a convenient layout. Table 10.4 reports the correlation
among several clustering coefficients. The unsigned indices are computed using
the absolute values of the weights. In the following analyses we will use the signed
version of the Zhang’s clustering coefficient (Costantini & Perugini, 2014; Zhang
et al., 2005), which resulted more resistant to random variations in the network.

Combining clustering coefficients and centrality. The signed clustering
coefficient can be interpreted as an index of a node’s redundancy in a node’s
neighborhood (Costantini & Perugini, 2014): the importance of the unique causal
role of highly clustered nodes is strongly reduced by the presence of strong con-
nections among their neighbors. In general, it is interesting to inspect whether
there is a relation between centrality indices and clustering coefficients: in our
experience, we found that the centrality indices were often inflated by the high

213



10. State of the aRt Personality Research

1 2 3 4 5 6 7
1. Watts and Strogatz
(1998)

1 .25 .65⇤⇤⇤ .51⇤ .90⇤⇤⇤ .57⇤⇤ .94⇤⇤⇤

2. Watts and Stro-
gatz, signed (Costan-
tini & Perugini, 2014)

.26 1 .28 .45⇤ .29 .76⇤⇤⇤ .25

3. Zhang and Horvath
(2005)

.49⇤ .30 1 .89⇤⇤⇤ .50⇤ .59⇤⇤ .71⇤⇤⇤

4. Zhang and Hor-
vath, signed (Costan-
tini & Perugini, 2014)

.34 .33 .94⇤⇤⇤ 1 .37 .79⇤⇤⇤ .53⇤⇤

5. Onnela et al. (2005) .89⇤⇤⇤ .25 .37 .24 1 .55⇤⇤ .84⇤⇤⇤

6. Onnela et al., signed
(Costantini & Perug-
ini, 2014)

.61⇤⇤ .76⇤⇤ .59⇤⇤ .64⇤⇤ .66⇤⇤⇤ 1 .53⇤⇤

7. Barrat et al. (2004) .94⇤⇤⇤ .30 .57⇤⇤ .37 .87⇤⇤⇤ .60⇤⇤ 1

Table 10.4: Correlation among indices of local clustering coefficient. Note: ⇤ =
p < .05, ⇤⇤ = p < .01, ⇤ ⇤ ⇤ = p < .001. Pearson correlations are reported below
the diagonal, Spearman correlations are reported above the diagonal.

clustering in correlation networks. However this might be not true for networks
defined with adaptive LASSO, which promotes sparsity (Krämer et al., 2009).

The following plots can be used to visualize both the centrality and the cluster-
ing coefficient of each node. The code reported here is for betweenness centrality,
but it is easy to extend it to other indices by just replacing "Betweenness" with
the index of interest. First the plot is created and then the node labels are added
in the right positions, using the command text. Command abline can be used
to trace lines in the plot. A horizontal line is created to visually identify the me-
dian value of betweenness and a vertical line to identify the median value of the
clustering coefficient.

plot(clustcoef$signed_clustZhang, nc$Betweenness,

col = "white")

text(clustcoef$signed_clustZhang, nc$Betweenness,

rownames(nc))

abline(h = median(nc$Betweenness), col = "grey")

abline(v = median(clustcoef$signed_clustZhang),

col = "grey")

The resulting plots are shown in Figure 10.4. It is apparent that the most central
nodes do not have a particularly high clustering coefficient in this case and this is
especially true for nodes Hfa and Cpr, which are among the most central in this
network. The clustering coefficient correlates negatively with closeness centrality
(r = −.67, p < .001), with strength (r = −.82, p < .001), and with betweenness
centrality (r = −.50, p = .013).

One node, Hmo (modesty), emerges as both particularly high in clustering
coefficient and low in all the centrality measures. Modesty correlates almost ex-
clusively with other honesty-humility facets and has the lowest multiple correlation
with all the other variables in our dataset and this is likely to have determined its

214



10.3. Analyzing the Structure of Personality Networks

peripherality. A closer exam of its connections reveals that Hmo has seven neigh-
bors, the three other facets of honesty-humility (His, Hfa, and Hga), facets anxiety
and fearfulness of emotionality (Ean), facet social boldness of extraversion (Xsb)
and facet prudence of conscientiousness (Cpr), the connections with fearfulness,
social boldness and prudence having very small weights. Moreover many of its
neighbors are connected with each other. Even if the edges incident in node Hmo
were blocked, its neighbors would be nonetheless connected to each other directly
or by a short path. Modesty therefore does not seem to play a very important
unique role in the overall personality network.

Transitivity and small-worldness. The function smallworldness computes
the small-worldness index (Humphries & Gurney, 2008). First the function con-
verts the network to an unweighted one, which considers only the presence or the
absence of an edge. Then the average path length and the global transitivity of
the network are computed and the same indices are calculated on B=1000 random
networks, with the same degree distribution of the focal network. The resulting
values are entered in the computation of the small-worldness index. The output
includes the small-worldness index, the transitivity of the network, and its average
path length. It also returns summaries of the same indices computed on the ran-
dom networks: the mean value and the .005 and .995 quantiles of the distribution.
Function set.seed can be used to ensure the exact replicability of the results.
The function requires the network as input and it is optionally possible to set the
values of three parameters, B, up and lo, which are respectively the number of
random networks and the upper and lower probabilities for the computation of
the quantiles.

set.seed(100)

smallworldness(network)

The small-worldness value for our network is 1.01. An inspection of the values
of transitivity and of average path length shows that they are not significantly
di↵erent from those emerged from similar random networks. Therefore we may
conclude that this personality network does not show a clear small-world topology.

Emerging insights. In this section, we showed how it is possible to perform
a network analysis on a real personality dataset. We identified the most central
nodes and edges, discussed centrality in the light of clustering coefficient and
investigated some basic topological properties of the network, such as the small-
world property. Two nodes resulted particularly central in the network and were
the facet prudence of conscientiousness (Cpr) and the facet fairness of honesty-
humility (Hfa).

Our network did not show the small-world property. The absence of a strong
transitivity means that the connection of two nodes with a common neighbor does
not increase the probability of a connection between themselves. The absence of
a particularly short path length implies that it is not generally possible for any
node to influence any other node using a short path. This result is not in line with
the small-worldness property that emerged in the DSM-IV network reported by
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Figure 10.4: Centrality and clustering coefficient. The horizontal and the vertical
lines represent the median values of centrality and clustering coefficient respec-
tively. The closeness values are multiplied by 1000.
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Figure 10.5: Histogram of the number of edges estimated in 900 replications of
the adaptive LASSO.

Borsboom et al. (2011). It has been hypothesized that the small-world property
might be at the basis of phenomena connected to the comorbidity that arise in
psychopathology (Cramer et al., 2010); this also may simply not be a property of
normal personality. This di↵erence could reflect the fact that di↵erent personality
characteristics represent distinct systems, while psychopathology systems seem to
be more integrated. This result may be also attributable to the strategies that
were used for defining this network and the DSM-IV network and may have been
influenced by the particular personality scales under study. Future research may
be directed towards the question of what network structure characterizes normal
versus abnormal personality.

Stability of Results

The adaptive LASSO chooses the LASSO penalty parameter based on k-fold cross-
validation, subdividing the dataset in k (10 by default) random samples. Because
of this, under di↵erent random seeds slightly di↵erent network structures will be
obtained. To investigate the stability of the results discussed in this section, we
repeated the network estimation procedure 900 times under di↵erent random seeds
and recomputed the strength, closeness and betweenness centrality measures and
the signed versions of the clustering coefficients proposed by Zhang and by Onnela.
The codes to replicate these findings can be found in the supplementary materials.

Visually the resulting graphs looked remarkably similar and only di↵ered in
the weakest edges in the graph. Figure 10.5 shows a histogram of the amount
of nonzero connections present in each of the replications; the median amount of
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Figure 10.6: Estimated centrality and clustering coefficients under 900 replications
of the adaptive LASSO. The colored line represents the results discussed in the
chapter.

estimated edges was 138. Figure 10.6 shows the estimated centrality and clustering
coefficients for both the graph used in the analyses (colored line) and the 900
replications (vague gray lines). It can be seen that overall the measures are stable
across di↵erent replications. Among the three centrality measures, more stable
results were obtained for closeness and strength than for betweenness. Between
the clustering coefficients we can see that Zhang’s clustering coefficient is much
more stable than Onnela’s; in Onnela’s clustering coefficient especially the Hmo
node shows divergent behavior. This behavior is due to the number small of
connections of Hmo obtained in each replication, ranging from 3 to 11 (M = 3.96,
SD = 0.64). Onnela’s clustering coefficient is scaled to the number of connections
regardless of weight. Therefore the relatively small di↵erence in connections can
have a large impact on this clustering coefficient.

From these results, we advise that Zhang’s clustering coefficient should be
preferred over Onnela’s clustering coefficient in adaptive LASSO networks. Fur-
thermore, we advise the reader to replicate these measures under di↵erent random
seeds and to check for the stability of the results before substantively interpreting
them.

10.4 Conclusion

Network approaches o↵er a rich trove of novel insights into the organization,
emergence, and dynamics of personality. By integrating theoretical considera-
tions (Cramer et al., 2010), simulation models (Mõttus, Penke, Murray, Booth, &
Allerhand, 2014; Van Der Maas et al., 2006), and flexible yet user-friendly data-
analytic techniques (Epskamp et al., 2012), network approaches have potential to
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achieve a tighter fit between theory and data analysis than has previously been
achieved in personality research. At the present time, the basic machinery for
generating, analyzing, and simulating networks is in place. Importantly, the R
platform o↵ers an impressive array of packages and techniques for the researcher
to combine, and most of the important analyses are currently implemented. We
hope that, in the present chapter, we have successfully communicated the most
important concepts and strategies that characterize the approach, and have done
so in such a way that personality researchers may benefit from using network
modeling in the analysis of their own theories and datasets.

In the present chapter, we have applied network modeling to an illustrative
dataset, with several intriguing results that may warrant further investigation.
However, we do stress that many of our results are preliminary in nature. The
primary reason for this is that current personality questionnaires are built accord-
ing to psychometric methodology that is tightly coupled to factor analysis and
classical test theory (Borsboom, 2005). This makes their behavior predictable
from pure design specifications, which in turn limits their evidential value. That
is, if one makes the a priori decision to have, say, 10 items per subscale, and
selects items on the basis of their conformity to such a structure, many of the
correlations found in subsequent research are simply built into the questionnaire.
Therefore, it is hardly possible to tell to what extent results reflect a genuine
structure, or are an artifact of the way personality tests are constructed. Trait
perspectives are not immune to this problem, as in some cases the factors of
personality may simply appear from questionnaire data because they have been
carefully placed there. Future research should investigate potential solutions to
this issue, for instance by considering variable sets consisting of ratings on the
familiar personality-descriptive adjectives of a language, as in lexical studies (e.g.,
Ashton & Lee, 2005, 2007; De Raad et al., 2014; Goldberg, 1990b; Saucier et al.,
2014), and by comparing the characteristics of such networks to networks that
emerge from questionnaire data.

An interesting question is whether all individuals are scalable on all items,
as current methodology presumes. It is entirely possible, if not overwhelmingly
likely, that certain items assess variables that simply do not apply to a given
individual. Current psychometric methods have never come to grip with the “n.a.”
answer category, and in practice researchers simply force all individuals to answer
all items. In networks, it is easier to deal with the n.a.-phenomenon, as nodes
deemed to be inapplicable to a given person could simply be omitted from that
person’s network. This would yield personality networks that may di↵er in both
structure and in size across individuals, an idea that resonates well with the notion
that di↵erent people’s personalities might in fact be also understood in terms of
distinct theoretical structures (Borsboom et al., 2003; Cervone, 2005; Lykken,
1991). The application of experience sampling methodology and of other ways to
gather information on dynamical processes personality may also o↵er an inroad
into this issue (Fleeson, 2001; Hamaker, Dolan, & Molenaar, 2005; Bringmann et
al., 2013).

The notion that network structures may di↵er over individuals, and that these
di↵erences may in fact be the key for understanding both idiosyncrasies and
communalities in behavior, was illustrated in the simulation work reported by
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Costantini and Perugini (2014). Future research might be profitably oriented
to questions such as (a) what kind of structural di↵erences in networks could
be expected based on substantive theory, (b) how such di↵erences relate to well-
established findings in personality research (see also Mõttus et al., 2014), (c) which
network growth processes are theoretically supported by developmental perspec-
tives. Of course, ultimately, such theoretical models would have to be related back
to empirical data of the kind discussed in the data-analysis part of this chapter;
therefore, a final highly important question is to derive testable implications from
such perspectives. This includes the investigation of how we can experimentally or
quasi-experimentally distinguish between explanations based on latent variables,
and explanations based on network theory.

Ideally, these future developments are coupled with parallel developments in
statistical and technical respects. Several important extensions of network models
are called for. First, in this work we focused on the adaptive lasso, which is an
e↵ective method to extract a network from empirical data that has been prof-
itably used in other fields (Krämer et al., 2009). However network analysis is a
field in rapid evolution and alternative methods are being developed and studied.
Among these, we consider particularly promising the graphical lasso (Friedman
et al., 2008), for which adaptations exist that take into account the presence of
latent variables in the network (Chandrasekaran et al., 2012; Yuan, 2012). Al-
ternative methods based on Bayesian approaches have also been proposed and
implemented (Mohammadi, Wit, et al., 2015). Further research is needed to sys-
tematically compare these and other methods in the complex scenarios that are
usually encountered in personality psychology. Second, as noted in this chapter,
many network analytics were originally designed for unweighted networks. Al-
though some of the relevant analyses have now been extended to the weighted
case (see Boccaletti et al., 2006; Opsahl et al., 2010; Costantini & Perugini, 2014,
several other techniques still await such generalization. One important such set of
techniques, which were also illustrated in the present work, deals with the deter-
mination of network structure. Both the theoretical definition of global structures,
such as in terms of small-worlds, scale-free networks (Barabási, 2009), and ran-
dom networks, and the practical determination of these structures (e.g., through
coefficients such as small-worldness or through fitting functions on the degree dis-
tribution) are based on unweighted networks. It would be highly useful if these
notions, and the accompanying techniques, would be extended to the weighted net-
work case. Another technical improvement that should be within reach is how to
deal with data that likely reflect mixtures of distinct networks. In the case of time
series data, such approaches have already been formulated through the applica-
tion of mixture modeling (Bringmann et al., 2013); however, statistical techniques
suited to this problem may also be developed for the case of cross-sectional data.
The issue is important in terms of modeling idiosyncrasies in behavior, but may
also be key in terms of relating normal personality to psychopathology (Cramer
et al., 2010). Naturally, this includes the question of how we should think about
the relation between normal personality and personality disorders.
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Chapter 11

Unified Visualizations of Structural

Equation Models

Abstract

Structural Equation Modeling (SEM) has a long history of represent-
ing models graphically as path diagrams. This chapter presents the freely
available semPlot package for R, which fills the gap between advanced, but
time-consuming, graphical software and the limited graphics produced auto-
matically by SEM software. In addition, semPlot o↵ers more functionality
than drawing path diagrams: it can act as a common ground for importing
SEM results into R. Any result useable as input to semPlot can be also repre-
sented in any of the three popular SEM frameworks, as well as translated to
input syntax for the R packages sem (Fox, 2006) and lavaan (Rosseel, 2012).
Special considerations are made in the package for the automatic placement
of variables, using three novel algorithms that extend earlier work of Boker,
McArdle, and Neale (2002). The chapter concludes with detailed instruc-
tions on these node-placement algorithms.

11.1 Introduction

The semPlot package for the freely available statistical programming language
R (R Core Team, 2016) extends various popular structural equation modeling
(SEM) software packages with a free, easy to use and flexible way of producing
high quality graphical model representations—commonly termed path diagrams—
as well as providing a bridge between these software packages and the main SEM
frameworks.

A path diagram utilizes a network representation, in which variables are repre-
sented as nodes—square nodes indicating manifest variables, circular nodes indi-
cating latent variables and triangular indicating constants—and relations between

This chapter has been adapted from: Epskamp, S. (2015). semPlot: Unified visualizations
of Structural Equation Models. Structural Equation Modeling, 22, 474–483.
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variables are represented by a set of unidirectional and bidirectional edges, which
typically represent regression equations and (co)variances respectively.

Currently there are two common ways of drawing path diagrams. Many of
the available SEM software packages have an option to display the path diagram
graphically, either directly in the package (e.g., LISREL; Jöreskog & Sörbom,
1996), by creating syntax for external network drawing software (e.g., sem; Fox,
2006) or through third party extensions (e.g., Lispath; Marcoulides & Papadopou-
los, 1993). Some packages in addition allow the model to be specified in a graphi-
cal way, by letting the user draw the path diagram directly in an interactive com-
mand window (e.g., Amos; Arbuckle, 2010, MPlus; Muthén & Muthén, 1998–2012,
PLSgraph; Chin, 2001, and Onyx; von Oertzen, Brandmaier, & Tsang, 2013). Al-
ternatively, instead of generating a path diagram from a given model, the path
diagram can also be drawn manually, using many free and commercial software
packages (e.g., Cytoscape; Shannon et al., 2003, Microsoft R� Powerpoint R� and
igraph; Csardi & Nepusz, 2006).

Both of these methods, however, have important limitations. The path dia-
grams created by SEM packages produces path diagrams that are hardly customiz-
able, and produce images unsuited for publication. On the other hand, manually
drawing path diagrams in external software can take a very long time and is prone
to error. The semPlot package o↵ers a middle way; it is designed to automatically
produce high quality path diagrams from the output of various popular SEM soft-
ware packages, while retaining a high level of customizability. Thus, in semPlot,
the user feeds a raw output file to the program, which then returns a high-quality
image ready for publication. In addition, as will be described below, semPlot
creates an internal model representation that can serve as a translator between
SEM programs; for instance, on the basis of, say, LISREL model output, semPlot
automatically generates the corresponding lavaan (Rosseel, 2012) input.

The semPlot package supports the output from R packages sem (Fox, 2006),
lavaan (Rosseel, 2012), OpenMx (RAM specification only; Boker et al., 2011)
and standalone software MPlus (Muthén & Muthén, 1998–2012, using R package
MplusAutomation for the import; Hallquist & Wiley, 2013), LISREL (Jöreskog &
Sörbom, 1996, using R package lisrelToR for import; Epskamp, 2013) and Onyx.
Several base R functions for related statistical techniques such as exploratory fac-
tor analysis and general linear modeling are also supported. In addition, semPlot
can also be used without the need of fitting a SEM using the lavaan modeling syn-
tax, or matrix specification according to the RAM (McArdle & McDonald, 1984),
LISREL (Hayduk, 1987) and Mplus (Muthén, 1998–2004) modeling frameworks.

The graphs that semPlot produces are drawn using the qgraph package, which
itself is designed as a network drawing package aimed at applications in statisti-
cal visualizations. Customization of the graphs can be done either via semPlot
itself (using many options designed for SEM models, such as omitting exogenous
variances) or post-hoc via the qgraph package (using options designed to visualize
graphs, such as manually recoloring edges).

This chapter consists of two sections: the first section describes the function-
ality of the package and in the second section describes the algorithms used for
automatically constructing a path diagram.
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Figure 11.1: Generated path diagram of the Holzinger-Swineford CFA example.
Panel (a) shows a visualization of the path diagram with estimates as labels and
Panel (b) shows a visualization of the standardized parameter estimates.

11.2 General Use of the semPlot Package

The semPlot package can be downloaded from CRAN or installed directly in R:

install.packages("semPlot")

After which the package can be loaded:

library("semPlot")
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This will load the functions from the semPlot package into R.

Drawing Path Diagrams

The semPaths function can be used to plot path diagrams and visualize (stan-
dardized) parameter estimates. It takes as first argument either a SEM object
(from R packages) or a string indicating the location of an output file from exter-
nal SEM software (MPlus or LISREL). The second and third arguments can be
assigned strings indicating what the edge color and label respectively indicate. For
example, the following code plots a model where the edges are colored according
to standardized values and the edge labels indicate the unstandardized estimates:

semPaths(input, "standardized", "estimates", ...)

Where ... indicate any number of other arguments controlling the output which
are further explained in the package manual:

?semPaths

To illustrate this, one could use one of the lavaan package documentation examples
to compute a confirmatory factor analysis (CFA) on the famous Holzinger and
Swineford (1939) example:

library("lavaan")

example(cfa)

Next, sending the resulting fit object to semPaths plots a path diagram of the
model with parameter estimates on the labels:

semPaths(fit, "model", "estimates")

We could also visualize the parameter estimates by coloring positive parameters
green or red indicating positive or negative estimates and varying the width and
color of an edge to indicate the strength of the estimate (see Chapter 9). This
works best with standardized parameters:

semPaths(fit, "standardized", "hide")

The resulting graphs can be seen in Figure 11.1. This figure also shows that
fixed parameters—in this case scaling by fixing factor loadings—are visualized by
default by using dashed lines.

The semPlot package can handle larger complicated measurement models. The
next example is based on the Mplus output of the multilevel factor analysis model
as described by Little (2013), in which the factor structure of the Life Skills
Profile-16 (LSP-16) was assessed. The following codes produce the two plots in
Figure 11.2:

semPaths(file.choose(), "model", "estimates",

style = "lisrel", curve = 0.8, nCharNodes = 0,

sizeLat = 12, sizeLat2 = 6, title = TRUE,

mar = c(5, 1, 5, 1), edge.label.cex = 0.5)
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Figure 11.2: Generated path diagram for multilevel factor analysis model of LSP-
16. Panel (a) shows the within-cluster model, with vertical bars representing
the estimated thresholds of each of the ordinal variables. Panel (b) shows the
between-cluster model.

In which file.choose() is a base R function that opens a convenient file browser
to select the Mplus output file.

Figure 11.2 shows that two plots are now generated: one indicating the within-
cluster model and one indicating the between-cluster model. In the within-cluster
model the closed orbs inside manifest indicate random intercepts and the verti-
cal bars inside the manifest variables indicate the estimated thresholds; in the
between-cluster model the indicators are represented by a circle for random inter-
cepts.

The argument style = "lisrel" specifies that (residual) variances are plot-
ted similar to the way LISREL plots these: as arrows without origin on endoge-
nous variables only. The default, style = "ram", would plot these residuals as
described by Boker et al. (2002): as double-headed self-loops on both endogenous
and exogenous variables. To illustrate this consider an example of the famous
‘Industrialization and Political Democracy’ dataset used by Bollen (1989), which
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has been implemented as example in the Lavaan package:

library("lavaan")

example(sem)

semPaths(fit, "model", "hide", style = "lisrel",

rotation = 2)

semPaths(fit, "model", "hide", style = "ram", rotation = 2,

cardinal = "man cov")

The resulting graphs can be seen in Figure 11.3.
Color can also indicate equality constrains: by coloring parameters that are

constrained to be equal with the same color (unconstrained parameters are still col-
ored gray)—especially useful in identifying the di↵erent steps in assessing measure-
ment invariance (Meredith, 1993). For example, the semTools package (Pornprasertmanit,
Miller, Schoemann, & Rosseel, 2013) can be used to test for measurement invari-
ance using lavaan on the Holzinger and Swineford (1939) example:

library("semTools")

fits <- example(measurementInvariance)

semPaths(fits$value$fit.intercepts, "equality", "estimates",

sizeLat = 5, title = FALSE, ask = FALSE,

levels = c(1, 2, 4), edge.label.cex = 0.5)

Figure 11.4 shows one of the steps in testing for measurement invariance: strict
measurement invariance with free factor means. It can be seen that the factor
loadings and intercepts are constrained to be equal over groups, but the factor
means and variances are not.

Investigating Correlational Structures

SEM models are usually fit by comparing the observed covariances to the model
implied covariances. The qgraph package used as back-end to semPlot supplies a
novel framework for visualizing correlational structures as networks (as is described
in Chapter 9): a correlation matrix can be visualized as a network in which each
variable is represented by a node and each correlation as a weighted edge between
two nodes.

In the semPlot package, the semCors function visualizes the model implied
correlation matrix (which is either provided as input or computed from data)
and the observed correlation matrix (must be provided as input) using qgraph
with parameters automatically chosen such that the graphs are comparable. To
illustrate this, consider the following simulated dataset (using lavaan):

library("lavaan")

Mod <- ’

A =~ 1*a1 + 0.6*a2 + 0.8*a3

B =~ 1*b1 + 0.7*b2 + 0.9*b3

a1 ~~ 1*b1

A ~~ -0.3* B
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Figure 11.3: Generated path diagrams for Industrialization and Political Democ-
racy dataset example. Panel (a) shows the path diagram with residuals drawn in
‘lisrel’ style and Panel (b) shows the path diagram with residuals drawn in ‘ram’
style.
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Figure 11.4: Path diagrams for two groups in the Holzinger-Swineford CFA ex-
ample, testing for strict measurement invariance with free factor means.

’

set.seed(5)

Data <- simulateData(Mod)

This dataset, called Data, is simulated under a two-factor model with two neg-
atively correlated factors. However, the residuals of the first indicator of each
factor are strongly positively correlated. After fitting a general CFA model to this
data, not including the residual correlation, the implied and observed correlation
matrices can be inspected:

Mod <- ’

A =~ a1 + a2 + a3

B =~ b1 + b2 + b3
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Figure 11.5: Observed (left) and model implied (right) correlation matrices of
simulated data example.

’

fit <- cfa(Mod, data=Data)

semCors(fit, layout = "spring", cut = 0.3, esize = 20)

Figure 11.5 shows that the observed and implied correlation matrices are very
similar except for the correlation between a1 and b1, which cause the misfit in
this model. This provides a visual way of judging the fit of a SEM model and a
way of seeing where misfit is occurring.

Linking SEM Software Packages and Models

An important design philosophy of semPlot is unifying di↵erent SEM software
packages in a freely available interface. To this end, the package can also be used
as bridge between di↵erent SEM software packages and SEM models. First, the
semSyntax function generates model syntax for R packages sem and lavaan given
any input supported in semPlot. For example, the output file of example 5.1 of
the MPlus user guide (Muthén & Muthén, 1998–2012) can be imported:

ex5.1 <- tempfile(fileext = ".out")

url <- "http://www.statmodel.com/usersguide/chap5/ex5.1.out"

download.file(url, ex5.1)

Next, the file can be used to generate a model to use in the lavaan package:

lavMod <- semSyntax(ex5.1, "lavaan")

## Model <- ’

## F1 =~ 1*Y1

## F1 =~ Y2

## (...)
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## Y5 ~~ Y5

## Y6 ~~ Y6

## ’

The function returns an object, and prints the R script needed to create this
object. A useful application of this bridge is to simulate data in R given any SEM
output file using lavaan’s simulateData function. To do this, first specify the
model with all estimated parameters set to fixed:

lavMod <- semSyntax(ex5.1, "lavaan", allFixed = TRUE)

Next the model can be sent to simulateData:

head(simulateData(lavModFixed))

## Y1 Y2 Y3 Y4 Y5 Y6

## 1 0.88695 0.2414 0.8060 0.6778 1.2228 -0.34377

## 2 1.30715 -0.4904 0.8651 0.4772 0.4611 0.58303

## 3 -0.62939 -1.5140 -0.3916 1.0225 1.2060 -0.65448

## 4 0.99210 -1.8682 -1.0856 0.3514 -0.3357 -2.01952

## 5 0.02836 -0.4113 -0.3776 -1.1781 0.1050 -1.23260

## 6 1.12654 1.9011 1.0472 0.6976 -0.8670 -0.03874

Second, the semMatrixAlgebra The semMatrixAlgebra function o↵ers a uni-
fied interface for extracting model matrices of any of the three major SEM frame-
works, RAM (McArdle & McDonald, 1984), LISREL (Hayduk, 1987) and Mplus
(Muthén, 1998–2004), using any of the supported input software packages. For
example, the RAM framework uses three model matrices: A, S and F :

v = Av + u

u ⇠ N(0,S)

Var (v) = F (I −A)S (I −A)
−1>

F

>

In which v is a vector containing both manifest and latent variables, A a matrix
of regression parameters (usually termed the asymmetric matrix), S a matrix of
(residual) variances (usually termed the symmetric matrix) and F (usually termed
the filter matrix) can be used to distinguish between latent and manifest variables.
semMatrixAlgebra can be used to extract e.g., the A matrix of Mplus user guide
example 5.1:

semMatrixAlgebra(ex5.1, A)

## F1 F2 Y1 Y2 Y3 Y4 Y5 Y6

## F1 0.000 0.000 0 0 0 0 0 0

## F2 0.000 0.000 0 0 0 0 0 0

## Y1 1.000 0.000 0 0 0 0 0 0

## Y2 1.126 0.000 0 0 0 0 0 0

## Y3 1.019 0.000 0 0 0 0 0 0

## Y4 0.000 1.000 0 0 0 0 0 0

## Y5 0.000 1.059 0 0 0 0 0 0

## Y6 0.000 0.897 0 0 0 0 0 0

230



11.3. Algorithms for Drawing Path Diagrams

Note that the use of A automatically let semMatrixAlgebra detect that we are
interested in the RAM framework specifically. Requesting matrices from other
frameworks, such as the ⇤ matrix—containing factor loadings—from the MPlus
modeling framework, works in the same way:

semMatrixAlgebra(ex5.1, Lambda)

## F1 F2

## Y1 1.000 0.000

## Y2 1.126 0.000

## Y3 1.019 0.000

## Y4 0.000 1.000

## Y5 0.000 1.059

## Y6 0.000 0.897

The semMatrixAlgebra function cannot only be used for extracting individual
model matrices but also for extracting the result of algebraic computations using
these model matrices. For example, one could compute the implied covariances
on the same example model as follows—using helper function Imin(A,TRUE) to
compute (I −A)

−1

:

semMatrixAlgebra(ex5.1,

F %*% Imin(A,TRUE) %*% S %*% t(Imin(A, TRUE)) %*% t(F))

## Y1 Y2 Y3 Y4 Y5 Y6

## Y1 1.97100 1.02128 0.92423 -0.03000 -0.03177 -0.02691

## Y2 1.02128 1.94796 1.04069 -0.03378 -0.03577 -0.03030

## Y3 0.92423 1.04069 1.95179 -0.03057 -0.03237 -0.02742

## Y4 -0.03000 -0.03378 -0.03057 2.05000 0.80484 0.68172

## Y5 -0.03177 -0.03577 -0.03237 0.80484 1.70633 0.72194

## Y6 -0.02691 -0.03030 -0.02742 0.68172 0.72194 1.67750

semMatrixAlgebra returns the results in a list rather than a single matrix if the
model contains multiple groups.

11.3 Algorithms for Drawing Path Diagrams

When drawing a path diagram the variables need to be placed in a structured way,
such that the diagram is easily interpretable (Boker et al., 2002). Manually defin-
ing such a graph layout can be tedious and time-consuming work; an automated
solution to placing variables would work best in most situations. This section
introduces three novel algorithms—which are implemented in semPlot—that can
be used to automatically place variables such that complex SEM models are easily
interpretable.

The three layout algorithms are each designed to place variables in a tree-like
structure next to each other on horizontal levels. They are chosen such that first,
the structural part of the model—especially the relationship between exogenous
and endogenous variables—is clearly visible; and second, Indicators of a latent
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variable are placed next to each other and either below or above the latent vari-
able. To achieve this, all three algorithms start with exogenous variables1 or their
indicators placed at the top level of the graph (level 0) and expand downwards to
the bottom of the graph (level n).

The first algorithm is based on the way the LISREL program (Jöreskog &
Sörbom, 1996) plots path diagrams. In this algorithm variables are placed on
one of four horizontal levels. The top level contains manifest variables that are
either exogenous themselves or only indicators of exogenous latent variables. The
second level contains latent variables that are either exogenous themselves or re-
gressed only on exogenous manifest variables. The third level contains all other
(endogenous) latent variables and the fourth level contains all other (endogenous)
manifest variables. Intercepts can be added by placing a representation of the unit
vector next to or below/above each variable. In defining the horizontal placement
the latent variables are placed in the order they appear in the model, and man-
ifest variables are placed such that they are closest to latent variables they are
connected to.

The second algorithm is a variation of the Reingold-Tilford algorithm (Reingold
& Tilford, 1981) which places variables in a tree structure originating from a set of
user defined root nodes at the top. The igraph package (Csardi & Nepusz, 2006)
can be used to compute the Reingold-Tilford algorithm. However, in the presence
of intercepts, exogenous latents, or covariances, this algorithm does not produce
proper diagram structures out of the box. To solve this, the algorithm is applied
to a modified version of the network representation of the model: by removing
all arrows (making edges undirected) and removing all covariances. Through a
specific choice of root variables, a tree structure is obtained in which exogenous
variables are placed on top and endogenous variables at the bottom.

Finally, the third algorithm uses a variation of the placement algorithm de-
scribed by Boker et al. (2002). This algorithm computes for each node the longest
outgoing path, and places nodes accordingly on horizontal levels from highest (top)
to lowest (bottom) longest outgoing path-length. For more stable results (e.g., in-
dicators of exogenous latents should be placed above the latent), this algorithm
can be enhanced by not using the original network representation of a model but
one in which the direction of the edges between exogenous latent variables and
their indicators is reversed and all double-headed edges (covariances) are removed.

In all three algorithms, horizontal levels that do not contain any nodes are
not included in the graph, and if there are only exogenous latent variables and no
regressions between manifest variables (e.g., factor analysis models) the layout is
flipped. In cases which feature many indicators per latent variable, it is more useful
to place variables in a circle-like fashion; here, the origin of the tree placement is
not at the top, expanding to the bottom, but at the center, expanding outward.
To do this, we may transform the horizontal levels to nested circles; the higher
the level, the smaller the circle.

Often, the structural part of a model—containing only regressions between
latent variables—is the only part that requires specifically thoughtful placement
of variables; for the measurement parts—the factor loadings of indicators on each

1A variable is treated as exogenous if it has no incoming directed edges attached.
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Figure 11.6: Path diagram including parameter estimates of example 5.25 of the
Mplus user guide. Panel (a) shows default placement, panel (b) the adjusted
Reingold-Tilford algorithm, panel (c) the adjusted Boker-McArdle-Neale algo-
rithm and panel (d) a layout where only the structural part is based on the
adjusted Boker-McArdle-Neale algorithm and the measurement sub-models are
drawn around the latent variables.
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latent variable—indicators simply need be placed on a straight line under, over,
or next to the latent. To this end, it might not be necessary to run a complicated
placement algorithm over all variables, but rather only over the structural part of
a model, followed by placing indicators near the latent. Such a placement of nodes
for the structural part of a model could be used on the basis of any of the above
mentioned algorithms, but also through any network drawing algorithm (e.g., by
using a force-embedded algorithm; Fruchterman & Reingold, 1991).

In semPaths, the layout argument can be used to control which algorithm is
used to define the placement of the nodes. This argument can be set to "tree"

to obtain the default layout, "tree2" to obtain the adjusted Reingold-Tilford
algorithm or "tree3" to obtain the adjusted Boker-McArdle-Neale algorithm. To
obtain circular versions of these algorithms, "circle", "circle2" and "circle3"

can be used. To split the layout algorithm for structural and measurement models,
the layoutSplit argument can be used. Finally, the layout argument can also
be used to manually define the placement of nodes (see package documentation
for examples). Figure 11.6 shows the result of these algorithms on example 2.25
from the MPlus user’s guide (Muthén & Muthén, 1998–2012).

11.4 Conclusion

The semPlot package extends many popular SEM software packages with ad-
vanced visualization functions. These functions can be used to display specified
models, parameter estimates, model constraints, and implied correlation struc-
tures. Furthermore, semPlot provides a bridge between these software packages
and di↵erent modeling frameworks. The package uses several novel algorithms
for automatic placement of variables in the path diagrams and allows for detailed
manual customizations2.

semPlot is sufficiently user-friendly to be used by researchers with limited
experience in R, while it presents more advanced users with a broad scope of
functionality and flexibility. Several features are open to further development.
First, the use of semPlot key be extended in various ways—such as though web
interfaces (RStudio & Inc., 2013). Second, support is to be added for additional
SEM software packages such as Amos (Arbuckle, 2010), EQS (Bentler & Wu, 1993,
using the REQS R package; Mair & Wu, 2012) and R packages semPLS (Monecke
& Leisch, 2012) and lava (Holst & Budtz-Joergensen, 2013). The developmental
version of semPlot is available at GitHub, http://github.com/SachaEpskamp/
semPlot, where new ideas for the package can also be submitted.

2See for detailed instruction the package website: http://sachaepskamp.com/semPlot
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Chapter 12

Discussion: The Road Ahead

12.1 Introduction

This dissertation provided an overview of network models applicable to psycho-
logical data as well as descriptions of how these methods relate to general psycho-
metrics. The visualization methods outlined in the final part of this dissertation
are based on the oldest publications and relate to the state-of-the-art when this
PhD project started. At the start of this PhD project, 4 years ago, network es-
timation in psychology consisted of not much more than drawing networks based
on marginal correlation coefficients. This can be shown in publications from this
period. Cramer et al. (2010) marks the first psychological network estimated from
data and shows a network in which edges are based on associations. The qgraph
package was based on this and, for the first time, provided psychologists with a
simple method for constructing networks based on correlations (Epskamp et al.,
2012). Key publications of that time mostly outlined conceptual and theoretical
implications of the network perspective and often relied on correlation networks to
showcase what such a network could possibly look like (e.g., Cramer, Sluis, et al.,
2012; Borsboom & Cramer, 2013; Schmittmann et al., 2013). Partial correlation
networks were proposed and published (e.g., Epskamp et al., 2012; Cramer, Sluis,
et al., 2012) but were not yet worked out in enough detail to provide the powerful
visualizations now used in psychology.1 In addition, time-series models showed
promise (e.g., Borsboom & Cramer, 2013) but had not yet been worked out in
detail and implemented in easy-to-use software.

The use of network estimation on psychological data has come a long way since
then. In fact, the achieved progress warrants the birth of a new field of research:
network psychometrics. This progress has been marked by a gradual increase in
the understanding of both the interpretation and the applicability of network mod-
els as well as by key turning points in the development of the methodology. Some
of these key turning points came with the emergence of new software routines that

1In retrospect, the original promise of partial correlation networks might have been taken
too strong. For example, we now know that the partial correlation network shown by Epskamp
et al. (2012) consists of far too many nodes compared to the number of observations to likely
lead to stable results.
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make network estimation accessible to psychological researchers. In particular, the
development of the IsingFit package (van Borkulo et al., 2014) and new versions of
the qgraph package2 changed network psychometrics from a conceptual framework
to a concrete methodology that psychologists could readily apply. More recently,
network psychometrics has further matured by the development of software pack-
ages that include data-driven statistical procedures which assess the properties of
the estimated networks, such as comparing network structures of di↵erent sam-
ples (NetworkComparisonTest ; van Borkulo, 2016), and assess the accuracy and
di↵erences in network properties, such as centrality indices (bootnet ; Epskamp,
Borsboom, & Fried, 2016; see Chapter 3). In addition, promising new software
packages became available that allow for network estimation on time-series data,
on multiple subjects (mlVAR; see Chapter 6), in clinical practice (graphicalVAR;
see Chapter 5 for an example), and in datasets using variables of di↵erent dis-
tributions without the assumption of stationarity (mgm; Haslbeck & Waldorp,
2016a). Finally, the lvnet package (Epskamp, Rhemtulla, & Borsboom, 2016; see
Chapter 7) marks the first software package that combines undirected network
models with latent variable modeling.

We have come a long way, but there is still a long road ahead. As more and
more technical details and conceptual interpretation of these models are worked
out, more and more questions emerge. Network psychometrics is now being fleshed
out as its own field of research—a field that many talented researchers are entering.
Therefore, I wish to conclude this dissertation with an overview of open questions
and potential future directions for this young field of science.

12.2 Open Questions in Network Psychometrics

Handling Missing Data and Ordinal Data

The methods used in network psychometrics mostly come from the fields of statis-
tical learning, statistical physics, and econometrics. Data from such fields are very
di↵erent from data typically found in psychology. Two properties of psychological
data especially do not often occur in other fields of science: data with missing val-
ues and data on an ordinal scale of measurement. Network estimation can learn
from a long history of handling such problems in psychometrics. As such, network
psychometrics should focus on the two problems noted above. Both problems are
far from trivial and will require substantive future research.

Missing data. In psychology, missing data is usually not the exception but
rather the norm. Network estimation methods, however, are not yet capable
of handling missing data in an appropriate way. When estimating a GGM, an
estimate of the variance–covariance matrix is used as input to the graphical LASSO
(see Chapter 2). When data are missing, such an estimate can be obtained by
deleting cases containing one missing value or by pairwise estimation. Typically,

2Version 1.2.5 (revamping the choice of cuto↵ selection in visualizing networks and introduc-
ing standardized centrality plots) and version 1.3 (introducing EBIC model selection of glasso
networks; Foygel & Drton, 2010).
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pairwise estimation is used; however, this relies on certain assumptions on why
the data are missing (i.e., are the data missing at random or not) and might
result in variance–covariance matrices that are not positive definite. In addition,
it is questionable what the sample size (e.g., for EBIC model selection) is when
the variance–covariance matrix is pairwise estimated. When estimating the Ising
model, mixed graphical models, or time-series models, researchers often delete full
cases as a method for handling missing data, but they lose a significant amount
of information in the process.

Psychometricians have worked out in detail many ways of handling miss-
ing data in various modeling frameworks (Enders, 2001). Powerful methods in-
volve (multiple) imputation techniques and full-information maximum likelihood
(FIML) estimation. Such methods could, in theory, also be applied to network
estimation but further research is needed. Klaiber, Epskamp, and van der Maas
(2015) proposed imputation techniques to estimate the Ising model iteratively.
First the model is fit to the data, then the data are imputed given the Ising model,
then the model is fit to the imputed data, and so on until the parameter estimates
are stable. In theory, FIML is possible for estimating the GGM (the GGM can be
framed in terms of a typical SEM model; see Chapter 7), but this could only work
for confirmatory models. Usually, regularization techniques such as the LASSO
are applied in the estimation. Perhaps a penalized version of FIML can be worked
out in future research, combining the strengths of FIML with LASSO estimation.

Ordinal data. Another well-known problem in psychometrics is the scale of
measurement on which items are assessed (Stevens, 1946). Researchers seek to
measure concepts that are not directly observable, such as the severity of a person’s
rumination, using psychological items. Such items are frequently measured on Lik-
ert scales and cannot readily be treated as continuous (Rhemtulla, Brosseau-Liard,
& Savalei, 2012). This problem is especially prominent in data on psychopatholog-
ical symptoms, often measured on a 4-point scale (e.g., Fried, van Borkulo, et al.,
2016), ranging from 0 (not present) to 3 (severe problems). Often, these data are
highly skewed (i.e., many people report 0, especially when a general population
sample is used).

Although network psychometrics is often applied to ordinal data, the handling
of such data should also be a topic of future research. Currently, no method of
appropriately handling ordinal data exists. There are four methods often applied
to handle such data, all of which can be problematic:

1. The method most commonly used is to compute polychoric correlations and
to use these as input to the EBIC model selection of GGM networks using the
graphical LASSO (see Chapter 2). This methodology, however, is not with-
out problems. First, researchers employ the methodology to estimate the
model in two steps, first by computing the polychoric variance–covariance
matrix and next by treating this as the sample variance–covariance matrix
of continuous variables in computing the likelihood. Even though simulation
studies show that this works well, it is not the most appropriate way of han-
dling such data (e.g., in SEM, the thresholds of the polychoric correlations
are estimated at the same time as the SEM model). Second, this method-
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ology assumes an underlying normally distributed variable, which might be
problematic because zero usually means the absence of any symptoms (a
strict boundary). Third, polychoric correlations can lead to strange results
(see Chapter 2 for an overview) when pairwise marginal crosstabulations of
items contain zeroes, which could be expected in highly skewed ordinal data.

2. Data can be dichotomized, and the Ising model can be computed. Although
setting the cuto↵ between 0 and 1 seems appropriate and is defensible, doing
so will lose information on the severity of items.

3. Mixed graphical models can be used, in which case the variables are treated
as categorical. This method takes all responses into account but loses infor-
mation pertaining to the order of responses (e.g., 3 is higher than 2, and 2
is higher than 1) and instead treats each response as a categorical outcome.

4. Ordinal data can be ignored and treated as continuous. This method is not
recommended because simulation studies have shown that doing so has a
lower sensitivity than when using polychoric correlations and also features
an inflated Type 1 error rate when statistically comparing centrality indices.

Future researchers should focus on better estimation methods for graphical models
on ordinal data. Such estimation methods will likely come from psychometrics
because ordinal data has long been handled in many ways. Because the GGM
can be included in the SEM framework (see Chapter 7), handling ordinal data
in the same manner as in SEM (e.g., by using weighted least squares estimation;
Muthén, 1984) seems a logical first step. However, extending such methodology
to include high-dimensional model selection will be challenging.

Evidence for Sparsity

As strongly argued in Chapter 4, using the LASSO estimation leads to sparsity
(edge weights of zero) in the corresponding network model. As such, observing
zeroes is not evidence that the true network is sparse. The same is true when edges
are thresholded for significance (as in Chapter 6) or when step-wise model search
is used (as in Chapter 7). The goal of these methods is to maximize specificity
(see Chapter 2). Closely related to null hypothesis testing: removing an edge is
not evidence that the edge weight is zero (i.e., the null-hypothesis being true);
an edge might also be removed because the data are too noisy. Classical tests,
LASSO regularization, and frequentist model search cannot di↵erentiate between
noisy data and the null-hypothesis being true (Wagenmakers, 2007).

The question whether a missing edge is due to the null hypothesis being true,
however, is a very important one. An edge weight of zero in a pairwise Markov
random field, such as the GGM or the Ising model, indicates that two variables
are conditionally independent. This is important for two reasons. First, as al-
ready outlined in this dissertation, conditional independence plays a crucial role
in causality (Pearl, 2000). For example, the causal structure A ! B ! C implies
that A and C are conditionally independent given B. Second, when the latent
common cause model is true, no two variables should be conditionally indepen-
dent given any other variable in the dataset. Conceptually, this implies that the
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only variable on which one could condition to make observed variables indepen-
dent is the latent variable. Network models only show conditional associations
after conditioning on observed variables. As such, when we find strong evidence
that several pairs of variables become conditionally independent given a third, the
common cause model will not be true.

In network psychometrics, we are interested in finding conditional independence
in addition to finding strong conditional dependencies. However, the methods used
today only allow for the latter. Future researchers should aim to develop methods
in which both can be found. That is, for every edge, we should want to know
the evidence for that edge existing (strong relationship) and the evidence for that
edge not existing (conditional independence). This is difficult to accomplish in the
frequentist framework, typically used in network psychometrics, but it is possible
in a Bayesian framework. In recent years, Bayesian analysts have worked out
the Bayes factor (Kass & Raftery, 1995; Ly, Verhagen, & Wagenmakers, 2016)
as a default method for quantifying both the evidence for the null and for the
alternative hypothesis. Such Bayes factors can possibly be computed for every
edge in the graph, allowing a researcher to identify which edges are likely present,
which edges are likely zero, and the edges whose data are too noisy to make such
a distinction. The Bayes factors for partial correlations have been worked out
(Wetzels & Wagenmakers, 2012). Node-wise estimation of graphical models could
possibly also be used to obtain two Bayes factors per edge (Gelman, Jakulin,
Pittau, & Su, 2008), using regular regression for the GGM and logistic regression
for the Ising model. Finally, the work of Mulder (2014) on testing constraints on
correlation matrices could possibly be extended to testing constraints on partial
correlation matrices. An additional challenge will be to combine such methods
with high-dimensional model selection, such as the LASSO, for which the Bayesian
LASSO could possibly be used (Park & Casella, 2008).

Should Graph Theory Be Used to Analyze Probabilistic
Graphical Models?

In this dissertation I have presented several methods for estimating network struc-
tures on psychological data. As nodes represent variables and edges are typically
unknown, all of these models belong to a class known as probabilistic graphical mod-
els (Koller & Friedman, 2009; Lauritzen, 1996). These models aim to characterize
the joint likelihood of observed variables, and allow for results to be represented
through networks. Although graphically depicting these models as networks is a
powerful technique for communicating such high-dimensional analysis results, it
is questionable if measures from graph theory, such as centrality indices, could be
readily applied to the networks estimated this way. Meaning, can probabilistic
graphical models be interpreted in the same way as, say, a railroad network?

As described several times in this dissertation, typical methodology for an-
alyzing weighted networks—such as computing centrality measures (Opsahl et
al., 2010)—are often used on models obtained in network psychometrics. In this
methodology, each edge is first transformed into a length (i.e., the inverse absolute
value of an edge weights), then the resulting network is analyzed as, for exam-
ple, a railroad network would. The distance between two nodes in a network is

241



12. Discussion: The Road Ahead

−0.2 0.45

0.45

A

BC

A. GGM network

−0.2 0.45

0.45

0.5

0.50.5

A

BC

B. Temporal VAR network

0.30.3

A

BC

C1. Contemporaneous VAR network

0.09

0.09
0.19

0.22

0.23

A

BC

C2. Temporal VAR network

Figure 12.1: Three hypothetical graphical models for which computing network
descriptives might be problematic. Panel A shows a Gaussian graphical model (a
network of partial correlation coefficients), Panel B shows the temporal structure
of a VAR analysis and Panel C shows both the contemporaneous and temporal
structure of a VAR analysis.
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defined through computing shortest paths, an important property in computing
both closeness node centrality (i.e., the inverse sum of such distances) and the
betweenness node centrality (i.e., measuring how often a node lies on the shortest
path). Such methods are insightful when researchers can interpret these short-
est paths to be sensible (e.g., passengers using a rail network will probably only
travel through the shortest path), but it might make less sense in the context of
probabilistic graphical models.

Figure 12.1 illustrates some examples of where interpreting such structures as
networks can go wrong. In Panel A, a three-node GGM is depicted. When inves-
tigating the distance between nodes A and C, a typical network analysis would
indicate that the shortest path is the path A − B − C, resulting in B having the
highest betweenness and the direct path between A and C being ignored. How-
ever, such a result would not take all the information of the model into account.
In fact, A and C are marginally independent; the correlation between A and C
is exactly zero, indicating that knowing A contains no information on C and vise
versa. Such a structure could emerge if B is a common e↵ect of A and C, in which
case disturbing A can, in no way, have any e↵ect on C. As such, it is questionable
what it means for B to have a high betweenness if no causal e↵ect goes through
B.

Panel B shows a vector auto-regression (VAR) temporal model in which the
contemporaneous structure is ignored. This network would lead to a similar con-
clusion because of the network in Panel A: The shortest path from A to C goes
via B. In this network, however, edges indicate Lag-1 e↵ects. This means that
the path A ! B ! C indicates a Lag-2 e↵ect, whereas the direct path A ! B
indicates a Lag-1 e↵ect. Such paths are not even comparable because they indi-
cate completely di↵erent temporal structures. Finally, Panel C shows both model
matrices obtained from a VAR model. Suppose a researcher is interested in iden-
tifying which node is best able to predict all nodes at later measurement. In this
case, only investigating the temporal structure would lead to the conclusion that
the most important node is B. However, such an analysis would not take the
contemporaneous network, in which Node A is highly central, into account.

Information theory. A potential solution for such problems is to not interpret
probabilistic graphical models as networks, but rather, for what they are: full
characterizations of the joint likelihood. In this line of thinking, the graphical
representation is only useful for visualizing the statistical results but should not be
over interpreted. The estimated model, nonetheless, is extremely powerful because
it captures the associational structure of a dataset without the need for underlying
theory on the causal mechanisms. A possible solution for inference methods then
lies in the use of information theory (Cover & Thomas, 2012), which has shown
to be a promising gateway to understanding the full complexity of such systems
(Quax, Apolloni, & Sloot, 2013; Quax, Kandhai, & Sloot, 2013).

In information theory, we can make use of the Shannon entropy (Cover &
Thomas, 2012) of a set of random variables, YYY , which denotes the average amount
of bits of information needed to communicate a discrete outcome. When dealing
with continuous variables, as we do in the GGM and VAR models, we can define
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the di↵erential entropy :
h (YYY ) = −E [log

2

f (YYY )] ,

in which f (yyy) denotes the density function of YYY . This measure can be computed
for any number of variables and quantifies their volatility—in the case of a single
continuous variable, the entropy is directly related to the variance. Now, divide
YYY in two subsets YYY (1) and YYY (2). We can then quantify the association in the two
subsets using the mutual information:
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This measure can act as a general measure for strength of association between any
set of variables to any other set of variables.

In the network perspective, we treat strongly associated variables as densely
connected and usually take the analogy of such strongly connected variables to
be close to one another. Mutual information can then be seen as a new form
of quantifying closeness between nodes or sets of nodes—the inverse of distance.
Therefore, mutual information is an alternative to the shortest path length. This
measure not only takes the shortest paths into account but all other paths as
well. For example, the mutual information of two variables or nodes (we often use
these terms interchangeably), I(Yi;Yj), can be taken as a measure of how close
these two nodes are to each other. The mutual information between two sets,

I
⇣

YYY (1);YYY (2)

⌘

—for example, in which Set (1) contains the symptoms of depres-

sion and Set (2) contains the symptoms of generalized anxiety—can be taken as
a measure of closeness between two groups of nodes. Furthermore, the mutual
information of one variable, (Y

1

), with respect to all other variables, (Y−(i)) and
I(Y

1

;Y−(i)), can be used as a centrality measure. Finally, when temporal informa-
tion is present, only computing the information one node has on all nodes at the
next measurement, I(Yt1;Yt+1

), can be taken as a temporal centrality measure,
which takes into account both the contemporaneous and temporal network (see
Chapter 5 and Chapter 6).

When YYY has a multivariate normal distribution with size P and variance–
covariance matrix ⌃⌃⌃, as is the case in both the GGM and graphical VAR model,
the di↵erential entropy becomes (Cover & Thomas, 2012, p. 250):
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As can be seen, this measure is a direct function of the size of the variance–
covariance matrix⌃⌃⌃. This expression allows us to compute all mutual informations
described above. For example, the mutual information between two variables can
be computed as:
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As can be seen, this measure is a direct property of the explained variance σ2

ij

between two variables. The mutual information of one variable with all other
variables becomes:

I(Y
1

;Y−(i)) =
1

2
log

2

✓ |⌃⌃⌃−(i)|
|⌃⌃⌃|

◆

,

244



12.2. Open Questions in Network Psychometrics

in which ⌃⌃⌃−(i) denotes the variance–covariance matrix without row and column i.
Finally, in a stationary time series of multivariate normal data (e.g., a Lag-1 VAR
model), the temporal closeness above becomes:
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,

in which ⌃⌃⌃TP

j,+ denotes a subsetted Toeplitz matrix:

⌃⌃⌃TP

j,+ = Var (Yti,YYY t+1

) ,

which can be obtained from a VAR analysis.
Applying these metrics to the networks shown in Figure 12.1 leads to strik-

ingly di↵erent interpretations. In Panel A, Nodes A and C are now shown to be
independent; thus, Node B does not have a problematic interpretation of having
a high betweenness. Now in Panel C,3 Node A is shown to have slightly more
information over the next time point than Node B, even though Node B has more
temporal connections. Information theory is a promising gateway to analyzing the
network models obtained. However, future researchers must thoroughly test and
validated these metrics on psychological data.

The Importance of Intercepts

The network models outlined in this dissertation are all models of second-order
moments. That is, they model variances and covariances but not expected values.
The parameters that do model the expected value in the GGM, Ising model, and
VAR model are the intercepts. When drawing a network, these are ignored. As
such, when using the network structure to compute centrality, for example, inter-
cepts are not taken into account. The problem with this approach is that links are
formed between variables that may have largely di↵erent intercepts. Particularly
in models of binary variables, links may be formed between variables that never
have high entropy at the same time. For example, whenever a person is in danger
of su↵ering from suicidal ideation (high entropy), we might expect that person to
always experience sadness (low entropy). If we apply a virus-spreading analogy
(Borsboom et al., 2011), such nodes would never “infect” each other; the link
would never be used.

Figure 12.2, Panel A, shows an example of a network we might estimate on
educational data. This network is a fully connected Ising model, also called a
Curie-Weiss model, which is known to be equivalent to the IRT model shown in
Panel B (Marsman et al., 2015; see also Chapter 8). As such, IRT models are
often used and work well on educational data, the Ising model of Panel A is not
unreasonable. We can see a link between the items “1 + 1” and “0.07692 +
0.3409.” This link represents a very plausible predictive relationship. Knowing
someone can answer “0.07692 + 0.3409” tells us that person can also answer “1 +

3Panel B only shows half the information needed to characterize the full likelihood; see
Chapter 6.
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Figure 12.2: Three potential network structures on educational data. Panels A
and B are equivalent models that do not show the difficulty of an item. In Panel C,
items are ordered according to their difficulty, pointing from the easier item to the
more difficult item.

1” (because the person is able to answer the much harder question as well), and
knowing someone cannot answer “1 + 1” also tells us that person cannot answer
“0.07692 + 0.3409” (because that person cannot answer the simpler question).
These items likely do not have high entropy at the same time in any person’s life.
This means that when a person is struggling with “1 + 1,” and may or may not
answer this item correctly (high entropy), it is highly likely that this person will
never be able to answer “0.07692 + 0.3409” correctly (always an incorrect response;
low entropy). Conversely, whenever a person correctly answers the item “0.07692
+ 0.3409,” that person will likely always answer the item “1 + 1” correctly.

The network perspective would lead to the following interpretation of Panel A,
that one could influence the probability of correctly answering “0.07692 + 0.3409”
by training someone on the question “1 + 1.” However, this seems unlikely.
Teaching a person the techniques needed to answer “1 + 1” would not prepare
that person to answer “0.07692 + 0.3409,” which requires knowledge of decimal
points, counting over tens, and so forth. The latent variable model in Panel B
would implicate that training someone on one of the items would never help that
person answer other items correctly. Although I do not wish to argue against
mathematical ability, I do think that such an assumption might also be too strict.
Children learn by making items, and learning how to make one item helps a child
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make another item. This learning, however, does not jump wildly as would be
expected from Panel A, rather it follows a straight path. Learning “1 + 1” helps
to answer the item “2 + 2,” which helps to answer the item “3 + 3”, and so forth.

Panel C shows a network that is based only on intercepts rather than covari-
ances. Here, each item points to the first harder item. This very di↵erent network
structure shows that people first learn “1 + 1,” then “18 + 22,” and so forth.
I term such a network structure a path of development. The network shown in
Panel C is merely a hypothetical example of what a network that also takes inter-
cepts into account could look like. In perfect unidimensional cases, it might look
like Panel C, whereas in multidimensional cases, one could envision, for example,
parallel paths or the path splitting. I do not seek to propose a new modeling
framework in this section but merely wish to highlight that taking intercepts into
account could lead to di↵erent ways of investigating the phenomena of interest.

Complexity

The network models, as outlined in this dissertation, are but one of the many
consequences that may come from a more general hypothesis of complexity. Psy-
chological behavior plausibly is the result of emergent behavior in a complex sys-
tem of interacting psychological, biological, and sociological components. Simply
stated, psychology is complex. People’s behavior is dictated by their brains, which
consist of billions of neurons, formed by many years of development. As such, ev-
ery person is a mini universe of complexity. These universes, in turn, interact
with one another in complicated social networks. Perhaps, psychology is one of
the hardest fields to tackle. It is, in my opinion, only logical that many behaviors
have no simple explanation.

The network model is but one attempt at grasping this complexity; we should
not get sidetracked by believing it is the only possible attempt. The hypothesis
of complexity is not limited to the expectation that data are generated due to
an underlying (sparse) network model of, at most, second-order moments. This
hypothesis reaches further, with many more implications. This point of view can
take psychological research in many di↵erent directions—rather than merely the
estimation of network models. For example, long-term predictions can be made
on the e↵ects of interventions, without understanding the true underlying causal
mechanisms. Also of particular importance is the work done by van de Leemput
et al. (2014) and Wichers et al. (2016) on identifying early warning signals for
phase transitions in psychology, such as the onset of depression. I think that the
hypothesis of complexity has much to o↵er in the years to come and will change
psychological research in ways we cannot imagine now.

12.3 Conclusion

In this discussion, I outlined various topics for future research which can be tackled
in network psychometrics: improving centrality measures, handling missing and
ordinal data, quantifying evidence for sparsity in the network, and incorporating
intercepts in inference on these models. This is just a highlight of several future di-
rections; many more can be conceived, such as tackling heterogeneity, improving
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multilevel estimation of contemporaneous e↵ects, handling a mixture of obser-
vational and experimental data, and extending networks to nonlinear dynamics.
Finally, I noted a far more general field of research—complexity in psychology—of
which network modeling is merely a small part. The network models proposed in
this dissertation add much to the toolbox of psychological and psychometric re-
searchers. Network psychometrics, however, is still a young field of research with
many unanswered questions. The full utility of these methods and their place in
psychological research and psychometrics will be determined on the road ahead.
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B.2 Software

Stable R packages

• qgraph

– Network drawing, construction and estimation and network-based data
visualization (Link to CRAN repository)

• semPlot

– Path diagrams and visual analysis of various SEM packages’ output
(Link to CRAN repository)
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B.2. Software

• IsingSampler

– Sampling methods and distribution functions for the Ising model (Link
to CRAN repository)

• lisrelToR

– Import output from LISREL into R (Link to CRAN repository)

• graphicalVAR

– Estimate temporal and contemporaneous e↵ects on N = 1 longitudinal
data (Link to CRAN repository)

• mlVAR

– Multi-level vector autoregression (Link to CRAN repository)

• bootnet

– General robustness tests and plots for network models (Link to CRAN
repository)

• elasticIsing

– Ising model estimation using elastic net regularization (Link to CRAN
repository)

• lvnet

– Latent variable network modeling (Link to CRAN repository)

Collaborations

• IsingFit

– Fitting Ising models using the eLasso method (Link to CRAN reposi-
tory)

• statcheck

– Fitting Ising models using the eLasso method (Link to CRAN reposi-
tory)

• JASP

– A low fat alternative to SPSS, a delicious alternative to R. (Link to
website)
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Appendix C

Nederlandse Samenvatting

C.1 Introductie: Psychologische netwerken

Dit proefschrift beschrijft het schatten van netwerkstructuren op psychologische
data: netwerkpsychometrie. Dit onderzoeksveld is ontstaan uit een vraag om
psychologische verschijnselen, zoals het gezamenlijk voorkomen van depressieve
symptomen als moeheid en concentratieproblemen, niet te conceptualiseren als
reflectief aan een onderliggende latente trek, zoals depressie, maar juist als een
gevolg van directe interacties tussen de gemeten eigenschappen: moeheid leidt
tot concentratieproblemen. De opkomst van bijvoorbeeld een depressieve episode
kan dan gezien worden als emergent gedrag in een systeem van interacterende
componenten. Om deze systemen in kaart te brengen wordt gebruik gemaakt
van netwerkmodellen. Om verwarring te voorkomen met, bijvoorbeeld, sociale
netwerken worden deze netwerken aangeduid als psychologische netwerken.

Figuur C.1 laat een voorbeeld zien van een dergelijk psychologisch netwerk.
Dit netwerk is een ongericht netwerk waarin variabelen worden weergegeven als
knopen. De verbinding tussen knopen geeft weer hoe sterk twee variabelen samen-
hangen nadat er is gecontroleerd op alle andere variabelen in de dataset. De intro-
ductie beschrijft hoe dergelijke verbindingen kunnen worden gëınterpreteerd; een
verbinding geeft de unieke variantie weer tussen twee variabelen die niet verklaard
kan worden door andere variabelen. Deze verbindingen kunnen gezien worden als
indicatief voor mogelijke causale relaties tussen twee variabelen. Daartegenover:
het ontbreken van een verbinding indiceert dat twee variabelen mogelijk condi-
tioneel onafhankelijk zijn. De introductie beschrijft verder hoe methoden uit de
grafentheorie gebruikt kunnen worden om de verkregen netwerkstructuren te ana-
lyseren. Zo kan de belangrijkheid van knopen bepaald worden met behulp van
centraliteitsmaten.

De introductie van deze psychologische netwerken, en de in dit proefschrift be-
schreven software en technologische ontwikkelingen, hebben geleid tot een sterke
navolging in (met name klinisch) psychologisch onderzoek. Deel 1 van dit proef-
schrift is derhalve gericht tot empirische onderzoekers in de psychologie, met een
nadruk op klinische psychologie. In Deel 1 wordt het schatten van netwerkstructu-
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Figuur C.1: Voorbeeld van een psychologisch netwerk. Knopen geven variabelen
weer (in dit geval items van een persoonlijkheidsvragenlijst) en verbindingen tussen
knopen geven partiële correlaties weer.

ren gëıntroduceerd, en tevens een kritische noot gelegd om overinterpretatie tegen
te gaan. Naast empirisch onderzoek bleken de netwerkmodellen ook een belang-
rijke bijdrage te kunnen leveren aan methodologisch en psychometrisch onderzoek;
psychologische netwerken zijn niet alleen contrasterend ten opzichte van klassieke
psychometrie, maar juist ook aanvullend. Een netwerkmodel is niet een tegenpool
van het latente-variabelenmodel, maar kan juist nieuwe inzichten geven aan het
latente-variabelenmodel. Derhalve richten Deel 2 en Deel 3 zich voornamelijk op de
overeenkomsten tussen het netwerkmodel en de klassieke psychometrie. Zo blijkt
dat het netwerkmodel als formeel psychometrisch model kan worden gevormd en
dat netwerkmodellen en latente-variabelenmodellen zelfs equivalent kunnen zijn.
Tevens biedt de netwerkpsychometrie sterke, nieuwe visualisatietechnieken voor
psychometrisch onderzoek.

C.2 Deel I: Netwerkpsychometrie voor de empirische
wetenschapper

Hoofdstuk 2: Geregulariseerde netwerken van partiële
correlaties

Dit hoofdstuk introduceert het meest gebruikte netwerkmodel voor psychologi-
sche netwerken: het netwerk van partiële correlaties (later in het proefschrift ook
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C.2. Deel I: Netwerkpsychometrie voor de empirische wetenschapper

een Gaussisch grafisch model genoemd). Dit is een netwerk waarin geobserveerde
variabelen worden weergegeven als knopen. Verbindingen tussen knopen zijn ge-
baseerd op partiële correlaties tussen twee variabelen na conditioneren op alle
andere variabelen. Deze netwerken moeten worden geschat op basis van data.
Bij het schatten van een netwerk moet ook gekeken worden naar de structuur
van het netwerk: welke knopen zijn met elkaar verbonden? Dit betekent dat het
schatten van een netwerk gepaard gaat met een modelselectieprobleem. Doordat
een netwerk een hoog-dimensioneel model is, is zowel het schatten van parame-
ters als het uitvoeren van modelselectie niet triviaal. Er moet rekening gehouden
worden met het feit dat de parameters niet ‘overfitten’ (te veel gebaseerd zijn
op ruis) en dat de modelzoekruimte uitzonderlijk groot kan zijn. Een veel ge-
bruikte oplossing is om gebruik te maken van een statistische techniek genaamd
regularisatie. In regularisatie wordt doorgaans gebruik gemaakt van bestrafte
grootste-aannemelijkheidsschatting (penalized maximum likelihood estimation) om
overfitten tegen te gaan. Met name de variant genaamd de LASSO is veelbelovend
voor het schatten van netwerken. De LASSO bestraft de som van absolute para-
meterwaardes, waardoor veel parameters in de schatting krimpen naar 0. Voor
netwerken kan gebruik gemaakt worden van een variant van de LASSO genaamd
de ‘grafische LASSO’ (glasso).

Om glasso te gebruiken moet eerst een schatting worden verkregen van de
variantie–covariantie matrix. Wanneer de data continu zijn, kan deze worden
verkregen door Pearson correlatiecoëfficiënten uit te rekenen. Voor ordinale data
kan gebruik gemaakt worden van polychorische correlatiecoëfficiënten. Vervolgens
berekent glasso een spaarzaam netwerk van partiële correlaties. De glasso berekent
echter niet één netwerk, maar een reeks aan netwerken: van netwerken met veel
verbindingen tot een netwerk met geen verbindingen. Om vervolgens een enkel
netwerk te selecteren kan gebruik gemaakt worden van modelselectie. Met name
het uitgebreide Bayesiaans informatie criterium (extended Bayesian information
criterion; EBIC) werkt goed in het selecteren van de juiste netwerkstructuur. De
EBIC maakt gebruik van een instelparameter, γ, die tussen 0 en 1 kan worden
gezet. Bij γ = 0 prefereert de EBIC complexere modellen en bij γ = 1 prefereert de
EBIC simpelere modellen. Gebruikelijk zijn 0.25 en 0.5 goede waardes voor deze
instelparameter. Vervolgens wordt het netwerk met de laagste EBIC geselecteerd.
Figuur C.2 geeft dit selectieproces grafisch weer. Deze methode is gëımplementeerd
in het R pakket qgraph.1

Het hoofdstuk presenteert een lijst van mogelijke problemen die zich kunnen
voordoen bij het schatten van netwerken van partiële correlaties. Met name wan-
neer polychorische correlatiecoëfficiënten worden gebruikt kunnen problemen ont-
staan wanneer er te weinig data zijn (bijv. de correlatiematrix kan niet positief
semi-definiet zijn). Het hoofdstuk concludeert met een simulatiestudie die laat zien
dat de beschreven methode goed werkt. De schatting van een Ising model voor
binaire variabelen en een gemengd grafisch model voor een mix van categorische
en continue variabelen volgt ruwweg hetzelfde proces als het hier beschreven.

1
https://github.com/SachaEpskamp/qgraph
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Hoofdstuk 3: Accuraatheid van psychologische netwerken

Dit hoofdstuk beargumenteert dat bij het analyseren van netwerken rekening moet
worden gehouden met het feit dat deze zijn gebaseerd op een steekproef. Zoals be-
schreven in Hoofdstuk 2 moet een netwerk geschat worden op basis van data.
Aangezien deze data een steekproef behelzen, zijn zelfs de beste schatters onder-
hevig aan ruis en niet perfect. Als hier geen rekening mee wordt gehouden, kan er
een verkeerde conclusie worden getrokken op basis van een verkregen netwerkstruc-
tuur. Dit is onder meer belangrijk wanneer er gekeken wordt naar de centraliteit
van knopen in het netwerk. Figuur C.3 laat een voorbeeld zien waarin knopen niet
meer of minder centraal zijn van elkaar in het ware netwerk (Paneel A). In een
netwerk dat geschat is op basis van een steekproef (Paneel C) verschillen knopen
echter wel in centraliteit. Deze verschillen komen echter puur door ruis, en een
substantiële interpretatie van centraliteit in dit netwerk zou niet gepast zijn. Het
hoofdstuk beargumenteert dat door middel van bootstrap methoden inzicht kan
worden verkregen in deze onzekerheid. In bootstrap methoden worden observaties
(rijen in de dataset) willekeurig getrokken om nieuwe datasets te genereren. Op
elk van deze datasets wordt vervolgens een netwerk geschat; de parameterwaar-
des van deze netwerken geven inzicht in de variabiliteit van de schatter. Deze
methoden zijn gëımplementeerd in het R pakket bootnet.2

Het hoofdstuk beschrijft een driestappenplan om de mate van interpreteerbaar-
heid van gevonden verschillen te beoordelen. Deze stappen worden gepresenteerd
in een afnemende mate van belangrijkheid. In stap A wordt de non-parametrische
bootstrap (trekken van een zelfde aantal rijen als in de oorspronkelijke data met te-
ruglegging) gebruikt om betrouwbaarheidsintervallen te schatten voor de netwerk-
verbindingen. Als deze betrouwbaarheidsintervallen groot zijn, is de sterkte van
een verbinding in het netwerk moeilijk te interpreteren. Dergelijke betrouwbaar-
heidsintervallen kunnen echter niet gevormd worden voor centraliteitsmaten. In
stap B wordt de interpreteerbaarheid van centraliteitsmaten gekwantificeerd door
te kijken naar de stabiliteit van centraliteitsmaten met minder observaties. Dat
wil zeggen, blijft de interpretatie van centraliteit hetzelfde op basis van een subset
van de data. Om deze stabiliteit te bekijken, wordt gebruik gemaakt van de subset
bootstrap (trekken van minder aantal rijen als in de oorspronkelijke data zonder
teruglegging). Om dit te kwantificeren stelt het hoofdstuk de correlatiestabiliteit-
coëfficiënt (CS-coëfficiënt) voor: CS(cor = 0.7) = X betekent dat maximaal een
proportie vanX observaties uit de data kan worden gehaald om met 95% zekerheid
te stellen dat de correlatie tussen de oorspronkelijke centraliteit en de centraliteit
op basis van een willekeurige subset boven 0.7 blijft. Als deze maat onder 0.25
is, is de centraliteit niet te interpreteren. Idealiter is deze maat boven 0.5. In
stap C kan een statistische test (bootstrapped di↵erence test) worden uitgevoerd
om te toetsen of verschillen tussen verbindingssterktes en centraliteit van knopen
significant zijn. Gebruikmakend van deze nieuwe methoden blijkt dat de verschil-
len in centraliteit in Figuur C.3 zowel niet significant als niet stabiel zijn. Het
hoofdstuk concludeert met stap-voor-stap instructies over het gebruik van bootnet
en drie simulatiestudies over de CS-coëfficiënt en significantietoetsen.

2
https://github.com/SachaEpskamp/bootnet
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Figuur C.3: Paneel A laat een netwerk van partiële correlaties zien waaronder
data zijn gesimuleerd. Paneel B laat de centraliteit zien (gestandaardiseerd als
z-scores) volgens dit ‘ware’ netwerk. Het netwerk in Paneel A is geconstrueerd
zodat geen enkele knoop meer of minder centraal is dan een andere knoop. In
Paneel C is een netwerk te zien dat is geschat op gesimuleerde data (N = 500)
onder het netwerk van Paneel A. Hoewel het geschatte netwerk van Paneel C goed
lijkt op het ware netwerk van Paneel A is de schatting niet exact. Hierdoor zijn
in het geschatte netwerk wel verschillen in centraliteit (Paneel D).
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Hoofdstuk 4: De schattingsmethode van netwerken en
spaarzaamheid

Dit hoofdstuk waarschuwt tegen het overinterpreteren van geschatte netwerken
op psychologische data. Aangezien netwerkmodellen zeer nauw verbonden zijn
aan latente-variabelenmodellen (zie Hoofdstuk 7 en Hoofdstuk 8) betekent het
schatten van een netwerkmodel niet dat het datagenererende mechanisme niet een
latente-variabelenmodel had kunnen zijn. Een latente-variabelenmodel leidt tot
een netwerk dat niet spaarzaam is: alle knopen zijn met elkaar verbonden. Echter,
als wel een spaarzaam netwerk wordt gevonden (er ontbreken meerdere mogelijke
verbindingen in het netwerk), bijvoorbeeld door LASSO schatting te gebruiken, is
dat geen evidentie dat een latente-variabelenmodel niet aan de data ten grondslag
kan liggen. Dit komt doordat de schattingsmethode bepaalde assumpties doet over
de ware netwerkstructuur die niet kunnen worden genegeerd. De LASSO neemt
aan dat het ware netwerk spaarzaam is, en zal zodoende vaak een spaarzaam
netwerk schatten. Een andere methode is om een netwerk te schatten dat een lage
rang heeft. Deze methode kan goed een netwerk terugschatten dat overeenkomt
met een latente-variabelenmodel, maar heeft juist weer als keerzijde dat nooit een
spaarzaam netwerk zal worden geschat.

Figuur C.4 laat een voorbeeld zien van het e↵ect van de schattingsmethode.
Data waren gegenereerd volgens het latente-variabelenmodel in Paneel A, een Mul-
tidimensionaal IRT model (MIRT). Dit model is een hypothetisch model gebaseerd
op de symptomen van dysthemie en gegeneraliseerde angststoornis. Omdat deze
symptomen deels overlappen (bijv. slapeloosheid is een symptoom van beide stoor-
nissen) en deels elkaar uitsluiten (bijv. slapeloosheid en hypersomnie) zijn residuele
factoren toegevoegd. De symptomen laden alle even sterk op de latente factoren,
en zijn dus uitwisselbaar. Het MIRT model is sterk verbonden aan het Ising model
(zie Hoofdstuk 7). Paneel B laat het Ising model zien dat zou verwacht worden
gegeven het ware MIRT model (geschat op 10 miljoen gesimuleerde observaties).
Paneel C laat een Ising model zien dat zonder regularisatie is geschat,3 wat veel
verbindingen oplevert (vooral negatieve) die niet overeenkomen met het ware mo-
del. Paneel D laat een Ising model zien geschat met LASSO regularisatie.4 Dit
netwerk is spaarzaam en levert te weinig verbindingen op. De clustering wordt
niet volledig teruggeschat en knopen hebben een verschillend aantal verbindingen
terwijl deze uitwisselbare symptomen representeren. Paneel E, ten slotte, laat een
lage rang benadering zien die juist niet in staat is de brug-symptomen terug te
schatten.

Zonder te weten dat het latente-variabelenmodel het ware model is, had een
onderzoeker mogelijk alleen het spaarzame netwerk van Paneel D bekeken, en
vervolgens geconcludeerd dat het ware model niet een latente-variabelenmodel
kan zijn. Deze conclusie zou echter niet gegrond zijn, aangezien de LASSO zorgt
voor een spaarzaam netwerk. Het onderscheiden van dergelijke modellen is nog
een groot open vraagstuk in de netwerkpsychometrie, en kan mogelijk niet gedaan
worden zonder experimentele manipulatie. Onderzoekers moeten daarom rekening

3Gebruikmakend van het R pakket IsingSampler ; https://github.com/SachaEpskamp/

IsingSampler

4Gebruikmakend van het R pakket IsingFit ; https://github.com/cvborkulo/IsingFit
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Figuur C.5: Temporeel (links) en gelijktijdig (rechts) netwerken gebaseerd op
data van een klinische patiënt die 52 keer is gemeten over een periode van twee
weken. Legenda van knopen: O = ‘ontspannen’; V = ‘verdrietig’; N = ‘nerveus’;
C = ‘concentratie’; M = ‘moe’; P = ‘piekeren’; L = ‘lichamelijk ongemak’.

houden met het feit dat de schattingsmethode de netwerkstructuur bëınvloedt,
waardoor sommige conclusies niet getrokken kunnen worden.

Hoofdstuk 5: Gepersonaliseerde netwerkmodellen in de
psychopathologie

Dit hoofdstuk beschrijft hoe netwerkmodellen gebruikt kunnen worden in de kli-
nische praktijk. Een patiënt kan meerdere keren per dag worden gemeten over
een periode van enkele weken. Vervolgens kunnen statistische methoden gebruikt
worden om de dynamiek van deze patiënt in kaart te brengen. Het meest eenvou-
dige model dat kan worden gebruikt is het vector-autoregressieve model (vector-
autoregression; VAR). In VAR wordt doorgaans een temporeel netwerk berekend,
dat de samenhang tussen variabelen laat zien tussen opeenvolgende tijdsblokken.
Een voorbeeld van een temporeel netwerk is te zien in het linker paneel van Fi-
guur C.5. Een verbinding in een dergelijk temporeel netwerk indiceert dat een
gemeten variabele in een bepaald tijdsblok (bijv. moe) een andere variabele in het
volgende tijdsblok (bijv. verdrietig) voorspelt. Een dergelijke relatie kan voorko-
men als iemands moeheid van invloed is op iemands gevoel van verdriet.

De VAR-analyse levert naast het temporele netwerk ook een tweede netwerk
op: het gelijktijdige netwerk. Een voorbeeld van een dergelijk netwerk is te zien in
het rechter paneel van Figuur C.5. Dit netwerk is een netwerk van partiële correla-
ties tussen de residuen van de VAR-analyse, en laat relaties zien die niet verklaard
kunnen worden door de temporele verbanden. Relaties die sneller zijn dan de
intensiteit van meten en zich afspelen in het zelfde tijdsblok komen terecht in dit
gelijktijdige netwerk. Dit hoofdstuk beargumenteert dat het gelijktijdige netwerk
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naast het temporele netwerk ook waardevolle informatie kan bevatten, omdat re-
laties in de psychopathologie plausibel snel kunnen optreden. Een voorbeeld is de
relatie:

hartkloppingen ! bang voor paniekaanval.

Een persoon die lijdt onder een paniekstoornis kan bang worden dat hij of zij een
paniekaanval krijgt omdat hij of zij hartkloppingen voelt. Een dergelijke relatie
speelt zich waarschijnlijk zeer snel af en zal niet terecht komen in het tempo-
rele netwerk. Deze relatie zal echter mogelijk wel te zien zijn in het gelijktijdige
netwerk; in tijdsblokken wanneer deze persoon hartkloppingen voelde was deze
persoon mogelijk ook vaker bang voor een paniekaanval.

Het hoofdstuk beschrijft hoe een ongericht gelijktijdig netwerk, net als het ge-
richte temporele netwerk, indicatief kan zijn voor mogelijke relaties in een persoon,
en zodoende als hypothese-genererend gebruikt kan worden in klinische praktijk.
De methoden om een temporeel en gelijktijdig netwerk te schatten op een gering
aantal observaties is onder andere gëımplementeerd in het R pakket graphical-
VAR.5 Het hoofdstuk beschrijft twee voorbeelden waarin deze software is gebruikt
op data van patiënten, en beschrijft welke klinische inzichten verkregen kunnen
worden uit een dergelijke analyse.

C.3 Deel II: Technologische ontwikkelingen in de
netwerkpsychometrie

Hoofdstuk 6: Ontdekking van dynamische relaties in
psychologische data

In dit hoofdstuk wordt het meest gebruikte netwerkmodel voor continue variabe-
len, het Gaussisch grafisch model (Gaussian graphical model ; GGM) gëıntroduceerd
in de context van het ontdekken van dynamische relaties in psychologische data,
wanneer kan worden aangenomen dat de data multivariabel normaal verdeeld zijn.
Het GGM is een model voor de inverse van een variantie–covariantie matrix. Het
hoofdstuk laat drie equivalenties zien tussen het GGM en andere statistische mo-
dellen. Ten eerste kunnen de elementen van de inverse variantie–covariantie matrix
gestandaardiseerd worden tot partiële correlatiecoëfficiënten. Een netwerk wordt
gebruikelijk getekend met partiële correlatiecoëfficiënten als verbindingen. Een
partiële correlatie van nul betekent dat twee variabelen conditioneel onafhankelijk
zijn en dus elkaar niet direct bëınvloeden. Een partiële correlatie die niet nul is
– een verbinding in het netwerk – kan daardoor indicatief zijn van een mogelijk
causale relatie. Ten tweede: deze partiële correlatiecoëfficiënten zijn proportioneel
aan regressiecoëfficiënten verkregen uit de multipele regressie van één variabele op
alle andere variabelen. Dit betekent dat de verbindingen in een GGM netwerk
opgevat kunnen worden als predictief, en paden in het netwerken (bijvoorbeeld
A — B — C) indicatief zijn voor predictieve mediatie. Zodoende brengt het
GGM de multicollineariteit van een regressieanalyse in kaart. Ten derde heeft

5
https://github.com/SachaEpskamp/graphicalVAR
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het GGM dezelfde vorm als het Ising model, doordat beide lid zijn van een fa-
milie van modellen, genaamd Markov willekeurige velden (Markov random fields).
Deze modellen worden in andere velden van de wetenschap veelvuldig gebruikt om
complexe systemen te modelleren (zie hoofdstuk 8).

Wanneer de data niet transversaal zijn (cross-sectional ; meerdere personen
eenmaal gemeten) maar juist bestaan uit meerdere metingen van één of meerdere
personen, wordt een algemene assumptie van de statistiek aannemelijk geschon-
den: opeenvolgende metingen zijn niet onafhankelijk. Zodoende kan het GGM niet
zomaar berekend worden op dergelijke data. De tijdserie levert echter ook nieuwe
informatie op: hoe variabelen zich tot elkaar verhouden over tijd. In tijdserie-
data van een enkel persoon kan rekening gehouden worden met deze schending
van onafhankelijkheid door te corrigeren voor het vorige meetmoment. Onder
de aanname van multivariabele normaliteit heeft deze correctie de vorm van het
vector-autoregressieve model (vector-autoregression: VAR). Dit model levert twee
netwerken op: (1) een temporeel netwerk, een gericht netwerk waarin de voorspel-
lende kracht van een variabele op een andere variabele over de tijd wordt weer-
gegeven, en (2) een gelijktijdig netwerk, een GGM berekend op de residuen van
de VAR analyse. Beargumenteerd wordt, zoals eerder in Hoofdstuk 5, dat beide
netwerken relaties vertonen die interessant kunnen zijn voor de onderzoeker. Het
temporele netwerk wordt al veelvuldig gebruikt in psychologisch onderzoek omdat
het relaties weergeeft die zich over de tijd ontvouwen. Het gelijktijdige netwerk
laat daarentegen relaties zien die zich afspelen op een tijdschaal die korter is dan
de afstand tussen de metingen.

Wanneer tijdseriedata van meerdere personen beschikbaar zijn, kan er gebruik
worden gemaakt van multiniveau (multi-level) VAR analyse. In deze analyse kan
de grootte van individuele verschillen in kaart worden gebracht. Verder kan onder-
zocht worden welke relaties in een persoon plaatsvinden en welke relaties tussen
personen plaatsvinden. Dit is een belangrijk verschil met resultaten die verkregen
kunnen worden in transversale data. Een transversale relatie tussen bijvoorbeeld
moeheid en concentratieproblemen kan voorkomen doordat mensen die over het
algemeen moe zijn ook over het algemeen meer concentratieproblemen ervaren
(een relatie tussen personen), of omdat wanneer een persoon buitensporig moe is
deze persoon ook meer concentratieproblemen ervaart dan zijn of haar gemiddelde
(een relatie in een persoon). De multiniveau VAR analyse levert zodoende naast
een temporeel en gelijktijdig netwerk per persoon – en schattingen van de popu-
latiegemiddelden: vaste e↵ecten (fixed e↵ects) – ook een GGM netwerk op dat
de relaties beschrijft tussen de gemiddelde scores van personen: (3) een tussen-
persoons netwerk. Beargumenteerd wordt dat dit tussen-persoons netwerk ook
dynamische relaties kan weergeven.

De beschreven multiniveau VAR analyses zijn gëımplementeerd in het R pakket
mlVAR.6 Het hoofdstuk beschrijft simulatieresultaten die laten zien dat mlVAR
goed de netwerkstructuren kan terugschatten. Figuur C.6 laat een voorbeeld zien
van de drie netwerken die verkregen kunnen worden met multiniveau VAR. In deze
netwerken zijn variabelen meegenomen die de persoonlijkheidstrek ‘extraversie’
meten en of een persoon inspanning heeft verricht. De resultaten laten zien dat

6https://github.com/SachaEpskamp/mlVAR
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Figuur C.6: Geschatte gemiddelde netwerkstructuren die verkrijgbaar zijn in mul-
tiniveau vector-autoregressie. Het model is geschat op basis van 88 mensen die
drie tot vijf keer per dag waren gemeten via een smartphone-applicatie; in totaal
waren er 3516 observaties. Niet-significante verbindingen zijn verwijderd. Voor
de ongerichte netwerken is gebruik gemaakt van de ‘of’-regel voor significantie:
een verbinding is behouden als één van de twee regressiecoëfficiënten waarop deze
verbinding is gebaseerd significant was. Legenda van knopen: U = ‘uitgaand’; E
= ‘energiek’; A = ‘avontuurlijk’; B = ‘blij’; I = ‘inspanning’.

in hetzelfde tijdsblok dat een persoon inspanning verricht (bijv. sporten) deze
persoon zich ook gemiddeld meer energiek voelt. In het tijdsblok nadat een persoon
inspanning heeft verricht voelt deze persoon zich juist minder energiek. Verder is
te zien dat mensen minder uitgaand waren na het verrichten van inspanning. In het
tussen-persoons netwerk worden deze relaties niet gevonden. Het tussen-persoons
netwerk laat echter een sterke verbinding zien tussen inspanning verrichten en zich
avontuurlijk voelen: mensen die zich, over het algemeen, meer avontuurlijk voelen
verrichten, over het algemeen, ook meer inspanning. Deze relatie was niet te zien
in het temporele netwerk en het gelijktijdige netwerk.

Hoofdstuk 7: Gegeneraliseerde netwerkpsychometrie

In dit hoofdstuk wordt het GGM gëıntroduceerd als een formeel psychometrisch
model. In een netwerkmodel (Paneel A van Figuur C.7) wordt de samenhang
van variabelen gezien als het gevolg van paarsgewijze interacties direct tussen
de geobserveerde variabelen. Dit staat in sterk contrast met standaard psy-
chometrie, waarin de samenhang van variabelen juist verklaard wordt door één
of meerdere niet geobserveerde (latente) variabelen (Paneel B van Figuur C.7).
Dit hoofdstuk beschrijft de relatie tussen het GGM en de meest gebruikte me-
thode voor latente variabelen onderliggend aan continue data: structurele verge-
lijkingsmodellen (Structural Equation Modeling ; SEM). Het hoofdstuk laat zien
dat netwerkmodelleren de andere kant is van dezelfde munt: waar in SEM de
variantie–covariantie wordt gemodelleerd, wordt in het GGM juist de inverse van
de variantie–covariantie matrix gemodelleerd. Hierdoor is het GGM direct te im-
plementeren in SEM, en kan van een GGMmodel passingsmaten worden verkregen
of een GGM model vergeleken worden met een SEM model. Door de combinatie
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A. Structurele vergelijkingsmodellen B. Netwerkmodellen

C. Latente network modellen D. Residuele netwerkmodellen

Figuur C.7: Voorbeelden van verschillende mogelijke modellen onder de vier be-
schreven modelspecificaties. Ronde knopen laten latente variabelen zien, vierkante
knopen geobserveerde variabelen en grijze knopen de residuen. Gerichte verbindin-
gen representeren factor-ladingen of regressieparameters en ongerichte verbindin-
gen representeren paarsgewijze interacties. Deze verbindingen zijn niet marginale
covarianties, maar juist conditionele.

van SEM en het GGM ontstaan ook twee nieuwe modellen: latent netwerkmodel-
leren (LNM) en residueel netwerkmodelleren (RNM).

Figuur C.7 laat voorbeelden van de twee nieuwe modelspecificaties zien. In
Paneel C is een voorbeeld van het LNM model te zien waarin negen geobserveerde
variabelen worden verklaard door drie latente variabelen. Op het latente niveau is
een ongericht netwerk gemodelleerd in plaats van een gericht netwerk zoals typisch
in SEM. Dit netwerk encodeert dat twee latente variabelen onafhankelijk zijn na
conditioneren op een derde. Het model in Paneel C is statistisch equivalent aan
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het SEM model in Paneel A en heeft geen equivalente modellen (zonder meer
latente variabelen toe te voegen). Doordat LNM dergelijke conditionele onafhan-
kelijkheden kan ontdekken, is deze modelspecificatie veelbelovend in exploratief
onderzoek naar relaties tussen latente variabelen. Paneel D laat een RNM model
zien: een SEM model met een GGM netwerk tussen de residuen. In RNM wor-
den conditionele covarianties gemodelleerd in plaats van marginale covarianties.
Hierdoor kan dit model op een spaarzame manier (positief aantal vrijheidsgraden)
een residuele variantie–covariantie matrix modelleren waarin geen enkel element
nul is. Zodoende wordt in het model van Paneel D geen lokale onafhankelijkheid
aangenomen (alle residuen kunnen correleren met elkaar). Deze modelspecificatie
is veelbelovend om een confirmatief factor-model passend te maken zonder dat
kruisladingen gebruikt moeten worden.

Het hoofdstuk concludeert door te laten zien dat met een bestrafte grootste-
aannemelijkheidsschatter, de LASSO, beide modellen kunnen worden geschat.
Deze schattingsmethode volgt grofweg de modelselectiemethode beschreven in
Hoofdstuk 2. Het gebruik van deze schattingsmethode wordt onderbouwd met
twee simulatiestudies. Deze simulatiestudies laten zien dat de methode in combi-
natie met EBIC modelselectie de ware netwerkstructuur goed kan terugschatten,
mits er genoeg observaties zijn. De methoden om deze modellen te schatten zijn
gëımplementeerd in het R pakket lvnet.7

Hoofdstuk 8: Het Ising model in de psychometrie

Dit hoofdstuk introduceert netwerkmodellen voor psychometrici, met een bijzon-
dere nadruk op het netwerkmodel voor binaire data: het Ising model. Het Ising
model wordt eerst gëıntroduceerd vanuit de statistische natuurkunde, als een mo-
del voor magnetisme van deeltjes. Vervolgens laat het hoofdstuk zien dat het Ising
model nauw verbonden is aan drie gebruikelijke modellen in de psychometrie: (1)
het conditionele Ising model is equivalent aan een logistisch regressiemodel, (2)
het Ising model is equivalent aan een loglinear model met hoogstens paarsgewijze
interacties, en (3) het Ising model is equivalent aan een bepaald soort latente-
variabelenmodel: het multidimensionale item respons theorie (MIRT) model met
een conditionele normale verdeling voor de latente trekken.

Met name de laatste equivalentie wordt uitvoerig besproken. Een Ising model
is equivalent aan een bepaald soort MIRT model; de rang van de netwerk-matrix
komt overeen met het aantal latente variabelen. Zoals eerder beschreven in Hoofd-
stuk 4 heeft deze equivalentie grote gevolgen voor de interpretatie van netwerk-
modellen. Voor elk Ising model bestaat een equivalent latente-variabelenmodel en
vice versa. De equivalentie heeft ook gevolgen voor de psychometrie, aangezien het
een nieuwe karakterisatie mogelijk maakt van de gezamenlijke verdeling van data
gegeven het MIRT model. Het hoofdstuk beschrijft verder hoe het Ising model
geschat kan worden en breidt uit over het onderscheiden van netwerkmodellen en
latente-variabelenmodellen. Het hoofdstuk beschrijft ten slotte een voorbeeld van
geschatte Ising modellen gebruikmakend van het R pakket elasticIsing.8

7
https://github.com/SachaEpskamp/lvnet

8
https://github.com/SachaEpskamp/elasticIsing
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C.4 Deel III: Visualisaties in de psychometrie en
persoonlijkheidsonderzoek

Hoofdstuk 9: Visualisering van psychometrische relaties

Dit hoofdstuk introduceert het qgraph9 pakket voor R in de context van data-
visualisatie in de psychometrie. Het qgraph pakket kan gebruikt worden voor het
weergeven en analyseren van gewogen netwerken, en is de methode die gebruikt
is voor de meeste visualisaties in dit proefschrift. Naast de eerder beschreven
netwerkmodellen kan qgraph gebruikt worden om een netwerk weer te geven van
marginale correlatiecoëfficiënten. Op deze manier kan een hoog-dimensionale cor-
relatiematrix op een nieuwe manier worden weergegeven. Deze visualisatieme-
thode kan inzicht geven in de clustering van variabelen, alsmede in de algemene
structuur van correlationele patronen in de data. Tevens kan met deze visualisatie-
methode inzicht gekregen worden in hoe goed een SEM model wel of niet past op
de data. Daarnaast kan qgraph ook gebruikt worden om andere statistische relaties
weer te geven, zoals factor- en componentladingen. Figuur C.8 laat een grafische
weergave zien van geschatte componentladingen in een principale-componenten-
analyse. Een belangrijk voordeel van deze methode voor het weergeven van factor-
of componentladingen is dat er direct inzicht wordt gekregen in zowel de sterkste
ladingen als de belangrijkste kruisladingen.

Hoofdstuk 10: De netwerkbenadering in
persoonlijkheidsonderzoek

Dit hoofdstuk beschrijft stap voor stap hoe netwerkmodellen in persoonlijkheids-
onderzoek kunnen worden gebruikt. Hierbij wordt gebruik gemaakt van regulari-
satie om een netwerk van partiële correlaties te schatten.10 Vervolgens beschrijft
dit hoofdstuk in detail hoe het verkregen netwerk kan worden geanalyseerd met
behulp van centraliteitsmaten, clusteringcoëfficiënten en algemene netwerkeigen-
schappen. De methode wordt verduidelijkt door data te analyseren van de veel-
gebruikte HEXACO vragenlijst.

Hoofdstuk 11: Geünificeerde visualisaties van structurele
vergelijkingsmodellen

Dit hoofdstuk introduceert het R pakket semPlot11, waarmee pad diagrammen
kunnen worden gegenereerd op basis van structurele vergelijkingsmodellen (struc-
tural equation modeling ; SEM). Output van verschillende softwarepakketten (zoals
lavaan, sem, Mplus en LISREL) kunnen worden ingelezen om zodoende een pad
diagram te tekenen. Het pakket biedt meer functionaliteit dan alleen pad diagram-
men weergeven, en kan tevens gebruikt worden als een brug tussen verschillende

9https://github.com/SachaEpskamp/qgraph
10De beschreven methode is vergelijkbaar met de methode die is beschreven in Hoofdstuk 2,

die nog niet was gëımplementeerd ten tijde van het schrijven van Hoofdstuk 10
11
https://github.com/SachaEpskamp/semPlot
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Figuur C.8: Visualisatie gemaakt met het qgraph pakket van de resultaten van
een principale componentanalyse.

softwarepakketten en modelspecificaties. Input voor bijvoorbeeld lavaan kan ge-
genereerd worden op basis van output van bijvoorbeeld Mplus. Tevens kunnen
de modelmatrices verkregen worden en gebruikt worden voor verdere berekenin-
gen. Het hoofdstuk concludeert met een gedetailleerd overzicht van verschillende
algoritmes om de knopen van het pad-diagram te plaatsen.

C.5 Discussie: open vraagstukken in de
netwerkpsychometrie

In de tijd van dit promotietraject is de netwerkpsychometrie uitgegroeid tot een
veld waarin meer en meer talentvolle onderzoekers hun intrede doen. Hoewel
het gebruik van netwerken in de psychologie steeds beter begrepen is en steeds
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meer methoden worden ontwikkeld, zijn er ook nog veel open vragen. Derhalve
concludeert dit proefschrift met enkele richtingen voor vervolgonderzoek:

1. Er zijn op dit moment weinig manieren om om te gaan met ontbrekende data
in het schatten van psychologische netwerken. Meestal worden alle observa-
ties waarin minstens één response ontbreekt volledig weggehaald. Hierdoor
worden echter niet alle data meegenomen in de analyse en wordt er een sterke
aanname gedaan over de oorzaak waarom een response ontbreekt. De psy-
chometrie kent een lange geschiedenis van omgaan met ontbrekende data,
waar de literatuur van het schatten van netwerkmodellen veel van kan leren.

2. Veel data in de psychologie zijn gemeten op een ordinale schaal. Bijvoor-
beeld, veel vragenlijsten in de psychopathologie meten de ernst van symp-
tomen op een schaal van 0 (geen klachten) tot 3 (heel veel klachten). De
psychometrie kent ook hier een lange geschiedenis van het modelleren van
dergelijke data. Dit soort data komt echter niet voor in de velden waarin
netwerkmodellen doorgaans worden gebruikt. Derhalve is het gebruik van
ordinale data in het schatten van netwerkmodellen nog niet goed uitgewerkt.
De doorgaans gebruikte methodes – het gebruik van polychorische correlaties
voor het berekenen van een netwerk van partiële correlaties of het discreet
maken van antwoorden om vervolgens een Ising model te berekenen – zijn
niet zonder problemen. Het is dus van cruciaal belang dat het modelleren
van ordinale data in netwerkmodellen verder wordt ontwikkeld.

3. Zoals beschreven in Hoofdstuk 4 is het momenteel niet mogelijk evidentie te
vinden dat het ware netwerk spaarzaam is (niet alle knopen zijn verbonden).
Dit terwijl het ontbreken van verbindingen een belangrijke interpretatie met
zich mee brengt: conditionele onafhankelijkheid. Derhalve is het van belang
dat methoden worden ontwikkeld die wel evidentie kunnen vergaren voor het
ontbreken van verbindingen. Veelbelovend hierin is het gebruik van Baye-
siaanse statistiek, waarin de Bayes-factor een steeds meer gebruikte maat
is die evidentie voor een null-hypothese kan vergaren. Toekomstig onder-
zoek zou zich kunnen richten op het ontwikkelen van standaard Bayesiaanse
testen voor netwerkverbindingen.

4. Vaak worden de verkregen netwerkstructuren geanalyseerd op een vergelijk-
bare manier als bijvoorbeeld wegen-netwerken of sociale netwerken. De mo-
dellen die voor dit proefschrift zijn gebruikt, zijn echter structureel anders.
De knopen representeren variabelen met meerdere staten en de verbindin-
gen representeren statistische relaties. Deze modellen worden probabilistische
grafische modellen genoemd en encoderen de volledige gezamenlijke verde-
ling van een set variabelen. Het is de vraag of dergelijke modellen wel moeten
worden geanalyseerd met maten uit de grafentheorie. De discussie laat zien
dat met gebruik van informatietheorie op een andere manier gekeken kan
worden naar de verkregen resultaten. Meer onderzoek is nodig om deze
maten te valideren.

5. De netwerkmodellen die zijn gepresenteerd in dit proefschrift modelleren al-
leen de samenhang van variabelen. Er wordt in deze netwerken niet gekeken
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naar de drempelwaarde van een variabele (bijv. dat het symptoom ‘süıcidale
gedachten’ minder vaak voorkomt dan het symptoom ‘droevige stemming’).
Deze eigenschap wordt gemodelleerd met een intercept. Doordat niet ge-
keken wordt naar intercepten kan het zijn dat twee variabelen aan elkaar
worden verbonden zonder dat deze vergelijkbaar zijn in drempelwaarde. Dit
kan problematisch zijn. Mogelijk kan vervolgonderzoek kijken naar het con-
strueren van netwerken waarbij ook het intercept een rol speelt.

Het proefschrift concludeert met de notie dat de beschreven netwerkmodellen,
hoewel veelbelovend, lang niet de enige methode vormen om om te gaan met de
meer algemenere hypothese dat psychologie complex is. De toekomst zal uitwijzen
welke plek deze methoden in psychologisch onderzoek zullen innemen.
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