
Chapter 12

Discussion: The Road Ahead

12.1 Introduction

This dissertation provided an overview of network models applicable to psycho-
logical data as well as descriptions of how these methods relate to general psycho-
metrics. The visualization methods outlined in the final part of this dissertation
are based on the oldest publications and relate to the state-of-the-art when this
PhD project started. At the start of this PhD project, 4 years ago, network es-
timation in psychology consisted of not much more than drawing networks based
on marginal correlation coefficients. This can be shown in publications from this
period. Cramer et al. (2010) marks the first psychological network estimated from
data and shows a network in which edges are based on associations. The qgraph
package was based on this and, for the first time, provided psychologists with a
simple method for constructing networks based on correlations (Epskamp et al.,
2012). Key publications of that time mostly outlined conceptual and theoretical
implications of the network perspective and often relied on correlation networks to
showcase what such a network could possibly look like (e.g., Cramer, Sluis, et al.,
2012; Borsboom & Cramer, 2013; Schmittmann et al., 2013). Partial correlation
networks were proposed and published (e.g., Epskamp et al., 2012; Cramer, Sluis,
et al., 2012) but were not yet worked out in enough detail to provide the powerful
visualizations now used in psychology.1 In addition, time-series models showed
promise (e.g., Borsboom & Cramer, 2013) but had not yet been worked out in
detail and implemented in easy-to-use software.

The use of network estimation on psychological data has come a long way since
then. In fact, the achieved progress warrants the birth of a new field of research:
network psychometrics. This progress has been marked by a gradual increase in
the understanding of both the interpretation and the applicability of network mod-
els as well as by key turning points in the development of the methodology. Some
of these key turning points came with the emergence of new software routines that

1In retrospect, the original promise of partial correlation networks might have been taken
too strong. For example, we now know that the partial correlation network shown by Epskamp
et al. (2012) consists of far too many nodes compared to the number of observations to likely
lead to stable results.
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make network estimation accessible to psychological researchers. In particular, the
development of the IsingFit package (van Borkulo et al., 2014) and new versions of
the qgraph package2 changed network psychometrics from a conceptual framework
to a concrete methodology that psychologists could readily apply. More recently,
network psychometrics has further matured by the development of software pack-
ages that include data-driven statistical procedures which assess the properties of
the estimated networks, such as comparing network structures of di↵erent sam-
ples (NetworkComparisonTest ; van Borkulo, 2016), and assess the accuracy and
di↵erences in network properties, such as centrality indices (bootnet ; Epskamp,
Borsboom, & Fried, 2016; see Chapter 3). In addition, promising new software
packages became available that allow for network estimation on time-series data,
on multiple subjects (mlVAR; see Chapter 6), in clinical practice (graphicalVAR;
see Chapter 5 for an example), and in datasets using variables of di↵erent dis-
tributions without the assumption of stationarity (mgm; Haslbeck & Waldorp,
2016a). Finally, the lvnet package (Epskamp, Rhemtulla, & Borsboom, 2016; see
Chapter 7) marks the first software package that combines undirected network
models with latent variable modeling.

We have come a long way, but there is still a long road ahead. As more and
more technical details and conceptual interpretation of these models are worked
out, more and more questions emerge. Network psychometrics is now being fleshed
out as its own field of research—a field that many talented researchers are entering.
Therefore, I wish to conclude this dissertation with an overview of open questions
and potential future directions for this young field of science.

12.2 Open Questions in Network Psychometrics

Handling Missing Data and Ordinal Data

The methods used in network psychometrics mostly come from the fields of statis-
tical learning, statistical physics, and econometrics. Data from such fields are very
di↵erent from data typically found in psychology. Two properties of psychological
data especially do not often occur in other fields of science: data with missing val-
ues and data on an ordinal scale of measurement. Network estimation can learn
from a long history of handling such problems in psychometrics. As such, network
psychometrics should focus on the two problems noted above. Both problems are
far from trivial and will require substantive future research.

Missing data. In psychology, missing data is usually not the exception but
rather the norm. Network estimation methods, however, are not yet capable
of handling missing data in an appropriate way. When estimating a GGM, an
estimate of the variance–covariance matrix is used as input to the graphical LASSO
(see Chapter 2). When data are missing, such an estimate can be obtained by
deleting cases containing one missing value or by pairwise estimation. Typically,

2Version 1.2.5 (revamping the choice of cuto↵ selection in visualizing networks and introduc-
ing standardized centrality plots) and version 1.3 (introducing EBIC model selection of glasso
networks; Foygel & Drton, 2010).
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pairwise estimation is used; however, this relies on certain assumptions on why
the data are missing (i.e., are the data missing at random or not) and might
result in variance–covariance matrices that are not positive definite. In addition,
it is questionable what the sample size (e.g., for EBIC model selection) is when
the variance–covariance matrix is pairwise estimated. When estimating the Ising
model, mixed graphical models, or time-series models, researchers often delete full
cases as a method for handling missing data, but they lose a significant amount
of information in the process.

Psychometricians have worked out in detail many ways of handling miss-
ing data in various modeling frameworks (Enders, 2001). Powerful methods in-
volve (multiple) imputation techniques and full-information maximum likelihood
(FIML) estimation. Such methods could, in theory, also be applied to network
estimation but further research is needed. Klaiber, Epskamp, and van der Maas
(2015) proposed imputation techniques to estimate the Ising model iteratively.
First the model is fit to the data, then the data are imputed given the Ising model,
then the model is fit to the imputed data, and so on until the parameter estimates
are stable. In theory, FIML is possible for estimating the GGM (the GGM can be
framed in terms of a typical SEM model; see Chapter 7), but this could only work
for confirmatory models. Usually, regularization techniques such as the LASSO
are applied in the estimation. Perhaps a penalized version of FIML can be worked
out in future research, combining the strengths of FIML with LASSO estimation.

Ordinal data. Another well-known problem in psychometrics is the scale of
measurement on which items are assessed (Stevens, 1946). Researchers seek to
measure concepts that are not directly observable, such as the severity of a person’s
rumination, using psychological items. Such items are frequently measured on Lik-
ert scales and cannot readily be treated as continuous (Rhemtulla, Brosseau-Liard,
& Savalei, 2012). This problem is especially prominent in data on psychopatholog-
ical symptoms, often measured on a 4-point scale (e.g., Fried, van Borkulo, et al.,
2016), ranging from 0 (not present) to 3 (severe problems). Often, these data are
highly skewed (i.e., many people report 0, especially when a general population
sample is used).

Although network psychometrics is often applied to ordinal data, the handling
of such data should also be a topic of future research. Currently, no method of
appropriately handling ordinal data exists. There are four methods often applied
to handle such data, all of which can be problematic:

1. The method most commonly used is to compute polychoric correlations and
to use these as input to the EBIC model selection of GGM networks using the
graphical LASSO (see Chapter 2). This methodology, however, is not with-
out problems. First, researchers employ the methodology to estimate the
model in two steps, first by computing the polychoric variance–covariance
matrix and next by treating this as the sample variance–covariance matrix
of continuous variables in computing the likelihood. Even though simulation
studies show that this works well, it is not the most appropriate way of han-
dling such data (e.g., in SEM, the thresholds of the polychoric correlations
are estimated at the same time as the SEM model). Second, this method-
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ology assumes an underlying normally distributed variable, which might be
problematic because zero usually means the absence of any symptoms (a
strict boundary). Third, polychoric correlations can lead to strange results
(see Chapter 2 for an overview) when pairwise marginal crosstabulations of
items contain zeroes, which could be expected in highly skewed ordinal data.

2. Data can be dichotomized, and the Ising model can be computed. Although
setting the cuto↵ between 0 and 1 seems appropriate and is defensible, doing
so will lose information on the severity of items.

3. Mixed graphical models can be used, in which case the variables are treated
as categorical. This method takes all responses into account but loses infor-
mation pertaining to the order of responses (e.g., 3 is higher than 2, and 2
is higher than 1) and instead treats each response as a categorical outcome.

4. Ordinal data can be ignored and treated as continuous. This method is not
recommended because simulation studies have shown that doing so has a
lower sensitivity than when using polychoric correlations and also features
an inflated Type 1 error rate when statistically comparing centrality indices.

Future researchers should focus on better estimation methods for graphical models
on ordinal data. Such estimation methods will likely come from psychometrics
because ordinal data has long been handled in many ways. Because the GGM
can be included in the SEM framework (see Chapter 7), handling ordinal data
in the same manner as in SEM (e.g., by using weighted least squares estimation;
Muthén, 1984) seems a logical first step. However, extending such methodology
to include high-dimensional model selection will be challenging.

Evidence for Sparsity

As strongly argued in Chapter 4, using the LASSO estimation leads to sparsity
(edge weights of zero) in the corresponding network model. As such, observing
zeroes is not evidence that the true network is sparse. The same is true when edges
are thresholded for significance (as in Chapter 6) or when step-wise model search
is used (as in Chapter 7). The goal of these methods is to maximize specificity
(see Chapter 2). Closely related to null hypothesis testing: removing an edge is
not evidence that the edge weight is zero (i.e., the null-hypothesis being true);
an edge might also be removed because the data are too noisy. Classical tests,
LASSO regularization, and frequentist model search cannot di↵erentiate between
noisy data and the null-hypothesis being true (Wagenmakers, 2007).

The question whether a missing edge is due to the null hypothesis being true,
however, is a very important one. An edge weight of zero in a pairwise Markov
random field, such as the GGM or the Ising model, indicates that two variables
are conditionally independent. This is important for two reasons. First, as al-
ready outlined in this dissertation, conditional independence plays a crucial role
in causality (Pearl, 2000). For example, the causal structure A ! B ! C implies
that A and C are conditionally independent given B. Second, when the latent
common cause model is true, no two variables should be conditionally indepen-
dent given any other variable in the dataset. Conceptually, this implies that the
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only variable on which one could condition to make observed variables indepen-
dent is the latent variable. Network models only show conditional associations
after conditioning on observed variables. As such, when we find strong evidence
that several pairs of variables become conditionally independent given a third, the
common cause model will not be true.

In network psychometrics, we are interested in finding conditional independence
in addition to finding strong conditional dependencies. However, the methods used
today only allow for the latter. Future researchers should aim to develop methods
in which both can be found. That is, for every edge, we should want to know
the evidence for that edge existing (strong relationship) and the evidence for that
edge not existing (conditional independence). This is difficult to accomplish in the
frequentist framework, typically used in network psychometrics, but it is possible
in a Bayesian framework. In recent years, Bayesian analysts have worked out
the Bayes factor (Kass & Raftery, 1995; Ly, Verhagen, & Wagenmakers, 2016)
as a default method for quantifying both the evidence for the null and for the
alternative hypothesis. Such Bayes factors can possibly be computed for every
edge in the graph, allowing a researcher to identify which edges are likely present,
which edges are likely zero, and the edges whose data are too noisy to make such
a distinction. The Bayes factors for partial correlations have been worked out
(Wetzels & Wagenmakers, 2012). Node-wise estimation of graphical models could
possibly also be used to obtain two Bayes factors per edge (Gelman, Jakulin,
Pittau, & Su, 2008), using regular regression for the GGM and logistic regression
for the Ising model. Finally, the work of Mulder (2014) on testing constraints on
correlation matrices could possibly be extended to testing constraints on partial
correlation matrices. An additional challenge will be to combine such methods
with high-dimensional model selection, such as the LASSO, for which the Bayesian
LASSO could possibly be used (Park & Casella, 2008).

Should Graph Theory Be Used to Analyze Probabilistic
Graphical Models?

In this dissertation I have presented several methods for estimating network struc-
tures on psychological data. As nodes represent variables and edges are typically
unknown, all of these models belong to a class known as probabilistic graphical mod-
els (Koller & Friedman, 2009; Lauritzen, 1996). These models aim to characterize
the joint likelihood of observed variables, and allow for results to be represented
through networks. Although graphically depicting these models as networks is a
powerful technique for communicating such high-dimensional analysis results, it
is questionable if measures from graph theory, such as centrality indices, could be
readily applied to the networks estimated this way. Meaning, can probabilistic
graphical models be interpreted in the same way as, say, a railroad network?

As described several times in this dissertation, typical methodology for an-
alyzing weighted networks—such as computing centrality measures (Opsahl et
al., 2010)—are often used on models obtained in network psychometrics. In this
methodology, each edge is first transformed into a length (i.e., the inverse absolute
value of an edge weights), then the resulting network is analyzed as, for exam-
ple, a railroad network would. The distance between two nodes in a network is
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Figure 12.1: Three hypothetical graphical models for which computing network
descriptives might be problematic. Panel A shows a Gaussian graphical model (a
network of partial correlation coefficients), Panel B shows the temporal structure
of a VAR analysis and Panel C shows both the contemporaneous and temporal
structure of a VAR analysis.
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defined through computing shortest paths, an important property in computing
both closeness node centrality (i.e., the inverse sum of such distances) and the
betweenness node centrality (i.e., measuring how often a node lies on the shortest
path). Such methods are insightful when researchers can interpret these short-
est paths to be sensible (e.g., passengers using a rail network will probably only
travel through the shortest path), but it might make less sense in the context of
probabilistic graphical models.

Figure 12.1 illustrates some examples of where interpreting such structures as
networks can go wrong. In Panel A, a three-node GGM is depicted. When inves-
tigating the distance between nodes A and C, a typical network analysis would
indicate that the shortest path is the path A − B − C, resulting in B having the
highest betweenness and the direct path between A and C being ignored. How-
ever, such a result would not take all the information of the model into account.
In fact, A and C are marginally independent; the correlation between A and C
is exactly zero, indicating that knowing A contains no information on C and vise
versa. Such a structure could emerge if B is a common e↵ect of A and C, in which
case disturbing A can, in no way, have any e↵ect on C. As such, it is questionable
what it means for B to have a high betweenness if no causal e↵ect goes through
B.

Panel B shows a vector auto-regression (VAR) temporal model in which the
contemporaneous structure is ignored. This network would lead to a similar con-
clusion because of the network in Panel A: The shortest path from A to C goes
via B. In this network, however, edges indicate Lag-1 e↵ects. This means that
the path A ! B ! C indicates a Lag-2 e↵ect, whereas the direct path A ! B
indicates a Lag-1 e↵ect. Such paths are not even comparable because they indi-
cate completely di↵erent temporal structures. Finally, Panel C shows both model
matrices obtained from a VAR model. Suppose a researcher is interested in iden-
tifying which node is best able to predict all nodes at later measurement. In this
case, only investigating the temporal structure would lead to the conclusion that
the most important node is B. However, such an analysis would not take the
contemporaneous network, in which Node A is highly central, into account.

Information theory. A potential solution for such problems is to not interpret
probabilistic graphical models as networks, but rather, for what they are: full
characterizations of the joint likelihood. In this line of thinking, the graphical
representation is only useful for visualizing the statistical results but should not be
over interpreted. The estimated model, nonetheless, is extremely powerful because
it captures the associational structure of a dataset without the need for underlying
theory on the causal mechanisms. A possible solution for inference methods then
lies in the use of information theory (Cover & Thomas, 2012), which has shown
to be a promising gateway to understanding the full complexity of such systems
(Quax, Apolloni, & Sloot, 2013; Quax, Kandhai, & Sloot, 2013).

In information theory, we can make use of the Shannon entropy (Cover &
Thomas, 2012) of a set of random variables, YYY , which denotes the average amount
of bits of information needed to communicate a discrete outcome. When dealing
with continuous variables, as we do in the GGM and VAR models, we can define
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the di↵erential entropy :
h (YYY ) = −E [log

2

f (YYY )] ,

in which f (yyy) denotes the density function of YYY . This measure can be computed
for any number of variables and quantifies their volatility—in the case of a single
continuous variable, the entropy is directly related to the variance. Now, divide
YYY in two subsets YYY (1) and YYY (2). We can then quantify the association in the two
subsets using the mutual information:
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This measure can act as a general measure for strength of association between any
set of variables to any other set of variables.

In the network perspective, we treat strongly associated variables as densely
connected and usually take the analogy of such strongly connected variables to
be close to one another. Mutual information can then be seen as a new form
of quantifying closeness between nodes or sets of nodes—the inverse of distance.
Therefore, mutual information is an alternative to the shortest path length. This
measure not only takes the shortest paths into account but all other paths as
well. For example, the mutual information of two variables or nodes (we often use
these terms interchangeably), I(Yi;Yj), can be taken as a measure of how close
these two nodes are to each other. The mutual information between two sets,

I
⇣

YYY (1);YYY (2)

⌘

—for example, in which Set (1) contains the symptoms of depres-

sion and Set (2) contains the symptoms of generalized anxiety—can be taken as
a measure of closeness between two groups of nodes. Furthermore, the mutual
information of one variable, (Y

1

), with respect to all other variables, (Y−(i)) and
I(Y

1

;Y−(i)), can be used as a centrality measure. Finally, when temporal informa-
tion is present, only computing the information one node has on all nodes at the
next measurement, I(Yt1;Yt+1

), can be taken as a temporal centrality measure,
which takes into account both the contemporaneous and temporal network (see
Chapter 5 and Chapter 6).

When YYY has a multivariate normal distribution with size P and variance–
covariance matrix ⌃⌃⌃, as is the case in both the GGM and graphical VAR model,
the di↵erential entropy becomes (Cover & Thomas, 2012, p. 250):
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As can be seen, this measure is a direct function of the size of the variance–
covariance matrix ⌃⌃⌃. This expression allows us to compute all mutual informations
described above. For example, the mutual information between two variables can
be computed as:

I(Yi;Yj) = −1
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.

As can be seen, this measure is a direct property of the explained variance σ2

ij

between two variables. The mutual information of one variable with all other
variables becomes:
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in which ⌃⌃⌃−(i) denotes the variance–covariance matrix without row and column i.
Finally, in a stationary time series of multivariate normal data (e.g., a Lag-1 VAR
model), the temporal closeness above becomes:

I
�

yt,j ;yyyt+1

�

=
1

2
log

2

 

σjj | ⌃⌃⌃ |
| ⌃⌃⌃TP

j,+ |

!

,

in which ⌃⌃⌃TP

j,+ denotes a subsetted Toeplitz matrix:

⌃⌃⌃TP

j,+ = Var (Yti,YYY t+1

) ,

which can be obtained from a VAR analysis.
Applying these metrics to the networks shown in Figure 12.1 leads to strik-

ingly di↵erent interpretations. In Panel A, Nodes A and C are now shown to be
independent; thus, Node B does not have a problematic interpretation of having
a high betweenness. Now in Panel C,3 Node A is shown to have slightly more
information over the next time point than Node B, even though Node B has more
temporal connections. Information theory is a promising gateway to analyzing the
network models obtained. However, future researchers must thoroughly test and
validated these metrics on psychological data.

The Importance of Intercepts

The network models outlined in this dissertation are all models of second-order
moments. That is, they model variances and covariances but not expected values.
The parameters that do model the expected value in the GGM, Ising model, and
VAR model are the intercepts. When drawing a network, these are ignored. As
such, when using the network structure to compute centrality, for example, inter-
cepts are not taken into account. The problem with this approach is that links are
formed between variables that may have largely di↵erent intercepts. Particularly
in models of binary variables, links may be formed between variables that never
have high entropy at the same time. For example, whenever a person is in danger
of su↵ering from suicidal ideation (high entropy), we might expect that person to
always experience sadness (low entropy). If we apply a virus-spreading analogy
(Borsboom et al., 2011), such nodes would never “infect” each other; the link
would never be used.

Figure 12.2, Panel A, shows an example of a network we might estimate on
educational data. This network is a fully connected Ising model, also called a
Curie-Weiss model, which is known to be equivalent to the IRT model shown in
Panel B (Marsman et al., 2015; see also Chapter 8). As such, IRT models are
often used and work well on educational data, the Ising model of Panel A is not
unreasonable. We can see a link between the items “1 + 1” and “0.07692 +
0.3409.” This link represents a very plausible predictive relationship. Knowing
someone can answer “0.07692 + 0.3409” tells us that person can also answer “1 +

3Panel B only shows half the information needed to characterize the full likelihood; see
Chapter 6.
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Figure 12.2: Three potential network structures on educational data. Panels A
and B are equivalent models that do not show the difficulty of an item. In Panel C,
items are ordered according to their difficulty, pointing from the easier item to the
more difficult item.

1” (because the person is able to answer the much harder question as well), and
knowing someone cannot answer “1 + 1” also tells us that person cannot answer
“0.07692 + 0.3409” (because that person cannot answer the simpler question).
These items likely do not have high entropy at the same time in any person’s life.
This means that when a person is struggling with “1 + 1,” and may or may not
answer this item correctly (high entropy), it is highly likely that this person will
never be able to answer “0.07692 + 0.3409” correctly (always an incorrect response;
low entropy). Conversely, whenever a person correctly answers the item “0.07692
+ 0.3409,” that person will likely always answer the item “1 + 1” correctly.

The network perspective would lead to the following interpretation of Panel A,
that one could influence the probability of correctly answering “0.07692 + 0.3409”
by training someone on the question “1 + 1.” However, this seems unlikely.
Teaching a person the techniques needed to answer “1 + 1” would not prepare
that person to answer “0.07692 + 0.3409,” which requires knowledge of decimal
points, counting over tens, and so forth. The latent variable model in Panel B
would implicate that training someone on one of the items would never help that
person answer other items correctly. Although I do not wish to argue against
mathematical ability, I do think that such an assumption might also be too strict.
Children learn by making items, and learning how to make one item helps a child
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make another item. This learning, however, does not jump wildly as would be
expected from Panel A, rather it follows a straight path. Learning “1 + 1” helps
to answer the item “2 + 2,” which helps to answer the item “3 + 3”, and so forth.

Panel C shows a network that is based only on intercepts rather than covari-
ances. Here, each item points to the first harder item. This very di↵erent network
structure shows that people first learn “1 + 1,” then “18 + 22,” and so forth.
I term such a network structure a path of development. The network shown in
Panel C is merely a hypothetical example of what a network that also takes inter-
cepts into account could look like. In perfect unidimensional cases, it might look
like Panel C, whereas in multidimensional cases, one could envision, for example,
parallel paths or the path splitting. I do not seek to propose a new modeling
framework in this section but merely wish to highlight that taking intercepts into
account could lead to di↵erent ways of investigating the phenomena of interest.

Complexity

The network models, as outlined in this dissertation, are but one of the many
consequences that may come from a more general hypothesis of complexity. Psy-
chological behavior plausibly is the result of emergent behavior in a complex sys-
tem of interacting psychological, biological, and sociological components. Simply
stated, psychology is complex. People’s behavior is dictated by their brains, which
consist of billions of neurons, formed by many years of development. As such, ev-
ery person is a mini universe of complexity. These universes, in turn, interact
with one another in complicated social networks. Perhaps, psychology is one of
the hardest fields to tackle. It is, in my opinion, only logical that many behaviors
have no simple explanation.

The network model is but one attempt at grasping this complexity; we should
not get sidetracked by believing it is the only possible attempt. The hypothesis
of complexity is not limited to the expectation that data are generated due to
an underlying (sparse) network model of, at most, second-order moments. This
hypothesis reaches further, with many more implications. This point of view can
take psychological research in many di↵erent directions—rather than merely the
estimation of network models. For example, long-term predictions can be made
on the e↵ects of interventions, without understanding the true underlying causal
mechanisms. Also of particular importance is the work done by van de Leemput
et al. (2014) and Wichers et al. (2016) on identifying early warning signals for
phase transitions in psychology, such as the onset of depression. I think that the
hypothesis of complexity has much to o↵er in the years to come and will change
psychological research in ways we cannot imagine now.

12.3 Conclusion

In this discussion, I outlined various topics for future research which can be tackled
in network psychometrics: improving centrality measures, handling missing and
ordinal data, quantifying evidence for sparsity in the network, and incorporating
intercepts in inference on these models. This is just a highlight of several future di-
rections; many more can be conceived, such as tackling heterogeneity, improving
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multilevel estimation of contemporaneous e↵ects, handling a mixture of obser-
vational and experimental data, and extending networks to nonlinear dynamics.
Finally, I noted a far more general field of research—complexity in psychology—of
which network modeling is merely a small part. The network models proposed in
this dissertation add much to the toolbox of psychological and psychometric re-
searchers. Network psychometrics, however, is still a young field of research with
many unanswered questions. The full utility of these methods and their place in
psychological research and psychometrics will be determined on the road ahead.
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