
Chapter 8

The Ising Model in Psychometrics

Abstract

This chapter provides a general introduction of network modeling in
psychometrics. The chapter starts with an introduction to the statistical
model formulation of pairwise Markov random fields (PMRF), followed by
an introduction of the PMRF suitable for binary data: the Ising model. The
Ising model is a model used in ferromagnetism to explain phase transitions in
a field of particles. Following the description of the Ising model in statistical
physics, the chapter continues to show that the Ising model is closely related
to models used in psychometrics. The Ising model can be shown to be
equivalent to certain kinds of logistic regression models, loglinear models and
multi-dimensional item response theory (MIRT) models. The equivalence
between the Ising model and the MIRT model puts standard psychometrics
in a new light and leads to a strikingly di↵erent interpretation of well-known
latent variable models. The chapter gives an overview of methods that can
be used to estimate the Ising model, and concludes with a discussion on
the interpretation of latent variables given the equivalence between the Ising
model and MIRT.

8.1 Introduction

In recent years, network models have been proposed as an alternative way of
looking at psychometric problems (Van Der Maas et al., 2006; Cramer et al.,
2010; Borsboom & Cramer, 2013). In these models, psychometric item responses
are conceived of as proxies for variables that directly interact with each other. For
example, the symptoms of depression (such as loss of energy, sleep problems, and
low self esteem) are traditionally thought of as being determined by a common
latent variable (depression, or the liability to become depressed; Aggen, Neale, &

This chapter has been adapted from: Epskamp, S., Maris, G., Waldorp, L.J., and Borsboom,
D. (in press). Network Psychometrics. In Irwing, P., Hughes, D., and Booth, T. (Eds.), Handbook
of Psychometrics. New York: Wiley.
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8. The Ising Model in Psychometrics

Kendler, 2005). In network models, these symptoms are instead hypothesized to
form networks of mutually reinforcing variables (e.g., sleep problems may lead to
loss of energy, which may lead to low self esteem, which may cause rumination
that in turn may reinforce sleep problems). On the face of it, such network models
o↵er an entirely di↵erent conceptualization of why psychometric variables cluster
in the way that they do. However, it has also been suggested in the literature that
latent variables may somehow correspond to sets of tightly intertwined observables
(e.g., see the Appendix of Van Der Maas et al., 2006).

In the current chapter, we aim to make this connection explicit. As we will
show, a particular class of latent variable models (namely, multidimensional Item
Response Theory models) yields exactly the same probability distribution over the
observed variables as a particular class of network models (namely, Ising models).
In the current chapter, we exploit the consequences of this equivalence. We will
first introduce the general class of models used in network analysis called Markov
Random Fields. Specifically, we will discuss the Markov random field for binary
data called the Ising Model, which originated from statistical physics but has since
been used in many fields of science. We will show how the Ising Model relates to
psychometrical practice, with a focus on the equivalence between the Ising Model
and multidimensional item response theory. We will demonstrate how the Ising
model can be estimated and finally, we will discuss the conceptual implications of
this equivalence.

Notation

Throughout this chapter we will denote random variables with capital letters and
possible realizations with lower case letters; vectors will be represented with bold-
faced letters. For parameters, we will use boldfaced capital letters to indicate
matrices instead of vectors whereas for random variables we will use boldfaced
capital letters to indicate a random vector. Roman letters will be used to denote
observable variables and parameters (such as the number of nodes) and Greek
letters will be used to denote unobservable variables and parameters that need to
be estimated.

In this chapter we will mainly model the random vector X:

X

> =
⇥

X
1

X
2

. . . XP

⇤

,

containing P binary variables that take the values 1 (e.g., correct, true or yes)
and −1 (e.g., incorrect, false or no). We will denote a realization, or state, of
X with x

> =
⇥

x
1

x
2

. . . xp

⇤

. Let N be the number of observations and
n(xxx) the number of observations that have response pattern xxx. Furthermore,
let i denote the subscript of a random variable and j the subscript of a dif-
ferent random variable (j 6= i). Thus, Xi is the ith random variable and xi

its realization. The superscript −(. . . ) will indicate that elements are removed

from a vector; for example, X−(i) indicates the random vector XXX without Xi:
X

−(i) =
⇥

X
1

, . . . , Xi−1

, Xi+1

, . . . .XP

⇤

, and x

−(i) indicates its realization. Sim-

ilarly, X

−(i,j) indicates XXX without Xi and Xj and x

−(i,j) its realization. An
overview of all notations used in this chapter can be seen in Appendix B.
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8.2. Markov Random Fields

X1

X2

X3

Figure 8.1: Example of a PMRF of three nodes, X
1

, X
2

and X
3

, connected by
two edges, one between X

1

and X
2

and one between X
2

and X
3

.

8.2 Markov Random Fields

A network, also called a graph, can be encoded as a set G consisting of two sets:
V , which contains the nodes in the network, and E, which contains the edges
that connect these nodes. For example, the graph in Figure 8.1 contains three
nodes: V = {1, 2, 3}, which are connected by two edges: E = {(1, 2), (2, 3)}.
We will use this type of network to represent a pairwise Markov random field
(PMRF; Lauritzen, 1996; Murphy, 2012), in which nodes represent observed ran-
dom variables1 and edges represent (conditional) association between two nodes.
More importantly, the absence of an edge represents the Markov property that
two nodes are conditionally independent given all other nodes in the network:

Xi ?? Xj | X−(i,j) = x

−(i,j) () (i, j) 62 E (8.1)

Thus, a PMRF encodes the independence structure of the system of nodes. In the
case of Figure 8.1, X

1

and X
3

are independent given that we know X
2

= x
2

. This
could be due to several reasons; there might be a causal path from X

1

to X
3

or
vise versa, X

2

might be the common cause of X
1

and X
3

, unobserved variables
might cause the dependencies between X

1

and X
2

and X
2

and X
3

, or the edges in
the network might indicate actual pairwise interactions between X

1

and X
2

and
X

2

and X
3

.
Of particular interest to psychometrics are models in which the presence of

latent common causes induces associations among the observed variables. If such
a common cause model holds, we cannot condition on any observed variable to
completely remove the association between two nodes (Pearl, 2000). Thus, if an
unobserved variable acts as a common cause to some of the observed variables, we
should find a fully connected clique in the PMRF that describes the associations

1Throughout this chapter, nodes in a network designate variables, hence the terms are used
interchangeably.
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8. The Ising Model in Psychometrics

among these nodes. The network in Figure 8.1, for example, cannot represent
associations between three nodes that are subject to the influence of a latent
common cause; if that were the case, it would be impossible to obtain conditional
independence between X

1

and X
3

by conditioning on X
2

.

Parameterizing Markov Random Fields

A PMRF can be parameterized as a product of strictly positive potential functions
φ(x) (Murphy, 2012):

Pr (XXX = xxx) =
1

Z

Y

i

φi (xi)
Y

<ij>

φij (xi, xj) , (8.2)

in which
Q

i takes the product over all nodes, i = 1, 2, . . . , P ,
Q

<ij> takes the
product over all distinct pairs of nodes i and j (j > i), and Z is a normalizing
constant such that the probability function sums to unity over all possible patterns
of observations in the sample space:

Z =
X

xxx

Y

i

φi (xi)
Y

<ij>

φij (xi, xj) .

Here,
P

xxx takes the sum over all possible realizations of XXX. All φ(x) functions
result in positive real numbers, which encode the potentials : the preference for
the relevant part of XXX to be in some state. The φi(xi) functions encode the node
potentials of the network; the preference of node Xi to be in state xi, regardless
of the state of the other nodes in the network. Thus, φi(xi) maps the potential
for Xi to take the value xi regardless of the rest of the network. If φi(xi) = 0,
for instance, then Xi will never take the value xi, while φi(xi) = 1 indicates that
there is no preference for Xi to take any particular value and φi(xi) = 1 indicates
that the system always prefers Xi to take the value xi. The φij(xi, xj) functions
encode the pairwise potentials of the network; the preference of nodes Xi and Xj

to both be in states xi and xj . As φij(xi, xj) grows higher we would expect to
observe Xj = xj whenever Xi = xi. Note that the potential functions are not
identified; we can multiply both φi(xi) or φij(xi, xj) with some constant for all
possible outcomes of xi, in which case this constant becomes a constant multiplier
to (8.2) and is cancelled out in the normalizing constant Z. A typical identification
constraint on the potential functions is to set the marginal geometric means of all
outcomes equal to 1; over all possible outcomes of each argument, the logarithm
of each potential function should sum to 0:

X

x
i

lnφi(xi) =
X

x
i

lnφij(xi, xj) =
X

x
j

lnφij(xi, xj) = 0 8xi, xj (8.3)

in which
P

x
i

denotes the sum over all possible realizations for Xi, and
P

x
j

denotes the sum over all possible realizations of Xj .
We assume that every node has a potential function φi(xi) and nodes only

have a relevant pairwise potential function φij(xi, xj) when they are connected by
an edge; thus, two unconnected nodes have a constant pairwise potential function
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8.2. Markov Random Fields

which, due to identification above, is equal to 1 for all possible realizations of Xi

and Xj :
φij(xi, xj) = 1 8xi, xj () (i, j) 62 E. (8.4)

From Equation (8.2) it follows that the distribution of XXX marginalized over

Xk and Xl, that is, the marginal distribution of XXX−(k,l) (the random vector XXX
without elements Xk and Xl), has the following form:

Pr
⇣
XXX−(k,l) = xxx−(k,l)

⌘
=

X

x

k

,x

l

Pr (XXX = xxx)

=
1

Z

Y

i62{k,l}
φ
i

(x
i

)
Y

<ij 62{k,l}>
φ
ij

(x
i

, x
j

) (8.5)

X
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k

,x

l

0

@φ
k

(x
k

)φ
l

(x
l

)φ
kl

(x
k

, x
l

)
Y

i 62{k,l}
φ
ik

(x
i

, x
k

)φ
il

(x
i

, x
l

)

1

A ,

in which
Q

i62{k,l} takes the product over all nodes except node k and l and
Q

<ij 62{k,l}> takes the product over all unique pairs of nodes that do not involve

k and l. The expression in (8.5) has two important consequences. First, (8.5)
does not have the form of (8.2); a PMRF is not a PMRF under marginalization.
Second, dividing (8.2) by (8.5) an expression can be obtained for the conditional

distribution of {Xk, Xl} given that we know XXX−(k,l) = xxx−(k,l):

Pr
⇣

Xk, Xl |XXX−(k,l) = xxx−(k,l)
⌘

=
Pr (XXX = xxx)

Pr
⇣

XXX−(k,l) = xxx−(k,l)
⌘

=
φ⇤
k(xk)φ

⇤
l (xl)φkl(xk, xl)

P

x
k

,x
l

φ⇤
k(xk)φ⇤

l (xl)φkl(xk, xl)
, (8.6)

in which:
φ⇤
k(xk) = φk(xk)

Y

i62{k,l}

φik(xi, xk)

and:
φ⇤
l (xl) = φl(xl)

Y

i62{k,l}

φil(xi, xl).

Now, (8.6) does have the same form as (8.2); a PMRF is a PMRF under condi-
tioning. Furthermore, if there is no edge between nodes k and l, φkl(xk, xl) = 1
according to (8.4), in which case (8.6) reduces to a product of two independent
functions of xk and xl which renders Xk and Xl independent; thus proving the
Markov property in (8.1).

The Ising Model

The node potential functions φi(xi) can map a unique potential for every possible
realization of Xi and the pairwise potential functions φij(xi, xj) can likewise map
unique potentials to every possible pair of outcomes for Xi and Xj . When the
data are binary, only two realizations are possible for xi, while four realizations
are possible for the pair xi and xj . Under the constraint that the log potential
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8. The Ising Model in Psychometrics

functions should sum to 0 over all marginals, this means that in the binary case
each potential function has one degree of freedom. If we let all X’s take the
values 1 and −1, there exists a conveniently loglinear model representation for the
potential functions:

lnφi(xi) = ⌧ixi

lnφij(xi, xj) = !ijxixj .

The parameters ⌧i and !ij are real numbers. In the case that xi = 1 and xj = 1,
it can be seen that these parameters form an identity link with the logarithm of
the potential functions:

⌧i = lnφi(1)

!ij = lnφij(1, 1).

These parameters are centered on 0 and have intuitive interpretations. The ⌧i pa-
rameters can be interpreted as threshold parameters. If ⌧i = 0 the model does not
prefer to be in one state or the other, and if ⌧i is higher (lower) the model prefers
node Xi to be in state 1 (-1). The !ij parameters are the network parameters and
denote the pairwise interaction between nodes Xi and Xj ; if !ij = 0 there is no
edge between nodes Xi and Xj :

!ij

(

= 0 if (i, j) 62 E

2 R if (i, j) 2 E
. (8.7)

The higher (lower) !ij becomes, the more nodes Xi and Xj prefer to be in the
same (di↵erent) state. Implementing these potential functions in (8.2) gives the
following distribution for XXX:

Pr (X = x) =
1

Z
exp

0

@

X

i

⌧ixi +
X

<ij>

!ijxixj

1

A (8.8)

Z =
X

x

exp

0

@

X

i

⌧ixi +
X

<ij>

!ijxixj

1

A ,

which is known as the Ising model (Ising, 1925).
For example, consider the PMRF in Figure 8.1. In this network there are

three nodes (X
1

, X
2

and X
3

), and two edges (between X
1

and X
2

, and between
X

2

and X
3

). Suppose these three nodes are binary, and take the values 1 and −1.
We can then model this PMRF as an Ising model with 3 threshold parameters,
⌧
1

, ⌧
2

and ⌧
3

and two network parameters, !
12

and !
23

. Suppose we set all
threshold parameters to ⌧

1

= ⌧
2

= ⌧
3

= −0.1, which indicates that all nodes
have a general preference to be in the state −1. Furthermore we can set the
two network parameters to !

12

= !
23

= 0.5. Thus, X
1

and X
2

prefer to be in
the same state, and X

2

and X
3

prefer to be in the same state as well. Due to
these interactions, X

1

and X
3

become associated; these nodes also prefer to be in
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8.2. Markov Random Fields

Table 8.1: Probability of all states from the network in Figure 8.1.

x
1

x
2

x
3

Potential Probability
-1 -1 -1 3.6693 0.3514
1 -1 -1 1.1052 0.1058
-1 1 -1 0.4066 0.0389
1 1 -1 0.9048 0.0866
-1 -1 1 1.1052 0.1058
1 -1 1 0.3329 0.0319
-1 1 1 0.9048 0.0866
1 1 1 2.0138 0.1928
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(d)

Figure 8.2: Example of the e↵ect of holding two magnets with a north and south
pole close to each other. The arrows indicate the direction the magnets want to
move; the same poles, as in (b) and (c), repulse each other and opposite poles, as
in (a) and (d), attract each other.

the same state, even though they are independent once we condition on X
2

. We

can then compute the non-normalized potentials exp
⇣

P

i ⌧ixi +
P

<ij> !ijxixj

⌘

for all possible outcomes of XXX and finally divide that value by the sum over all
non-normalized potentials to compute the probabilities of each possible outcome.
For instance, for the state X

1

= −1, X
2

= 1 and X
3

= −1, we can compute the
potential as exp (−0.1 + 0.1 +−0.1 +−0.5 +−0.5) ⇡ 0.332. Computing all these
potentials and summing them leads to the normalizing constant of Z ⇡ 10.443,
which can then be used to compute the probabilities of each state. These values can
be seen in Table 8.1. Not surprisingly, the probability P (X

1

= −1, X
2

= −1, X
3

=
−1) is the highest probable state in Table 8.1, due to the threshold parameters
being all negative. Furthermore, the probability P (X

1

= 1, X
2

= 1, X
3

= 1) is
the second highest probability in Table 8.1; if one node is put into state 1 then all
nodes prefer to be in that state due to the network structure.

The Ising model was introduced in statistical physics, to explain the phe-
nomenon of magnetism. To this end, the model was originally defined on a field
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(a)

X1 = 1

X2 = 1

X3 = −1

X4 = 1

X5 = 1

X6 = 1

X7 = −1

X8 = 1

X9 = 1

X10 = 1

X11 = −1

X12 = 1

X13 = 1

X14 = −1

X15 = −1

X16 = 1

(a)

Figure 8.3: A field of particles (a) can be represented by a network shaped as a
lattice as in (b). +1 indicates that the north pole is alligned upwards and −1
indicates that the south pole is aligned upwards. The lattice in (b) adheres to
a PMRF in that the probability of a particle (node) being in some state is only
dependent on the state of its direct neighbors.

of particles connected on a lattice. We will give a short introduction on this ap-
plication in physics because it exemplifies an important aspect of the Ising model;
namely, that the interactions between nodes can lead to synchronized behavior
of the system as a whole (e.g., spontaneous magnetization). To explain how this
works, note that a magnet, such as a common household magnet or the arrow in a
compass, has two poles: a north pole and a south pole. Figure 8.2 shows the e↵ect
of pushing two such magnets together; the north pole of one magnet attracts to
the south pole of another magnet and vise versa, and the same poles on both mag-
nets repulse each other. This is due to the generally tendency of magnets to align,
called ferromagnetism. Exactly the same process causes the arrow of a compass
to align with the magnetic field of the Earth itself, causing it to point north. Any
material that is ferromagnetic, such as a plate of iron, consists of particles that
behave in the same way as magnets; they have a north and south pole and lie in
some direction. Suppose the particles can only lie in two directions: the north pole
can be up or the south pole can be up. Figure 8.3 shows a simple 2-dimensional
representation of a possible state for a field of 4⇥ 4 particles. We can encode each
particle as a random variable, Xi, which can take the values −1 (south pole is
up) and 1 (north pole is up). Furthermore we can assume that the probability of
Xi being in state xi only depends on the direct neighbors (north, south east and
west) of particle i. With this assumption in place, the system in Figure 8.3 can
be represented as a PMRF on a lattice, as represented in Figure 8.3.

A certain amount of energy is required for a system of particles to be in some
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8.2. Markov Random Fields

state, such as in Figure 8.2. For example, in Figure 8.3 the node X
7

is in the
state −1 (south pole up). Its neighbors X

3

and X
11

are both in the same state
and thus aligned, which reduces stress on the system and thus reduces the energy
function. The other neighbors of X

7

, X
6

and X
8

, are in the opposite state of X
7

,
and thus are not aligned, which increasing the stress on the system. The total
energy configuration can be summarized in the Hamiltonian function:

H(x) = −
X

i

⌧ixi −
X

<i,j>

!ijxixj ,

which is used in the Gibbs distribution (Murphy, 2012) to model the probability
of XXX being in some state xxx:

Pr (X = x) =
exp (−βH(x))

Z
. (8.9)

The parameter β indicates the inverse temperature of the system, which is not
identifiable since we can multiply β with some constant and divide all ⌧ and !
parameters with that same constant to obtain the same probability. Thus, it can
arbitrarily be set to β = 1. Furthermore, the minus signs in the Gibbs distribution
and Hamiltonian cancel out, leading to the Ising model as expressed in (8.8).

The threshold parameters ⌧i indicate the natural deposition for particle i to
point up or down, which could be due to the influence of an external magnetic
field not part of the system of nodes in XXX. For example, suppose we model a
single compass, there is only one node thus the Hamiltonian reduces to −⌧x. Let
X = 1 indicate the compass points north and X = −1 indicate the compass
points south. Then, ⌧ should be positive as the compass has a natural tendency
to point north due to the presence of the Earth’s magnetic field. As such, the ⌧
parameters are also called external fields. The network parameters !ij indicate
the interaction between two particles. Its sign indicates if particles i and j tend to
be in the same state (positive; ferromagnetic) or in di↵erent states (negative; anti-
ferromagnetic). The absolute value, |!ij |, indicates the strength of interaction.
For any two non-neighboring particles !ij will be 0 and for neighboring particles
the stronger !ij the stronger the interaction between the two. Because the closer
magnets, and thus particles, are moved together the stronger the magnetic force,
we can interpret |!ij | as a measure for closeness between two nodes.

While the inverse temperature β is not identifiable in the sense of parameter
estimation, it is an important element in the Ising model; in physics the tempera-
ture can be manipulated whereas the ferromagnetic strength or distance between
particles cannot. The inverse temperature plays a crucial part in the entropy of
(8.9) (Wainwright & Jordan, 2008):

Entropy (XXX) = E [− ln Pr (X = x)]

= −βE


− ln
exp (−H(x))

Z⇤

�

, (8.10)

in which Z⇤ is the rescaled normalizing constant without inverse temperature

β. The expectation E
h

− ln exp(−H(x))

Z⇤

i

can be recognized as the entropy of the
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8. The Ising Model in Psychometrics

Ising model as defined in (8.8). Thus, the inverse temperature β directly scales
the entropy of the Ising model. As β shrinks to 0, the system is “heated up”
and all states become equally likely, causing a high level of entropy. If β is subse-
quently increased, then the probability function becomes concentrated on a smaller
number of states, and the entropy shrinks to eventually only allow the state in
which all particles are aligned. The possibility that all particles become aligned
is called spontaneous magnetization (Lin, 1992; Kac, 1966); when all particles are
aligned (all X are either 1 or −1) the entire field of particles becomes magnetized,
which is how iron can be turned into a permanent magnet. We take this behav-
ior as a particular important aspect of the Ising model; behavior on microscopic
level (interactions between neighboring particles) can cause noticeable behavior
on macroscopic level (the creation of a permanent magnet).

In our view, psychological variables may behave in the same way. For example,
interactions between components of a system (e.g., symptoms of depression) can
cause synchronized e↵ects of the system as a whole (e.g., depression as a disorder).
Do note that, in setting up such analogies, we need to interpret the concepts of
closeness and neighborhood less literally than in the physical sense. Concepts
such as “sleep deprivation” and “fatigue” can be said to be close to each other,
in that they mutually influence each other; sleep deprivation can lead to fatigue
and in turn fatigue can lead to a disrupted sleeping rhythm. The neighborhood
of these symptoms can then be defined as the symptoms that frequently co-occur
with sleep deprivation and fatigue, which can be seen in a network as a cluster
of connected nodes. As in the Ising model, the state of these nodes will tend to
be the same if the connections between these nodes are positive. This leads to
the interpretation that a latent trait, such as depression, can be seen as a cluster
of connected nodes (Borsboom et al., 2011). In the next section, we will prove
that there is a clear relationship between network modeling and latent variable
modeling; indeed, clusters in a network can cause data to behave as if they were
generated by a latent variable model.

8.3 The Ising Model in Psychometrics

In this section, we show that the Ising model is equivalent or closely related to
prominent modeling techniques in psychometrics. We will first discuss the rela-
tionship between the Ising model and loglinear analysis and logistic regressions,
next show that the Ising model can be equivalent to Item Response Theory (IRT)
models that dominate psychometrics. In addition, we highlight relevant earlier
work on the relationship between IRT and the Ising model.

To begin, we can gain further insight in the Ising model by looking at the
conditional distribution of Xi given that we know the value of the remaining
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nodes: X(−i) = x

(−i):

Pr
⇣

Xi | X(−i) = x

(−i)
⌘

=
Pr (X = x)

Pr
⇣

X

(−i) = x

(−i)
⌘

=
Pr (X = x)

P

x
i

Pr
⇣

Xi = xi,X
(−i) = x

(−i)
⌘

=
exp

⇣

xi

⇣

⌧i +
P

j !ijxj

⌘⌘

P

x
i

exp
⇣

xi

⇣

⌧k +
P

j !ijxj

⌘⌘ , (8.11)

in which
P

x
i

takes the sum over both possible outcomes of xi. We can recognize
this expression as a logistic regression model (Agresti, 1990). Thus, the Ising
model can be seen as the joint distribution of response and predictor variables,
where each variable is predicted by all other variables in the network. The Ising
model therefore forms a predictive network in which the neighbors of each node,
the set of connected nodes, represent the variables that predict the outcome of the
node of interest.

Note that the definition of Markov random fields in (8.2) can be extended to
include higher order interaction terms:

Pr (XXX = xxx) =
1

Z

Y

i

φi (xi)
Y

<ij>

φij (xi, xj)
Y

<ijk>

φijk (xi, xj , xk) · · · ,

all the way up to the P -th order interaction term, in which case the model becomes
saturated. Specifying ⌫...(. . . ) = lnφ...(. . . ) for all potential functions, we obtain
a log-linear model:

Pr (XXX = xxx) =
1

Z
exp

0

@
X

i

⌫
i

(x
i

) +
X

<ij>

⌫
ij

(x
i

, x
j

) +
X

<ijk>

⌫
ijk

(x
i

, x
j
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Let n(xxx) be the number of respondents with response pattern xxx from a sample
of N respondents. Then, we may model the expected frequency n(xxx) as follows:

E [n(xxx)] = N Pr (XXX = xxx)

= exp
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1

A , (8.12)

in which ⌫ = lnN − lnZ. The model in (8.12) has extensively been used in
loglinear analysis (Agresti, 1990; Wickens, 1989)2. In loglinear analysis, the same
constrains are typically used as in (8.3); all ⌫ functions should sum to 0 over
all margins. Thus, if at most second-order interaction terms are included in the
loglinear model, it is equivalent to the Ising model and can be represented exactly
as in (8.8). The Ising model, when represented as a loglinear model with at most
second-order interactions, has been used in various ways. Agresti (1990) and
Wickens (1989) call the model the homogeneous association model. Because it

2both Agresti and Wickens used λ rather than ⌫ to denote the log potentials, which we
changed in this chapter to avoid confusion with eigenvalues and the LASSO tuning parameter.
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does not include three-way or higher order interactions, the association between
Xi andXj—the odds-ratio—is constant for any configuration ofXXX−(i,j). Also, Cox
(1972; Cox & Wermuth, 1994) used the same model, but termed it the quadratic
exponential binary distribution, which has since often been used in biometrics and
statistics (e.g., Fitzmaurice, Laird, & Rotnitzky, 1993; Zhao & Prentice, 1990).
Interestingly, none of these authors mention the Ising model.

The Relation Between the Ising Model and Item Response
Theory

In this section we will show that the Ising model is a closely related modeling
framework of Item Response Theory (IRT), which is of central importance to
psychometrics. In fact, we will show that the Ising model is equivalent to a special
case of the multivariate 2-parameter logistic model (MIRT). However, instead of
being hypothesized common causes of the item responses, in our representation
the latent variables in the model are generated by cliques in the network.

In IRT, the responses on a set of binary variables XXX are assumed to be deter-
mined by a set of M (M  P ) latent variables ⇥⇥⇥:

⇥⇥⇥> =
⇥

⇥
1

⇥
2

. . . ⇥M

⇤

.

These latent variables are often denoted as abilities, which betrays the roots of the
model in educational testing. In IRT, the probability of obtaining a realization xi

on the variable Xi—often called items—is modeled through item response func-
tions, which model the probability of obtaining one of the two possible responses
(typically, scored 1 for correct responses and 0 for incorrect responses) as a func-
tion of ✓✓✓. For instance, in the Rasch (1960) model, also called the one parameter
logistic model (1PL), only one latent trait is assumed (M = 1 and ⇥⇥⇥ = ⇥) and
the conditional probability of a response given the latent trait takes the form of a
simple logistic function:

Pr(Xi = xi | ⇥ = ✓)
1PL

=
exp (xi↵ (✓ − δi))

P

x
i

exp (xi↵ (✓ − δi))
,

in which δi acts as a difficulty parameter and ↵ is a common discrimination pa-
rameter for all items. A typical generalization of the 1PL is the Birnbaum (1968)
model, often called the two-parameter logistic model (2PL), in which the discrim-
ination is allowed to vary between items:

Pr(Xi = xi | ⇥ = ✓)
2PL

=
exp (xi↵i (✓ − δi))

P

x
i

exp (xi↵i (✓ − δi))
.

The 2PL reduces to the 1PL if all discrimination parameters are equal: ↵
1

= ↵
2

=
. . . = ↵. Generalizing the 2PL model to more than 1 latent variable (M > 1) leads
to the 2PL multidimensional IRT model (MIRT; Reckase, 2009):

Pr(Xi = xi | ⇥⇥⇥ = ✓✓✓)
MIRT

=
exp

�

xi

�

↵↵↵>
i ✓✓✓ − δi

��

P

x
i

exp
�

xi

�

↵↵↵>
i ✓✓✓ − δi

�� , (8.13)
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in which ✓✓✓ is a vector of length M that contains the realization of ⇥⇥⇥, while ↵↵↵i is a
vector of length M that contains the discrimination of item i on every latent trait
in the multidimensional space. The MIRT model reduces to the 2PL model if ↵↵↵i

equals zero in all but one of its elements.
Because IRT assumes local independence—the items are independent of each

other after conditioning on the latent traits—the joint conditional probability of
XXX = xxx can be written as a product of the conditional probabilities of each item:

Pr(XXX = xxx | ⇥⇥⇥ = ✓✓✓) =
Y

i

Pr(Xi = xi | ⇥⇥⇥ = ✓✓✓). (8.14)

The marginal probability, and thus the likelihood, of the 2PL MIRT model can be
obtained by integrating over distribution f(✓✓✓) of ⇥⇥⇥:

Pr(XXX = xxx) =

Z 1

−1
f(✓✓✓) Pr(XXX = xxx | ⇥⇥⇥ = ✓✓✓) d✓✓✓, (8.15)

in which the integral is over all M latent variables. For typical distributions of
⇥⇥⇥, such as a multivariate Gaussian distribution, this likelihood does not have a
closed form solution. Furthermore, as M grows it becomes hard to numerically
approximate (8.15). However, if the distribution of ⇥⇥⇥ is chosen such that it is
conditionally Gaussian—the posterior distribution of ⇥⇥⇥ given that we observed
XXX = xxx takes a Gaussian form—we can obtain a closed form solution for (8.15).
Furthermore, this closed form solution is, in fact, the Ising model as presented in
(8.8).

As also shown by Marsman et al. (2015) and in more detail in Appendix A of
this chapter, after reparameterizing ⌧i = −δi and −2

p

λj/2qij = ↵ij , in which qij
is the ith element of the jth eigenvector of ⌦⌦⌦ (with an arbitrary diagonal chosen
such that ⌦⌦⌦ is positive definite), the Ising model is equivalent to a MIRT model
in which the posterior distribution of the latent traits is equal to the product of
univariate normal distributions with equal variance:

⇥j | X = x ⇠ N

 

±1

2

X

i

aijxi,

r

1

2

!

.

The mean of these univariate posterior distributions for ⇥j is equal to the weighted
sumscore ± 1

2

P

i aijxi. Finally, since

f(✓✓✓) =
X

xxx

f(✓✓✓ |XXX = xxx) Pr(XXX = xxx),

we can see that the marginal distribution of ⇥⇥⇥ in (8.15) is a mixture of multivari-
ate Gaussian distributions with homogenous variance–covariance, with the mixing
probability equal to the marginal probability of observing each response pattern.

Whenever ↵ij = 0 for all i and some dimension j—i.e., none of the items
discriminate on the latent trait—we can see that the marginal distribution of
⇥j becomes a Gaussian distribution with mean 0 and standard-deviation

p

1/2.
This corresponds to complete randomness; all states are equally probable given
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the latent trait. When discrimination parameters diverge from 0, the probability
function becomes concentrated on particular response patterns. For example,
in case X

1

designates the response variable for a very easy item, while X
2

is the
response variable for a very hard item, the state in which the first item is answered
correctly and the second incorrectly becomes less likely. This corresponds to a
decrease in entropy and, as can be seen in (8.10), is related to the temperature of
the system. The lower the temperature, the more the system prefers to be in states
in which all items are answered correctly or incorrectly. When this happens, the
distribution of ⇥j diverges from a Gaussian distribution and becomes a bi-modal
distribution with two peaks, centered on the weighted sumscores that correspond
to situations in which all items are answered correctly or incorrectly. If the entropy
is relatively high, f(⇥j) can be well approximated by a Gaussian distribution,
whereas if the entropy is (extremely) low a mixture of two Gaussian distributions
best approximates f(⇥j).

For example, consider again the network structure of Figure 8.1. When we
parameterized all threshold functions ⌧

1

= ⌧
2

= ⌧
3

= −0.1 and all network pa-
rameters !

12

= !
23

= 0.5 we obtained the probability distribution as specified in
Table 8.1. We can form the matrix ⌦⌦⌦ first with zeroes on the diagonal:

2

4

0 0.5 0
0.5 0 0.5
0 0.5 0

3

5 ,

which is not positive semi-definite. Subtracting the lowest eigenvalue, −0.707,
from the diagonal gives us a positive semi-definite ⌦⌦⌦ matrix:

⌦⌦⌦ =

2

4

0.707 0.5 0
0.5 0.707 0.5
0 0.5 0.707

3

5 .

It’s eigenvalue decomposition is as follows:

QQQ =

2

4

0.500 0.707 0.500
0.707 0.000 −0.707
0.500 −0.707 0.500

3

5

λλλ =
⇥

1.414 0.707 0.000
⇤

.

Using the transformations ⌧i = −δi and −2
p

λj/2qij = ↵ij (arbitrarily using the
negative root) defined above we can then form the equivalent MIRT model with
discrimination parameters AAA and difficulty parameters δδδ:

δδδ =
⇥

0.1 0.1 0.1
⇤

AAA =

2

4

0.841 0.841 0
1.189 0 0
0.841 −0.841 0

3

5 .

Thus, the model in Figure 8.1 is equivalent to a model with two latent traits:
one defining the general coherence between all three nodes and one defining the
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−2 0 2
θ1

−2 0 2
θ2

−2 0 2
θ3

Figure 8.4: The distributions of the three latent traits in the equivalent MIRT
model to the Ising model from Figure 8.1

contrast between the first and the third node. The distributions of all three latent
traits can be seen in Figure 8.4. In Table 8.1, we see that the probability is the
highest for the two states in which all three nodes take the same value. This is
reflected in the distribution of the first latent trait in 8.4: because all discrim-
ination parameters relating to this trait are positive, the weighted sumscores of
X

1

= X
2

= X
3

= −1 and X
1

= X
2

= X
3

= 1 are dominant and cause a small
bimodality in the distribution. For the second trait, 8.4 shows an approximately
normal distribution, because this trait acts as a contrast and cancels out the pref-
erence for all variables to be in the same state. Finally, the third latent trait is
nonexistent, since all of its discrimination parameters equal 0; 8.4 simply shows a

Gaussian distribution with standard deviation
q

1

2

.

This proof serves to demonstrate that the Ising model is equivalent to a MIRT
model with a posterior Gaussian distribution on the latent traits; the discrimi-
nation parameter column vector ↵j↵j↵j—the item discrimination parameters on the
jth dimension—is directly related to the jth eigenvector of the Ising model graph
structure ⌦⌦⌦, scaled by its jth eigenvector. Thus, the latent dimensions are orthog-
onal, and the rank of ⌦⌦⌦ directly corresponds to the number of latent dimensions.
In the case of a Rasch model, the rank of ⌦⌦⌦ should be 1 and all !ij should have
exactly the same value, corresponding to the common discrimination parameter;
for the uni-dimensional Birnbaum model the rank of ⌦⌦⌦ still is 1 but now the !ij

parameters can vary between items, corresponding to di↵erences in item discrim-
ination.

The use of a posterior Gaussian distribution to obtain a closed form solution
for (8.15) is itself not new in the psychometric literature, although it has not
previously been linked to the Ising model and the literature related to it. Olkin
and Tate (1961) already proposed to model binary variables jointly with condi-
tional Gaussian distributed continuous variables. Furthermore, Holland (1990)
used the “Dutch identity” to show that a representation equivalent to an Ising
model could be used to characterize the marginal distribution of an extended
Rasch model (Cressie & Holland, 1983). Based on these results, Anderson and
colleagues proposed an IRT modeling framework using log-multiplicative associ-
ation models and assuming conditional Gaussian latents (Anderson & Vermunt,
2000; Anderson & Yu, 2007); this approach has been implemented in the R package
“plRasch” (Anderson, Li, & Vermunt, 2007; Li & Hong, 2014).
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With our proof we furthermore show that the clique factorization of the net-
work structure generated a latent trait with a functional distribution through a
mathematical trick. Thus, the network perspective and common cause perspec-
tives could be interpreted as two di↵erent explanations of the same phenomena:
cliques of correlated observed variables. In the next section, we show how the
Ising model can be estimated.

8.4 Estimating the Ising Model

We can use (8.8) to obtain the log-likelihood function of a realization xxx:

L (⌧⌧⌧ ,⌦⌦⌦;xxx) = lnPr (XXX = xxx) =
X

i

⌧ixi +
X

<ij>

!ijxixj − lnZ. (8.16)

Note that the constant Z is only constant with regard to xxx (as it sums over all
possible realizations) and is not a constant with regard to the ⌧ and ! parameters;
Z is often called the partition function because it is a function of the parameters.
Thus, while when sampling from the Ising distribution Z does not need to be eval-
uated, but it does need to be evaluated when maximizing the likelihood function.
Estimating the Ising model is notoriously hard because the partition function Z
is often not tractable to compute (Kolaczyk, 2009). As can be seen in (8.8), Z re-
quires a sum over all possible configurations of xxx; computing Z requires summing
over 2k terms, which quickly becomes intractably large as k grows. Thus, maxi-
mum likelihood estimation of the Ising model is only possible for trivially small
data sets (e.g., k < 10). For larger data sets, di↵erent techniques are required
to estimate the parameters of the Ising model. Markov samplers can be used to
estimate the Ising model by either approximating Z (Sebastiani & Sørbye, 2002;
Green & Richardson, 2002; Dryden, Scarr, & Taylor, 2003) or circumventing Z
entirely via sampling auxiliary variables (Møller, Pettitt, Reeves, & Berthelsen,
2006; Murray, 2007; Murray, Ghahramani, & MacKay, 2006). Such sampling
algorithms can however still be computationally costly.

Because the Ising model is equivalent to the homogeneous association model
in log-linear analysis (Agresti, 1990), the methods used in log-linear analysis can
also be used to estimate the Ising model. For example, the iterative proportional
fitting algorithm (Haberman, 1972), which is implemented in the loglin function
in the statistical programming language R (R Core Team, 2016), can be used to
estimate the parameters of the Ising model. Furthermore, log-linear analysis can
be used for model selection in the Ising model by setting certain parameters to zero.
Alternatively, while the full likelihood in (8.8) is hard to compute, the conditional
likelihood for each node in (8.11) is very easy and does not include an intractable
normalizing constant; the conditional likelihood for each node corresponds to a
multiple logistic regression (Agresti, 1990):

Li (⌧⌧⌧ ,⌦⌦⌦;xxx) = xi

0

@⌧i +
X

j

!ijxj

1

A−
X

x
i

exp

0

@xi

0

@⌧i +
X

j

!ijxj

1

A

1

A .

Here, the subscript i indicates that the likelihood function is based on the con-
ditional probability for node i given the other nodes. Instead of optimizing the
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full likelihood of (8.8), the pseudolikelihood (PL; Besag, 1975) can be optimized
instead. The pseudolikelihood approximates the likelihood with the product of
univariate conditional likelihoods in (8.11):

ln PL =
k

X

i=1

Li (⌧⌧⌧ ,⌦⌦⌦;xxx)

Finally, disjoint pseudolikelihood estimation can be used. In this approach, each
conditional likelihood is optimized separately (Liu & Ihler, 2012). This routine
corresponds to repeatedly performing a multiple logistic regression in which one
node is the response variable and all other nodes are the predictors; by predicting
xi from xxx(−i) estimates can be obtained for !!!i and ⌧i. After estimating a mul-
tiple logistic regression for each node on all remaining nodes, a single estimate
is obtained for every ⌧i and two estimates are obtained for every !ij–the latter
can be averaged to obtain an estimate of the relevant network parameter. Many
statistical programs, such as the R function glm, can be used to perform logis-
tic regressions. Estimation of the Ising model via log-linear modeling, maximal
pseudolikelihood, and repeated multiple logistic regressions and have been imple-
mented in the EstimateIsing function in the R package IsingSampler (Epskamp,
2014).

While the above-mentioned methods of estimating the Ising model are tractable,
they all require a considerable amount of data to obtain reliable estimates. For
example, in log-linear analysis, cells in the 2P contingency table that are zero—
which will occur often if N < 2P—can cause parameter estimates to grow to 1
(Agresti, 1990), and in logistic regression predictors with low variance (e.g., a very
hard item) can substantively increase standard errors (Whittaker, 1990). To esti-
mate the Ising model, P thresholds and P (P − 1)/2 network parameter have to
be estimated, while in standard log linear approaches, rules of thumb suggest that
the sample size needs to be three times higher than the number of parameters to
obtain reliable estimates. In psychometrics, the number of data points is often
far too limited for this requirement to hold. To estimate parameters of graphical
models with limited amounts of observations, therefore, regularization methods
have been proposed (Meinshausen & Bühlmann, 2006; Friedman et al., 2008).

When regularization is applied, a penalized version of the (pseudo) likeli-
hood is optimized. The most common regularization method is `

1

regularization–
commonly known as the least absolute shrinkage and selection operator (LASSO;
Tibshirani, 1996)–in which the sum of absolute parameter values is penalized to
be under some value. Ravikumar, Wainwright, and La↵erty (2010) employed `

1

-
regularized logistic regression to estimate the structure of the Ising model via
disjoint maximum pseudolikelihood estimation. For each node i the following
expression is maximized (Friedman, Hastie, & Tibshirani, 2010):

max
⌧
i

,!!!
i

[Li (⌧⌧⌧ ,⌦⌦⌦;xxx)− λPen (!!!i)] (8.17)

Where !!!i is the ith row (or column due to symmetry) of ⌦⌦⌦ and Pen (!!!i) denotes
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the penalty function, which is defined in the LASSO as follows:

Pen`1 (!!!i) = ||!!!i||1=
k

X

j=1,j!=i

|!ij |

The λ in (8.17) is the regularization tuning parameter. The problem in above is
equivalent to the constrained optimization problem:

max
⌧
i

,!!!
i

[Li (⌧⌧⌧ ,⌦⌦⌦;xxx)] , subject to ||!!!i||1< C

in which C is a constant that has a one-to-one monotone decreasing relationship
with λ (Lee, Lee, Abbeel, & Ng, 2006). If λ = 0, C will equal the sum of abso-
lute values of the maximum likelihood solution; increasing λ will cause C to be
smaller, which forces the estimates of !!!i to shrink. Because the penalization uses
absolute values, this causes parameter estimates to shrink to exactly zero. Thus,
in moderately high values for λ a sparse solution to the logistic regression problem
is obtained in which many coefficients equal zero; the LASSO results in simple
predictive models including only a few predictors.

Ravikumar et al. (2010) used LASSO to estimate the neighborhood—the con-
nected nodes—of each node, resulting in an unweighted graph structure. In this
approach, an edge is selected in the model if either !ij and !ji is nonzero (the
OR-rule) or if both are nonzero (the AND-rule). To obtain estimates for the
weights !ij and !ji can again be averaged. The λ parameter is typically speci-
fied such that an optimal solution is obtained, which is commonly done through
cross-validation or, more recently, by optimizing the extended Bayesian informa-
tion criterion (EBIC; Chen & Chen, 2008; Foygel & Drton, 2010; Foygel Barber
& Drton, 2015; van Borkulo et al., 2014).

In K-fold cross-validation, the data are subdivided in K (usually K = 10)
blocks. For each of these blocks a model is fitted using only the remaining K − 1
blocks of data, which are subsequently used to construct a prediction model for the
block of interest. For a suitable range of λ values, the predictive accuracy of this
model can be computed, and subsequently the λ under which the data were best
predicted is chosen. If the sample size is relatively low, the predictive accuracy is
typically much better for λ > 0 than it is at the maximum likelihood solution of
λ = 0; it is preferred to regularize to avoid over-fitting.

Alternatively, an information criterion can be used to directly penalize the like-
lihood for the number of parameters. The EBIC (Chen & Chen, 2008) augments
the Bayesian information Criterion (BIC) with a hyperparameter γ to additionally
penalize the large space of possible models (networks):

EBIC = −2Li (⌧⌧⌧ ,⌦⌦⌦;xxx) + |!!!i| ln (N) + 2γ |!!!i| ln (k − 1)

in which |!!!i| is the number of nonzero parameters in !!!i. Setting γ = 0.25 works
well for the Ising model (Foygel Barber & Drton, 2015). An optimal λ can be
chosen either for the entire Ising model, which improves parameter estimation, or
for each node separately in disjoint pseudolkelihood estimation, which improves
neighborhood selection. While K-fold cross-validation does not require the com-
putation of the intractable likelihood function, EBIC does. Thus, when using
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EBIC estimation λ need be chosen per node. We have implemented `
1

-regularized
disjoint pseudolikelihood estimation of the Ising model using EBIC to select a
tuning parameter per node in the R package IsingFit (van Borkulo & Epskamp,
2014; van Borkulo et al., 2014), which uses glmnet for optimization (Friedman et
al., 2010).

The LASSO works well in estimating sparse network structures for the Ising
model and can be used in combination with cross-validation or an information
criterion to arrive at an interpretable model. However, it does so under the as-
sumption that the true model in the population is sparse. So what if reality is not
sparse, and we would not expect many missing edges in the network? As discussed
earlier in this chapter, the absence of edges indicate conditional independence be-
tween nodes; if all nodes are caused by an unobserved cause we would not expect
missing edges in the network but rather a low-rank network structure. In such
cases, `

2

regularization—also called ridge regression—can be used which uses a
quadratic penalty function:

Pen`2 (!!!i) = ||!!!i||2=
k

X

j=1,j!=i

!2

ij

With this penalty parameters will not shrink to exactly zero but more or less
smooth out; when two predictors are highly correlated the LASSO might pick
only one where ridge regression will average out the e↵ect of both predictors. Zou
and Hastie (2005) proposed a compromise between both penalty functions in the
elastic net, which uses another tuning parameter, ↵, to mix between `

1

and `
2

regularization:

Pen
ElasticNet

(!!!i) =

k
X

j=1,j!=i

1

2
(1− ↵)!2

ij + ↵|!ij |

If ↵ = 1, the elastic net reduces to the LASSO penalty, and if ↵ = 0 the elastic
net reduces to the ridge penalty. When ↵ > 0 exact zeroes can still be obtained in
the solution, and sparsity increases both with λ and ↵. Since moving towards `

2

regularization reduces sparsity, selection of the tuning parameters using EBIC is
less suited in the elastic net. Crossvalidation, however, is still capable of sketching
the predictive accuracy for di↵erent values of both ↵ and λ. Again, the R package
glmnet (Friedman et al., 2010) can be used for estimating parameters using the
elastic net. We have implemented a procedure to compute the Ising model for
a range of λ and ↵ values and obtain the predictive accuracy in the R package
elasticIsing (Epskamp, 2016).

One issue that is currently debated is inference of regularized parameters. Since
the distribution of LASSO parameters is not well-behaved (Bühlmann & van de
Geer, 2011; Bühlmann, 2013), Meinshausen, Meier, and Bühlmann (2009) devel-
oped the idea of using repeated sample splitting, where in the first sample the
sparse set of variables are selected, followed by multiple comparison corrected
p-values in the second sample. Another interesting idea is to remove the bias in-
troduced by regularization, upon which ‘standard’ procedures can be used (van de
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Geer, Bühlmann, & Ritov, 2013). As a result the asymptotic distribution of the so-
called de-sparsified LASSO parameters is normal with the true parameter as mean
and efficient variance (i.e., achieves the Cramér-Rao bound).. Standard techniques
are then applied and even confidence intervals with good coverage are obtained.
The limitations here are (i) the sparsity level, which has to be 

p

n/ln(P ), and
(ii) the ’beta-min’ assumption, which imposes a lower bound on the value of the
smallest obtainable coefficient (Bühlmann & van de Geer, 2011).

Finally, we can use the equivalence between MIRT and the Ising model to es-
timate a low-rank approximation of the Ising Model. MIRT software, such as the
R package mirt (Chalmers, 2012), can be used for this purpose. More recently,
Marsman et al. (2015) have used the equivalence also presented in this chapter
as a method for estimating low-rank Ising model using Full-data-information es-
timation. A good approximation of the Ising model can be obtained if the true
Ising model is indeed low-rank, which can be checked by looking at the eigenvalue
decomposition of the elastic Net approximation or by sequentially estimating the
first eigenvectors through adding more latent factors in the MIRT analysis or es-
timating sequentially higher rank networks using the methodology of Marsman et
al. (2015).

Example Analysis

To illustrate the methods described in this chapter we simulated two datasets,
both with 500 measurements on 10 dichotomous scored items. The first dataset,
dataset A, was simulated according to a multidimensional Rasch model, in which
the first five items are determined by the first factor and the last five items by the
second factor. Factor levels where sampled from a multivariate normal distribution
with unit variance and a correlation of 0.5, while item difficulties where sampled
from a standard normal distribution. The second dataset, dataset B, was sampled
from a sparse network structure according to a Boltzmann Machine. A scale-free
network was simulated using the Barabasi game algorithm (Barabási & Albert,
1999) in the R package igraph (Csardi & Nepusz, 2006) and a random connection
probability of 5%. The edge weights where subsequently sampled from a uniform
distribution between 0.75 and 1 (in line with the conception that most items in
psychometrics relate positively with each other) and thresholds where sampled
from a uniform distribution between −3 and −1. To simulate the responses the R
package IsingSampler was used. The datasets where analyzed using the elasticIs-
ing package in R (Epskamp, 2016); 10-fold cross-validation was used to estimate
the predictive accuracy of tuning parameters λ and ↵ on a grid of 100 logarith-
mically spaced λ values between 0.001 and 1 and 100 ↵ values equally spaced
between 0 and 1.

Figure 8.5 shows the results of the analyses. The left panels show the results
for dataset A and the right panel shows the result for dataset B. The top panels
show the negative mean squared prediction error for di↵erent values of λ and ↵.
In both datasets, regularized models perform better than unregularized models.
The plateaus on the right of the graphs show the performance of the indepen-
dence graph in which all network parameters are set to zero. Dataset A obtained
a maximum accuracy at ↵ = 0 and λ = 0.201, thus in dataset A `

2

-regularization
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Figure 8.5: Analysis results of two simulated datasets; left panels show results
based on a dataset simulated according to a 2-factor MIRT Model, while right
panels show results based on a dataset simulated with a sparse scale-free network.
Panels (a) and (b) show the predictive accuracy under di↵erent elastic net tuning
parameters λ and ↵, panels (c) and (d) the estimated optimal graph structures
and panels (e) and (f) the eigenvalues of these graphs.
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is preferred over `
1

regularization, which is to be expected since the data were
simulated under a model in which none of the edge weights should equal zero. In
dataset B a maximum was obtained at ↵ = 0.960 and λ = 0.017, indicating that
in dataset B regularization close to `

1

is preferred. The middle panels show visual-
izations of the obtained best performing networks made with the qgraph package
(Epskamp et al., 2012); green edges represent positive weights, red edges nega-
tive weights and the wider and more saturated an edge the stronger the absolute
weight. It can be seen that dataset A portrays two clusters while Dataset B por-
trays a sparse structure. Finally, the bottom panels show the eigenvalues of both
graphs; Dataset A clearly indicates two dominant components whereas Dataset B
does not indicate any dominant component.

These results show that the estimation techniques perform adequately, as ex-
pected. As discussed earlier in this chapter, the eigenvalue decomposition directly
corresponds to the number of latent variables present if the common cause model
is true, as is the case in dataset A. Furthermore, if the common cause model is
true the resulting graph should not be sparse but low rank, as is the case in the
results on dataset A.

8.5 Interpreting Latent Variables in Psychometric Models

Since Spearman’s (1904) conception of general intelligence as the common deter-
minant of observed di↵erences in cognitive test scores, latent variables have played
a central role in psychometric models. The theoretical status of the latent variable
in psychometric models has been controversial and the topic of heated debates in
various subfields of psychology, like those concerned with the study of intelligence
(e.g., Jensen, 1998) and personality (McCrae & Costa, 2008). The pivotal issue in
these debates is whether latent variables posited in statistical models have refer-
ents outside of the model; that is, the central question is whether latent variables
like g in intelligence or “extraversion” in personality research refer to a property of
individuals that exists independently of the model fitting exercise of the researcher
(Borsboom et al., 2003; Van Der Maas et al., 2006; Cramer et al., 2010). If they do
have such independent existence, then the model formulation appears to dictate a
causal relation between latent and observed variables, in which the former cause
the latter; after all, the latent variable has all the formal properties of a common
cause because it screens o↵ the correlation between the item responses (a prop-
erty denoted local independence in the psychometric literature; Borsboom, 2005;
Reichenbach, 1991). The condition of vanishing tetrads, that Spearman (1904)
introduced as a model test for the veracity of the common factor model is cur-
rently seen as one of the hallmark conditions of the common cause model (Bollen
& Lennox, 1991).

This would suggest that the latent variable model is intimately intertwined
with a so-called reflective measurement model interpretation (Edwards & Bagozzi,
2000; Howell, Breivik, & Wilcox, 2007), also known as an e↵ect indicators model
(Bollen & Lennox, 1991) in which the measured attribute is represented as the
cause of the test scores. This conceptualization is in keeping with causal accounts
of measurement and validity (Borsboom et al., 2003; Markus & Borsboom, 2013b)
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and indeed seems to fit the intuition of researchers in fields where psychometric
models dominate, like personality. For example, McCrae and Costa (2008) note
that they assume that extraversion causes party-going behavior, and as such this
trait determines the answer to the question “do you often go to parties” in a causal
fashion. Jensen (1998) o↵ers similar ideas on the relation between intelligence and
the g-factor. Also, in clinical psychology, Reise and Waller (2009, p. 26) note that
“to model item responses to a clinical instrument [with IRT], a researcher must
first assume that the item covariation is caused by a continuous latent variable”.

However, not all researchers are convinced that a causal interpretation of the re-
lation between latent and observed variable makes sense. For instance, McDonald
(2003) notes that the interpretation is somewhat vacuous as long as no substantive
theoretical of empirical identification of the latent variable can be given; a similar
point is made by Borsboom and Cramer (2013). That is, as long as the sole evi-
dence for the existence of a latent variable lies in the structure of the data to which
it is fitted, the latent variable appears to have a merely statistical meaning and
to grant such a statistical entity substantive meaning appears to be tantamount
to overinterpreting the model. Thus, the common cause interpretation of latent
variables at best enjoys mixed support.

A second interpretation of latent variables that has been put forward in the
literature is one in which latent variables do not figure as common causes of the
item responses, but as so-called behavior domains. Behavior domains are sets of
behaviors relevant to substantive concepts like intelligence, extraversion, or cogni-
tive ability (Mulaik & McDonald, 1978; McDonald, 2003). For instance, one can
think of the behavior domain of addition as being defined through the set of all
test items of the form x + y = . . .. The actual items in a test are considered to
be a sample from that domain. A latent variable can then be conceptualized as
a so-called tail-measure defined on the behavior domain (Ellis & Junker, 1997).
One can intuitively think of this as the total test score of a person on the infinite
set of items included in the behavior domain. Ellis and Junker (1997) have shown
that, if the item responses included in the domain satisfy the properties of mono-
tonicity, positive association, and vanishing conditional independence, the latent
variable can indeed be defined as a tail measure. The relation between the item
responses and the latent variable is, in this case, not sensibly construed as causal,
because the item responses are a part of the behavior domain; this violates the re-
quirement, made in virtually all theories of causality, that cause and e↵ect should
be separate entities (Markus & Borsboom, 2013b). Rather, the relation between
item responses and latent variable is conceptualized as a sampling relation, which
means the inference from indicators to latent variable is not a species of causal
inference, but of statistical generalization.

Although in some contexts the behavior domain interpretation does seem plau-
sible, it has several theoretical shortcomings of its own. Most importantly, the
model interpretation appears to beg the important explanatory question of why
we observe statistical associations between item responses. For instance, Ellis and
Junker (1997) manifest conditions specify that the items included in a behavior do-
main should look exactly as if they were generated by a common cause; in essence,
the only sets of items that would qualify as behavior domains are infinite sets of
items that would fit a unidimensional IRT model perfectly. The question of why
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such sets would fit a unidimensional model is thus left open in this interpretation.
A second problem is that the model specifies infinite behavior domains (measures
on finite domains cannot be interpreted as latent variables because the axioms
of Ellis and Junker will not be not satisfied in this case). In many applications,
however, it is quite hard to come up with more than a few dozen of items before
one starts repeating oneself (e.g., think of psychopathology symptoms or attitude
items), and if one does come up with larger sets of items the unidimensionality
requirement is typically violated. Even in applications that would seem to nat-
urally suit the behavior domain interpretation, like the addition ability example
given earlier, this is no trivial issue. Thus, the very property that buys the be-
havior domain interpretation its theoretical force (i.e., the construction of latent
variables as tail measures on an infinite set of items that satisfies a unidimensional
IRT model) is its substantive Achilles’ heel.

Thus, the common cause interpretation of the latent variable model seems too
make assumptions about the causal background of test scores that appear overly
ambitious given the current scientific understanding of test scores. The behavior
domain interpretation is much less demanding, but appears to be of limited use
in situations where only a limited number of items is of interest and in addition
o↵ers no explanatory guidance with respect to answering the question why items
hang together as they do. The network model may o↵er a way out of this theoret-
ical conundrum because it specifies a third way of looking at latent variables, as
explained in this chapter. As Van Der Maas et al. (2006) showed, data generated
under a network model could explain the positive manifold often found in intelli-
gence research which is often described as the g factor or general intelligence; a g
factor emerged from a densely connected network even though it was not “real”.
This idea suggests the interpretation of latent variables as functions defined as
cliques in a network of interacting components (Borsboom et al., 2011; Cramer et
al., 2010; Cramer, Sluis, et al., 2012). As we have shown in this chapter, this rela-
tion between networks and latent variables is quite general: given simple models of
the interaction between variables, as encoded in the Ising model, one expects data
that conform to psychometric models with latent variables. The theoretical im-
portance of this result is that (a) it allows for a model interpretation that invokes
no common cause of the item responses as in the reflective model interpretation,
but (b) does not require assumptions about infinite behavior domains either.

Thus, network approaches can o↵er a theoretical middle ground between causal
and sampling interpretations of psychometric models. In a network, there clearly
is nothing that corresponds to a causally e↵ective latent variable, as posited in the
reflective measurement model interpretation (Bollen & Lennox, 1991; Edwards
& Bagozzi, 2000). The network model thus evades the problematic assignment
of causal force to latent variables like the g-factor and extraversion. These arise
out of the network structure as epiphenomena; to treat them as causes of item
responses involves an unjustified reification. On the other hand, however, the la-
tent variable model as it arises out of a network structure does not require the
antecedent identification of an infinite set of response behaviors as hypothesized
to exist in behavior domain theory. Networks are typically finite structures that
involve a limited number of nodes engaged in a limited number of interactions.
Each clique in the network structure will generate one latent variable with entirely
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transparent theoretical properties and an analytically tractable distribution func-
tion. Of course, for a full interpretation of the Ising model analogous to that in
physics, one has to be prepared to assume that the connections between nodes in
the network signify actual interactions (i.e., they are not merely correlations); that
is, connections between nodes are explicitly not spurious as they are in the reflec-
tive latent variable model, in which the causal e↵ect of the latent variable produces
the correlations between item responses. But if this assumption is granted, the
theoretical status of the ensuing latent variable is transparent and may in many
contexts be less problematic than the current conceptions in terms of reflective
measurement models and behavior domains are.

Naturally, even though the Ising and IRT models have statistically equivalent
representations, the interpretations of the model in terms of common causes and
networks are not equivalent. That is, there is a substantial di↵erence between the
causal implications of a reflective latent variable model and of an Ising model.
However, because for a given dataset the models are equivalent, distinguishing
network models from common cause models requires the addition of (quasi-) ex-
perimental designs into the model. For example, suppose that in reality an Ising
model holds for a set of variables; say we consider the depression symptoms “in-
somnia” and “feelings of worthlessness”. The model implies that, if we were to
causally intervene on the system by reducing or increasing insomnia, a change in
feelings of worthlessness should ensue. In the latent variable model, in which the
association between feelings of worthlessness and insomnia is entirely due to the
common influence of a latent variable, an experimental intervention that changes
insomnia will not be propagated through the system. In this case, the interven-
tion variable will be associated only with insomnia, which means that the items
will turn out to violate measurement invariance with respect to the intervention
variable (Mellenbergh, 1989; Meredith, 1993). Thus, interventions on individ-
ual nodes in the system can propagate to other nodes in a network model, but
not in a latent variable model. This is a testable implication in cases where one
has experimental interventions that plausibly target a single node in the system.
Fried, Nesse, Zivin, Guille, and Sen (2014) have identified a number of factors in
depression that appear to work in this way.

Note that a similar argument does not necessarily work with variables that
are causal consequences of the observed variables. Both in a latent variable model
and in a network model, individual observed variables might have distinct outgoing
e↵ects, i.e., a↵ect unique sets of external variables. Thus, insomnia may directly
cause bags under the eyes, while feelings of worthlessness do not, without violating
assumptions of either model. In the network model, this is because the outgoing
e↵ects of nodes do not play a role in the network if they do not feed back into
the nodes that form the network. In the reflective model, this is because the
model only speaks on the question of where the systematic variance in indicator
variables comes from (i.e., this is produced by a latent variable), but not on what
that systematic variance causes. As an example, one may measure the temperature
of water by either putting a thermometer into the water, or by testing whether
one can boil an egg in it. Both the thermometer reading and the boiled egg are
plausibly construed as e↵ects of the temperature in the water (the common cause
latent variable in the system). However, only the boiled egg has the outgoing
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e↵ect of satisfying one’s appetite.
In addition to experimental interventions on the elements of the system, a

network model rather than a latent variable model allows one to deduce what
would happen upon changing the connectivity of the system. In a reflective latent
variable model, the associations between variables are a function of the e↵ect of
the latent variable and the amount of noise present in the individual variables.
Thus, the only ways to change the correlation between items is by changing the
e↵ect of the latent variable (e.g., by restricting the variance in the latent variable
so as to produce restriction of range e↵ects in the observables) or by increasing
noise in the observed variables (e.g., by increasing variability in the conditions
under which the measurements are taken). Thus, in a standard reflective latent
variable model, the connection between observed variables is purely a correlation,
and one can only change it indirectly through the variable that have proper causal
roles in the system (i.e., latent variables and error variables).

However, in a network model, the associations between observed variables are
not spurious; they are real, causally potent pathways, and thus externally forced
changes in connection strengths can be envisioned. Such changes will a↵ect the
behavior of the system in a way that can be predicted from the model structure.
For example, it is well known that increasing the connectivity of an Ising model
can change its behavior from being linear (in which the total number of active
nodes grows proportionally to the strength of external perturbations of the sys-
tem) to being highly nonlinear. Under a situation of high connectivity, an Ising
network features tipping points: in this situation, very small perturbations can
have catastrophic e↵ects. To give an example, a weakly connected network of de-
pression symptoms could only be made depressed by strong external e↵ects (e.g.,
the death of a spouse), whereas a strongly connected network could tumble into
a depression through small perturbations (e.g., an annoying phone call from one’s
mother in law). Such a vulnerable network will also feature very specific behav-
ior; for instance, when the network is approaching a transition, it will send out
early warning signals like increased autocorrelation in a time series (Sche↵er et al.,
2009). Recent investigations suggest that such signals are indeed present in time
series of individuals close to a transition (van de Leemput et al., 2014). Latent
variable models have no such consequences.

Thus, there are at least three ways in which network models and reflective
latent variable models can be distinguished: through experimental manipulations
of individual nodes, through experimental manipulations of connections in the
network, and through investigation of the behavior of systems under highly fre-
quent measurements that allow one to study the dynamics of the system in time
series. Of course, a final and direct refutation of the network model would occur
if one could empirically identify a latent variable (e.g., if one could show that the
latent variable in a model for depression items was in fact identical with a prop-
erty of the system that could be independently identified; say, serotonin shortage
in the brain). However, such identifications of abstract psychometric latent vari-
ables with empirically identifiable common causes do not appear forthcoming.
Arguably, then, psychometrics may do better to bet on network explanations of
association patterns between psychometric variables than to hope for the empirical
identification of latent common causes.
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8.6 Conclusion

The correspondence between the Ising model and the MIRT model o↵ers novel
interpretations of long standing psychometric models, but also opens a gateway
through which the psychometric can be connected to the physics literature. Al-
though we have only begun to explore the possibilities that this connection may
o↵er, the results are surprising and, in our view, o↵er a fresh look on the problems
and challenges of psychometrics. In the current chapter, we have illustrated how
network models could be useful in the conceptualization of psychometric data. The
bridge between network models and latent variables o↵ers research opportunities
that range from model estimation to the philosophical analysis of measurement in
psychology, and may very well alter our view of the foundations on which psycho-
metric models should be built.

As we have shown, network models may yield probability distributions that
are exactly equivalent to this of IRT models. This means that latent variables
can receive a novel interpretation: in addition to an interpretation of latent vari-
ables as common causes of the item responses (Bollen & Lennox, 1991; Edwards
& Bagozzi, 2000), or as behavior domains from which the responses are a sam-
ple (Ellis & Junker, 1997; McDonald, 2003), we can now also conceive of latent
variables as mathematical abstractions that are defined on cliques of variables in
a network. The extension of psychometric work to network modeling fits current
developments in substantive psychology, in which network models have often been
motivated by critiques of the latent variable paradigm. This has for instance hap-
pened in the context of intelligence research (Van Der Maas et al., 2006), clinical
psychology (Cramer et al., 2010; Borsboom & Cramer, 2013), and personality
(Cramer, Sluis, et al., 2012; Costantini, Epskamp, et al., 2015). It should be
noted that, in view of the equivalence between latent variable models and network
models proven here, even though these critiques may impinge on the common
cause interpretation of latent variable models, they do not directly apply to latent
variable models themselves. Latent variable models may in fact fit psychometric
data well because these data result from a network of interacting components. In
such a case, the latent variable should be thought of as a convenient fiction, but
the latent variable model may nevertheless be useful; for instance, as we have
argued in the current chapter, the MIRT model can be profitably used to esti-
mate the parameters of a (low rank) network. Of course, the reverse holds as
well: certain network structures may fit the data because cliques of connected
network components result from unobserved common causes in the data. An im-
portant question is under which circumstances the equivalence between the MIRT
model and the Ising model breaks down, i.e., which experimental manipulations
or extended datasets could be used to decide between a common cause versus a
network interpretation of the data. In the current chapter, we have o↵ered some
suggestions for further work in this direction, which we think o↵ers considerable
opportunities for psychometric progress.

As psychometrics starts to deal with network models, we think the Ising model
o↵ers a canonical form for network psychometrics, because it deals with binary
data and is equivalent to well-known models from IRT. The Ising model has sev-
eral intuitive interpretations: as a model for interacting components, as an asso-
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ciation model with at most pairwise interactions, and as the joint distribution of
response and predictor variables in a logistic regression. Especially the analogy
between networks of psychometric variables (e.g., psychopathology symptoms such
as depressed mood, fatigue, and concentration loss) and networks of interacting
particles (e.g., as in the magnetization examples) o↵ers suggestive possibilities for
the construction of novel theoretical accounts of the relation between constructs
(e.g., depression) and observables as modeled in psychometrics (e.g., symptoma-
tology). In the current chapter, we only focused on the Ising model for binary
data, but of course the work we have ignited here invites extensions in various
other directions. For example, for polymotous data, the generalized Potts model
could be used, although it should be noted that this model does require the re-
sponse options to be discrete values that are shared over all variables, which may
not suit typical psychometric applications. Another popular type of PMRF is the
Gaussian Random Field (GRF; Lauritzen, 1996), which has exactly the same form
as the model in (8.18) except that now x is continuous and assumed to follow a
multivariate Gaussian density. This model is considerably appealing as it has a
tractable normalizing constant rather than the intractable partition function of
the Ising model. The inverse of the covariance matrix—the precision matrix—can
be standardized as a partial correlation matrix and directly corresponds to the
⌦ matrix of the Ising model. Furthermore, where the Ising model reduces to a
series of logistic regressions for each node, the GRF reduces to a multiple linear
regression for each node. It can easily be proven that also in the GRF the rank of
the (partial) correlation matrix—cliques in the network—correspond to the latent
dimensionality if the common cause model is true (Chandrasekaran et al., 2012).
A great body of literature exists on estimating and fitting GRFs even when the
amount of observations is limited versus the amount of nodes (Meinshausen &
Bühlmann, 2006; Friedman et al., 2008; Foygel & Drton, 2010). Furthermore,
promising methods are now available for the estimation of a GRF even in non-
Gaussian data, provided the data are continuous (Liu et al., 2009, 2012).

8.7 Appendix A: Proof of Equivalence Between the Ising
Model and MIRT

To prove the equivalence between the Ising model and MIRT, we first need to
rewrite the Ising Model in matrix form:

p(XXX = xxx) =
1

Z
exp

✓

⌧⌧⌧>xxx+
1

2
xxx>⌦⌦⌦xxx

◆

, (8.18)

in which ⌦⌦⌦ is an P ⇥P matrix containing network parameters !ij as its elements,
which corresponds in graph theory to the adjacency or weights matrix. Note that,
in this representation, the diagonal values of ⌦⌦⌦ are used. However, since xi can be
only −1 or 1, x2

i = 1 for any combination, and the diagonal values are cancelled
out in the normalizing constant Z. Thus, arbitrary values can be used in the
diagonal of ⌦⌦⌦. Since ⌦⌦⌦ is a real and symmetrical matrix, we can take the usual
eigenvalue decomposition:

⌦⌦⌦ =QQQ⇤⇤⇤QQQ>,
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in which ⇤⇤⇤ is a diagonal matrix containing eigenvalues λ
1

,λ
2

, . . . ,λP on its di-
agonal, and QQQ is an orthonormal matrix containing eigenvectors qqq

1

, . . . , qqqP as its
columns. Inserting the eigenvalue decomposition into (8.18) gives:
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Due to the unidentified and arbitrary diagonal of ⌦⌦⌦ we can force ⌦⌦⌦ to be pos-
itive semi-definite—requiring all eigenvalues to be nonnegative—by shifting the
eigenvalues with some constant c:

⌦⌦⌦+ cIII =QQQ (⇤⇤⇤+ cIII)QQQ>.

Following the work of Kac (1966), we can use the following identity:
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and t = ✓j to rewrite (8.19) as follows:
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Reparameterizing ⌧i = −δi and −2
q

λ
j

2

qij = ↵ij we obtain:
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The same transformations can be used to obtain a di↵erent expression for Z:
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Finally, inserting (8.21) into (8.20), multiplying by
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The first part of the integral on the right hand side of (8.22) corresponds to a
distribution that sums to 1 for a P -dimensional random vector ⇥⇥⇥:
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and the second part corresponds to the 2-parameter logistic MIRT probability of
the response vector as in (8.13):

P (XXX = xxx | ⇥⇥⇥ = ✓✓✓) =
Y

i

exp
�

xi

�

↵↵↵>
i ✓✓✓ − δi

��

P

x
i

exp
�

xi

�

↵↵↵>
i ✓✓✓ − δi

�� .

We can look further at this distribution by using Bayes’ rule to examine the
conditional distribution of ✓✓✓ given XXX = xxx:
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and see that the posterior distribution of⇥⇥⇥ is a multivariate Gaussian distribution:
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in which AAA is a matrix containing the discrimination parameters ↵↵↵i as its rows
and ± indicates that columns aj could be multiplied with −1 due to that both the

positive and negative root can be used in
q

λ
j

2

, simply indicating whether the items

overall are positively or negatively influenced by the latent trait ✓. Additionally,
Since the variance–covariance matrix of ✓ equals zero in all nondiagonal elements,
✓ is orthogonal. Thus, the multivariate density can be decomposed as the product
of univariate densities:

⇥j | X = x ⇠ N

 

±1

2

X

i

aijxi,

r

1

2

!

.
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8.8. Appendix B: Glossary of Notation

8.8 Appendix B: Glossary of Notation

Symbol Dimension Description

{. . .} Set of distinct values.
(a, b) Interval between a and b.
P N Number of variables.
N N Number of observations.

X {−1, 1}P Random vector of binary variables.

x {−1, 1}P A possible realization of X.

n(xxx) N Number of observations with response
pattern xxx.

i, j, k and l {1, 2, . . . , P} , j 6= i Subscripts of random variables.

X

−(i) {−1, 1}P−1 Random vector of binary variables
without X

i

.

x

−(i) {−1, 1}P−1 A possible realization of X−(i).

X

−(i,j) {−1, 1}P−2 Random vector of binary variables
without X

i

and X
j

.

x

−(i,j) {−1, 1}P−2 A possible realization of X−(i).
Pr (. . .) ! (0, 1) Probability function.
φ
i

(x
i

) {−1, 1} ! R
>0 Node potential function.

φ
i

(x
i

, x
j

) {−1, 1}2 ! R
>0 Pairwise potential function.

⌧
i

R
Threshold parameter for node X

i

in
the Ising model. Defined as
⌧
i

= lnφ
i

(1).

⌧⌧⌧ RP

Vector of threshold parameters,
containing ⌧

i

as its ith element.

!
ij

R
Network parameter between nodes X

i

and X
j

in the Ising model. Defined as
!
ij

= lnφ
ij

(1, 1).

⌦⌦⌦
RP⇥P and
symmetrical

Matrix of network parameters,
containing !

ij

as its ijth element.
!!!
i

RP The ith row or column of ⌦⌦⌦.
Pen (!!!

i

) RP ! R Penalization function of !!!
i

.

β R
>0

Inverse temperature in the Ising
model.

H(xxx) {−1, 1}P ! R Hamiltonian function denoting the
energy of state xxx in the Ising model.

⌫
...

(. . .) ! R The log potential functions, used in
loglinear analysis.

M N The number of latent factors.

⇥ RM

Random vector of continuous latent
variables.

✓ RM Realization of ⇥⇥⇥.

L (⌧⌧⌧ ,⌦⌦⌦;xxx) ! R Likelihood function based on
Pr (XXX = xxx).

L
i

(⌧⌧⌧ ,⌦⌦⌦;xxx) ! R
Likelihood function based on
Pr

⇣
X

i

= x
i

|XXX−(i) = xxx−(i)
⌘
.

λ R
>0 LASSO tuning parameter

↵ (0, 1) Elastic net tuning parameter
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