Chapter 7

Generalized Network Psychometrics

Abstract

We introduce the network model as a formal psychometric model, con-
ceptualizing the covariance between psychometric indicators as resulting
from pairwise interactions between observable variables in a network struc-
ture. This contrasts with standard psychometric models, in which the co-
variance between test items arises from the influence of one or more common
latent variables. Here, we present two generalizations of the network model
that encompass latent variable structures, establishing network modeling
as parts of the more general framework of Structural Equation Modeling
(SEM). In the first generalization, we model the covariance structure of la-
tent variables as a network. We term this framework Latent Network Mod-
eling (LNM) and show that, with LNM, a unique structure of conditional
independence relationships between latent variables can be obtained in an
explorative manner. In the second generalization, the residual variance-
covariance structure of indicators is modeled as a network. We term this
generalization Residual Network Modeling (RNM) and show that, within this
framework, identifiable models can be obtained in which local independence
is structurally violated. These generalizations allow for a general model-
ing framework that can be used to fit, and compare, SEM models, network
models, and the RNM and LNM generalizations. This methodology has been
implemented in the free-to-use software package lvnet, which contains confir-
matory model testing as well as two exploratory search algorithms: stepwise
search algorithms for low-dimensional datasets and penalized maximum like-
lihood estimation for larger datasets. We show in simulation studies that
these search algorithms performs adequately in identifying the structure of
the relevant residual or latent networks. We further demonstrate the utility
of these generalizations in an empirical example on a personality inventory
dataset.

This chapter has been adapted from: Epskamp, S., Rhemtulla, M.T., and Borsboom, D. (in
press). Generalized Network Psychometrics: Combining Network and Latent Variable Models.
Psychometrika.
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7. GENERALIZED NETWORK PSYCHOMETRICS

7.1 Introduction

Recent years have seen an emergence of network modeling in psychometrics (Borsboom,
2008; Schmittmann et al., 2013), with applications in clinical psychology (e.g., van
Borkulo et al., 2015; McNally et al., 2015; Fried et al., 2015), psychiatry (e.g.,
Isvoranu, van Borkulo, et al., 2016; Isvoranu, Borsboom, et al., 2016), health sci-
ences (e.g., Kossakowski et al., 2016), social psychology (e.g., Dalege et al., 2016;
Cramer, Sluis, et al., 2012), and other fields (see for a review of recent literature
Fried & van Borkulo, 2016). This line of literature stems from the network per-
spective of psychology, which conceptualizes psychological behavior as complex
systems in which observed variables interact with one-another (Cramer et al.,
2010). As described in previous chapters of this dissertation, network models are
used to gain insight into this potentially high-dimensional interplay. In practice,
network models can be used as a sparse representation of the joint distribution
of observed indicators, and as such these models show great promise in psycho-
metrics by providing a perspective that complements latent variable modeling.
Network modeling highlights variance that is unique to pairs of variables, whereas
latent variable modeling focuses on variance that is shared across all variables
(Costantini, Epskamp, et al., 2015). As a result, network modeling and latent
variable modeling can complement—rather than exclude—one-another.

In this chapter, we introduce the reader to this field of network psychometrics
(Epskamp et al., in press) and formalize the network model for multivariate normal
data, the Gaussian Graphical Model (GGM; Lauritzen, 1996), as a formal psycho-
metric model. We contrast the GGM to the Structural Equation Model (SEM;
Wright, 1921; Kaplan, 2000) and show that the GGM can be seen as another way
to approach modeling covariance structures as is typically done in psychometrics.
In particular, rather than modeling the covariance matrix, the GGM models the
inverse of a covariance matrix. The GGM and SEM are thus very closely related:
every GGM model and every SEM model imply a constrained covariance struc-
ture. We make use of this relationship to show that, through a reparameterization
of the SEM model, the GGM model can be obtained in two different ways: first,
as a network structure that relates a number of latent variables to each other, and
second, as a network between residuals that remain given a fitted latent variable
model. As such, the GGM can be modeled and estimated in SEM, which allows for
network modeling of psychometric data to be carried out in a framework familiar
to psychometricians and methodologists. In addition, this allows for one to assess
the fit of a GGM, compare GGMs to one-another and compare a GGM to a SEM
model.

However, the combination of GGM and SEM allows for more than fitting net-
work models. As we will show, the strength of one framework can help overcome
shortcomings of the other framework. In particular, SEM falls short in that ex-
ploratory estimation is complicated and there is a strong reliance on local indepen-
dence, whereas the GGM falls short in that it assumes no latent variables. In this
chapter, we introduce network models for latent covariances and for residual co-
variances as two distinct generalized frameworks of both the SEM and GGM. The
first framework, Latent Network Modeling (LNM), formulates a network among
latent variables. This framework allows researchers to exploratively estimate con-
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7.2. Modeling Multivariate Gaussian Data

ditional independence relationships between latent variables through model search
algorithms; this estimation is difficult in the SEM framework due to the presence
of equivalent models (MacCallum et al., 1993). The second framework, which
we denote Residual Network Modeling (RNM), formulates a network structure on
the residuals of a SEM model. With this framework, researchers can circumvent
critical assumptions of both SEM and the GGM: SEM typically relies on the as-
sumption of local independence, whereas network modeling typically relies on the
assumption that the covariance structure among a set of the items is not due to
latent variables at all. The RNM framework allows researchers to estimate SEM
models without the assumption of local independence (all residuals can be cor-
related, albeit due to a constrained structure on the inverse residual covariance
matrix) as well as to estimate a network structure, while taking into account the
fact that the covariance between items may be partly due to latent factors.

While the powerful combination of SEM and GGM allows for confirmative
testing of network structures both with and without latent variables, we recognize
that few researchers have yet formulated strict confirmatory hypotheses in the
relatively new field of network psychometrics. Often, researchers are more inter-
ested in exploratively searching a plausible network structure. To this end, we
present two exploratory search algorithms. The first is a step-wise model search
algorithm that adds and removes edges of a network as long as fit is improved,
and the second uses penalized maximum likelihood estimation (Tibshirani, 1996)
to estimate a sparse model. We evaluate the performance of these search methods
in four simulation studies. Finally, the proposed methods have been implemented
in a free-to-use R package, lvnet, which we illustrate in an empirical example on
personality inventory items (Revelle, 2010).

7.2 Modeling Multivariate Gaussian Data

Let y be the response vector of a random subject on P items'. We assume ¥y is
centered and follows a multivariate Gaussian density:

Yy~ Np (072)a

In which ¥ is a P x P variance-covariance matrix, estimated by some model-
implied ¥. Estimating ¥ is often done through some form of maximum likelihood
estimation. If we measure N independent samples of y we can formulate the
N x P matrix Y containing realization y;'— as its ith row. Let S represent the
sample variance—covariance matrix of Y

1 7
S N 1Y Y.

IThroughout this chapter, vectors will be represented with lowercase boldfaced letters and
matrices will be denoted by capital boldfaced letters. Roman letters will be used to denote
observed variables and parameters (such as the number of nodes) and Greek letters will be used
to denote latent variables and parameters that need to be estimated. The subscript ¢ will be
used to denote the realized response vector of subject i and omission of this subscript will be
used to denote the response of a random subject.
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7. GENERALIZED NETWORK PSYCHOMETRICS

In maximum likelihood estimation, we use S to compute and minimize —2 times
the log-likelihood function to find ¥ (Lawley, 1940; Joreskog, 1967; Jacobucci,
Grimm, & McArdle, 2016):

Irgn [log det (2) + Trace (S’i_l) — log det (S’) — P} . (7.1)

To optimize this expression, % should be estimated as closely as possible to S and
perfect fit is obtained if ¥ = §. A properly identified model with the same number
of parameters (K) used to form ¥ as there are unique elements in S (P(P +1)/2
parameters) will lead to ¥ = S and therefore a saturated model. The goal of

modeling multivariate Gaussian data is to obtain some model for ¥ with positive
degrees of freedom, K < P(P + 1)/2, in which ¥ resembles S closely.

Structural Equation Modeling

In Confirmatory Factor Analysis (CFA), Y is typically assumed to be a causal
linear effect of a set of M centered latent variables, 5, and independent residuals
or error, €:

y=An+e.

Here, A represents a P x M matrix of factor loadings. This model implies the
following model for X:

Y =AUA' +6, (7.2)

in which ¥ = Var () and © = Var (g). In Structural Equation Modeling (SEM),
Var (n) can further be modeled by adding structural linear relations between the
latent variables?:

n=Bn+(,

in which ¢ is a vector of residuals and B is an M x M matrix of regression
coefficients. Now, ¥ can be more extensively modeled as:

S=AI-B)'w(I-B)'"A" +6, (7.3)

in which now ¥ = Var (¢). This framework can be used to model direct causal
effects between observed variables by setting A = I and © = O, which is often
called path analysis (Wright, 1934).

The © matrix is, like Y and S , a P x P matrix; if © is fully estimated—contains
no restricted elements—then © alone constitutes a saturated model. Therefore, to
make either (7.2) or (7.3) identifiable, © must be strongly restricted. Typically, ©
is set to be diagonal, a restriction often termed local independence (Lord, Novick, &
Birnbaum, 1968; Holland & Rosenbaum, 1986) because indicators are independent
of each other after conditioning on the set of latent variables. To improve fit,
select off-diagonal elements of © can be estimated, but systematic violations of
local independence—many nonzero elements in ©—are not possible as that will

2We make use here of the convenient all-y notation and do not distinguish between exogenous
and endogenous latent variables (Hayduk, 1987).
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quickly make (7.2) and (7.3) saturated or even over-identified. More precisely, ©
can not be fully-populated—some elements of © must be set to equal zero—when
latent variables are used. An element of © being fixed to zero indicates that two
variables are locally independent after conditioning on the set of latent variables.
As such, local independence is a critical assumption in both CFA and SEM; if
local independence is systematically violated, CFA and SEM will never result in
correct models.

The assumption of local independence has led to critiques of the factor model
and its usage in psychology; local independence appears to be frequently violated
due to direct causal effects, semantic overlap, or reciprocal interactions between
putative indicators of a latent variable (Borsboom, 2008; Cramer et al., 2010;
Borsboom et al., 2011; Cramer, Sluis, et al., 2012; Schmittmann et al., 2013). In
psychopathology research, local independence of symptoms given a person’s level
of a latent mental disorder has been questioned (Borsboom & Cramer, 2013). For
example, three problems associated with depression are “fatigue”, “concentration
problems” and “rumination”. It is plausible that a person who suffers from fa-
tigue will also concentrate more poorly, as a direct result of being fatigued and
regardless of his or her level of depression. Similarly, rumination might lead to
poor concentration. In another example, Kossakowski et al. (2016) describe the
often-used SF-36 questionnaire (Ware Jr & Sherbourne, 1992) designed to mea-
sure health related quality of life. The SF-36 contains items such as “can you walk
for more than one kilometer” and “can you walk a few hundred meters”. Clearly,
these items can never be locally independent after conditioning on any latent trait,
as one item (the ability to walk a few hundred meters) is a prerequisite for the
other (walking more than a kilometer). In typical applications, the excessive co-
variance between items of this type is typically left unmodeled, and treated instead
by combining items into a subscale or total score that is subsequently subjected
to factor analysis; of course, however, this is tantamount to ignoring the relevant
psychometric problem rather than solving it.

Given the many theoretically expected violations of local independence in psy-
chometric applications, many elements of © in both (7.2) and (7.3) should ordi-
narily be freely estimated. Especially when violations of local independence are
expected to be due to causal effects of partial overlap, residual correlations should
not be constrained to zero; in addition, a chain of causal relationships between
indicators can lead to all residuals to become correlated. Thus, even when latent
factors cause much of the covariation between measured items, fitting a latent vari-
able model that involves local independence may not fully account for correlation
structure between measured items. Of course, in practice, many psychometricians
are aware of this problem, which is typically addressed by freeing up correlations
between residuals to improve model fit. However, this is usually done in an ad-hoc
fashion, on the basis of inspection of modification indices and freeing up error co-
variances one by one, which is post hoc, suboptimal, and involves an uncontrolled
journey through the model space. As a result, it is often difficult to impossible
to tell how exactly authors arrived at their final reported models. As we will
show later in this chapter, this process can be optimized and systematized using
network models to connect residuals on top of a latent variable structure.
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7. GENERALIZED NETWORK PSYCHOMETRICS

Y, A

Figure 7.1: Example of a pairwise Markov Random Field model. Edges in this
model indicate pairwise interactions, and are drawn using undirected edges to
distinguish from (bidirectional) covariances. Rather than a model for marginal
associations (such as a network indicating covariances), this is a model for condi-
tional associations. The network above encodes that Y; and Y3 are independent
after conditioning on Y5. Such a model allows all three variables to correlate while
retaining one degree of freedom (the model only has two parameters)

Network Modeling

Recent authors have suggested that the potential presence of causal relationships
between measured variables may allow the explanation of the covariance structure
without the need to invoke any latent variables (Borsboom, 2008; Cramer et al.,
2010; Borsboom et al., 2011; Schmittmann et al., 2013). The interactions between
indicators can instead be modeled as a network, in which indicators are repre-
sented as nodes that are connected by edges representing pairwise interactions.
Such interactions indicate the presence of covariances that cannot be explained
by any other variable in the model and can represent—possibly reciprocal-—causal
relationships. Estimating a network structure on psychometric data is termed
network psychometrics (Epskamp et al., in press). Such a network of interacting
components can generate data that fit factor models well, as is commonly the
case in psychology. Van Der Maas et al. (2006) showed that the positive manifold
of intelligence—which is commonly explained with the general factor for intelli-
gence, g—can emerge from a network of mutually benefiting cognitive abilities.
Borsboom et al. (2011) showed that a network of psychopathological symptoms,
in which disorders are modeled as clusters of symptoms, could explain comorbidity
between disorders. Furthermore, Epskamp et al. (in press) showed that the Ising
model for ferromagnetism (Ising, 1925), which models magnetism as a network of
particles, is equivalent to multidimensional item response theory (Reckase, 2009;
see Chapter 8).
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7.2. Modeling Multivariate Gaussian Data

In network psychometrics, psychometric data are modeled through directed or
undirected networks. Directed networks are equivalent to path analysis models.
For modeling undirected networks, pairwise Markov Random Fields (Lauritzen,
1996; Murphy, 2012) are used. In these models, each variable is represented
by a node, and nodes are connected by a set of edges. If two nodes, y; and
Yk, are not connected by an edge, then this means they are independent after
conditioning on the set of all other nodes, y~ %), Whenever two nodes cannot be
rendered independent conditional on the other nodes in the system, they are said
to feature in a pairwise interaction, which is represented by an undirected edge—
an edge with no arrows—to contrast such an effect from covariances typically
represented in the SEM literature with bidirectional edges. Figure 7.1 represents
such a network model, in which nodes y; and y3 are independent after conditioning
on node y2. Such a model can readily arise from direct interactions between the
nodes. For example, this conditional independence structure would emerge if y- is
a common cause of y; and ys, or if ys is the mediator in a causal path between y;
and y3. In general, it is important to note that pairwise interactions are not mere
correlations; two variables may be strongly correlated but unconnected (e.g., when
both are caused by another variable in the system) and they may be uncorrelated
but strongly connected in the network (e.g., when they have a common effect in
the system). For instance, in the present example the model does not indicate that
y1 and ys are uncorrelated, but merely indicates that any correlation between y;
and y3 is due to their mutual interaction with yo; a network model in which either
directly or indirectly connected paths exist between all pairs of nodes typically
implies a fully populated (no zero elements) variance—covariance matrix.

In the case of multivariate Gaussian data this model is termed the Gaussian
Graphical Model (GGM; Lauritzen, 1996). In the case of multivariate normality,
the partial correlation coefficient is sufficient to test the degree of conditional
independence of two variables after conditioning on all other variables; if the
partial correlation coefficient is zero, there is conditional independence and hence
no edge in the network. As such, partial correlation coefficients can directly be used
in the network as edge weights; the strength of connection between two nodes?.
Such a network is typically encoded in a symmetrical and real valued p x p weight
matriz, , in which element w;; represents the edge weight between node j and
node k:

Cor (yj, Uk | y_(j’k)) = Wjk = Wij-

The partial correlation coefficients can be directly obtained from the inverse of

variance—covariance matrix f), also termed the precision matriz K (Lauritzen,
1996):
—(i Rjk
Cor (y',yk |y (j’k)) =
’ VEkk/Rjj
Thus, element kj; of the precision matrix is proportional to to the partial corre-
lation coefficient of variables y; and y; after conditioning on all other variables.
Since this process simply involves standardizing the precision matrix, we propose

3A saturated GGM is also called a partial correlation network because it contains the sample
partial correlation coefficients as edge weights.
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7. GENERALIZED NETWORK PSYCHOMETRICS

the following model*:
L o1

Y==K =AI-Q'A, (7.4)

in which A is a diagonal matrix with 6;; = Ii;j% and Q has zeroes on the diagonal.
This model allows for confirmative testing of the GGM structures on psychometric
data. Furthermore, the model can be compared to a saturated model (fully pop-
ulated off-diagonal values of Q) and the independence model ( = O), allowing
one to obtain x? fit statistics as well as fit indices such as the RMSEA (Browne
& Cudeck, 1992) and CFI (Bentler, 1990). Such methods of assessing model fit
have not yet been used in network psychometrics.

Similar to CFA and SEM, the GGM relies on a critical assumption; namely,
that covariances between observed variables are not caused by any latent or un-
observed variable. If we estimate a GGM in a case where, in fact, a latent factor
model was the true data generating structure, then generally we would expect
the GGM to be saturated—i.e., there would be no missing edges in the GGM
(Chandrasekaran, Parrilo, & Willsky, 2012). A missing edge in the GGM indi-
cates the presence of conditional independence between two indicators given all
other indicators; we do not expect indicators to become independent given subsets
of other indicators (see also Ellis & Junker, 1997; Holland & Rosenbaum, 1986).
Again, this critical assumption might not be plausible. While variables such as
“Am indifferent to the feelings of others” and “Inquire about others’ well-being”
quite probably interact with each other, it might be far-fetched to assume that no
unobserved variable, such as a personality trait, in part also causes some of the
variance in responses on these items.

7.3 Generalizing Factor Analysis and Network Modeling

We propose two generalizations of both SEM and the GGM that both allow the
modeling of network structures in SEM. In the first generalization, we adopt the

CFAS decomposition in (7.2) and model the variance—covariance matrix of latent
variables as a GGM:

U=Ag(I—-Q¢) ' Ay.

This framework can be seen as modeling conditional independencies between latent
variables not by directed effects (as in SEM) but as an undirected network. As
such, we term this framework latent network modeling (LNM).

In the second generalization, we adopt the SEM decomposition of the variance—
covariance matrix in (7.3) and allow the residual variance—covariance matrix © to

be modeled as a GGM:

0 =Ao(I—-0¢) ' Ae.

4To our knowledge, the GGM has not yet been framed in this form. We chose this form
because it allows for clear modeling and interpretation of the network parameters.

5We use the CFA framework instead of the SEM framework here as the main application of
this framework is in exploratively estimating relationships between latent variables.
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A. Structural Equation Modeling B. Network Modeling

o,

C. Latent Network Modeling D. Residual Network Modeling

Figure 7.2: Examples of possible models under four different modeling frame-
works. Circular nodes indicate latent variables, square nodes indicate manifest
variables and gray nodes indicate residuals. Directed edges indicate factor load-
ings or regression parameters and undirected edges indicate pairwise interactions.
Note that such undirected edges do mot indicate covariances, which are typically
denoted with bidirectional edges. Replacing covariances with interactions is where
the network models differ from typical SEM.

Because this framework conceptualizes associations between residuals as pairwise
interactions, rather than correlations, we term this framework Residual Network
Modeling (RNM). Using this framework allows—as will be described below—for
a powerful way of fitting a confirmatory factor structure even though local inde-
pendence is systematically violated and all residuals are correlated.

Figure 7.2 shows four different examples of possible models that are attainable
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7. GENERALIZED NETWORK PSYCHOMETRICS

under the SEM, LNM and RNM frameworks. Panel A shows a typical SEM model
in which one latent variable functions as a common cause of two others. Panel B
shows a network model which can be estimated using both the RNM and the
LNM frameworks. Panel C shows a completely equivalent LNM model to the
SEM model of Panel A in which the direction of effect between latent variables
is not modeled. Finally, panel D shows a model in which three exogenous latent
variables underlie a set of indicators of which the residuals form a network. The
remainder of this section will describe RNM and LNM in more detail and will
outline the class of situations in which using these models is advantageous over
CFA or SEM.

Latent Network Modeling

The LNM framework models the latent variance—covariance matrix of a CFA model
as a GGM: .
Y=AAg (I —-Qg) 'AgAT +6. (7.5)

This allows researchers to model conditional independence relationships between
latent variables without making the implicit assumptions of directionality or acyclic-
ness. In SEM, B is typically modeled as a directed acyclic graph (DAG), meaning
that elements of B can be represented by directed edges, and following along the
path of these edges it is not possible to return to any node (latent variable). The
edges in such a DAG can be interpreted as causal, and in general they imply a
specific set of conditional independence relationships between the nodes (Pearl,
2000).

While modeling conditional independence relationships between latent vari-
ables as a DAG is a powerful tool for testing strictly confirmatory hypotheses,
it is less useful for more exploratory estimation. Though there have been re-
cent advances in exploratory estimation of DAGs within an SEM framework (e.g.,
Gates & Molenaar, 2012; Rosa, Friston, & Penny, 2012), many equivalent DAGs
can imply the same conditional independence relationships, and thus fit the data
equally well even though their causal interpretation can be strikingly different
(MacCallum et al., 1993). Furthermore, the assumption that the generating model
is acyclic—which, in practice, often is made on purely pragmatic grounds to iden-
tify a model—is problematic in that much psychological behavior can be assumed
to have at least some cyclic and complex behavior and feedback (Schmittmann
et al., 2013). Thus, the true conditional independence relationships in a dataset
can lead to many equivalent compositions of B, and possibly none of them are the
true model.

In psychometrics and SEM the GGM representation has not been very promi-
nent, even though it has some manifest benefits over the attempt to identify DAGs
directly. For example, by modeling conditional independence relationships be-
tween latent variables as a GGM, many relationships can be modeled in a simpler
way as compared to a DAG. In addition, in the GGM each set of conditional
independence relations only corresponds to one model: there are no equivalent
GGMs with the same nodes. Figure 7.3 shows a comparison of several conditional
independence relations that can be modeled equivalently or not by using a GGM
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Ok (=) -

No equivalent DAG with
the same # of parameters

G

No equivalent GGM with
the same # of parameters

F
H

Figure 7.3: Equivalent models between directed acyclic graphs (DAG; left) and
Gaussian graphical models (GGM; right). Each row of graphs show two models

that are equivalent.
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or by using a DAG. Panel A and Panel C show two DAGs that represent the same
conditional independence relations, y; 1L y3 | y2, which can both be represented
by the same GGM shown in Panel B and Panel D. There are some conditional
independence relations that a GGM cannot represent in the same number of pa-
rameters as a DAG; Panel E shows a collider structure that cannot be exactly
represented by a GGM (the best fitting GGM would feature three edges instead
of two). On the other hand, there are also conditional independence relationships
that a GGM can represent and a DAG cannot; the cycle of Panel H cannot be
represented by a DAG. Further equivalences and differences between GGMs and
DAGs are beyond the scope of this chapter, but haven been well described in the
literature (e.g., chapter 3 of Lauritzen, 1996; Koller & Friedman, 2009; Kolaczyk,
2009). In sum, the GGM offers a natural middle ground between zero-order corre-
lations and DAGs: every set of zero-order correlations implies exactly one GGM,
and every DAG implies exactly one GGM. In a sense, the road from correlations
to DAGs (including hierarchical factor models) thus always must pass through
the realm of GGMs, which acts as a bridge between the correlational and causal
worlds.

Because there are no equivalent undirected models possible, LNM offers a
powerful tool for exploratory estimation of relationships between latent variables.
For example, suppose one encounters data generated by the SEM model in Fig-
ure 7.2, Panel A. Without prior theory on the relations between latent variables,
exploratory estimation on this dataset would lead to three completely equivalent
models: the one shown in Figure 7.2, Panel C and two models in which the common
cause instead is the middle node in a causal chain. As the number of latent vari-
ables increases, the potential number of equivalent models that encode the same
conditional independence relationships grows without bound. The LNM model
in Panel C of Figure 7.2 portrays the same conditional independence relationship
as the SEM model in Panel A of Figure 7.2, while having no equivalent model.
Exploratory estimation could easily find this model, and portrays the retrieved
relationship in a clear and unambiguous way.

A final benefit of using LNM models is that they allow network analysts to
construct a network while taking measurement error into account. So far, networks
have been constructed based on single indicators only and no attempt has been
made to remediate measurement error. By forming a network on graspable small
concepts measured by a few indicators, the LNM framework can be used to control
for measurement error.

Residual Network Modeling
In the RNM framework the residual structure of SEM is modeled as a GGM:
S=AI-B)'¥(I-B)'"TAT +As (I - Q) ' Ae. (7.6)

This modeling framework conceptualizes latent variable and network modeling as
two sides of the same coin, and offers immediate benefits to both. In latent variable
modeling, RNM allows for the estimation of a factor structure (possibly including
structural relationships between the latent variables), while having no uncorrelated
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errors and thus no local independence. The error-correlations, however, are still
highly structured due to the residual network structure. This can be seen as a
compromise between the ideas of network analysis and factor modeling; while we
agree that local independence is plausibly violated in many psychometric tests,
we think the assumption of no underlying latent traits and therefore a sparse
GGM may often be too strict. For network modeling, RNM allows a researcher
to estimate a sparse network structure while taking into account that some of
the covariation between items was caused by a set of latent variables. Not taking
this into account would lead to a saturated model (Chandrasekaran et al., 2012),
whereas the residual network structure can be sparse.

To avoid confusion between residual correlations, we will denote edges in Qg
residual interactions. Residual interactions can be understood as pairwise linear
effects, possibly due to some causal influence or partial overlap between indicators
that is left after controlling for the latent structure. Consider again the indicators
for agreeableness “Am indifferent to the feelings of others” and “Inquire about
others’ well-being”. It seems clear that we would not expect these indicators to be
locally independent after conditioning on agreeableness; being indifferent to the
feelings of others will cause one to not inquire about other’s well-being. Thus,
we could expect these indicators to feature a residual interaction; some degree of
correlation between these indicators is expected to remain, even after conditioning
on the latent variable and all other indicators in the model.

The RNM framework in particular offers a new way of improving the fit of
confirmatory factor models. In contrast to increasingly popular methods such as
exploratory SEM (ESEM; Marsh, Morin, Parker, & Kaur, 2014) or LASSO reg-
ularized SEM models (Jacobucci et al., 2016), the RNM framework improves the
fit by adding residual interactions rather than allowing for more cross-loadings.
The factor structure is kept exactly intact as specified in the confirmatory model.
Importantly, therefore, the interpretation of the latent factor does not change.
This can be highly valuable in the presence of a strong theory on the latent vari-
ables structure underlying a dataset even in the presence of violations of local
independence.

7.4 Exploratory Network Estimation

Both the LNM and RNM modeling frameworks allow for confirmative testing of
network structures. Confirmatory estimation is straightforward and similar to
estimating SEM models, with the exception that instead of modeling ¥ or © now
the latent network Qg or g is modeled. Furthermore, both modeling frameworks
allow for the confirmatory fit of a network model. In LNM, a confirmatory network
structure can be tested by setting A = I and © = O; in RNM, a confirmatory
network model can be tested by omitting any latent variables. We have developed
the R package lvnet® which utilizes OpenMx (Neale et al., 2016) for confirmative
testing of RNM and LNM models (as well as a combination of the two). The 1vnet
function can be used for this purpose by specifying the fixed and the free elements

6github.com/sachaepskamp/lvnet
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of model matrices. The package returns model fit indices (e.g., the RMSEA, CFI
and x? value), parameter estimates, and allows for model comparison tests.

Often the network structure, either at the residual or the latent level, is un-
known and needs to be estimated. To this end, the package includes two ex-
ploratory search algorithms described below: step-wise model search and penal-
ized maximum likelihood estimation. For both model frameworks and both search
algorithms, we present simulation studies to investigate the performance of these
procedures. As is typical in simulation studies investigating the performance of
network estimation techniques, we investigated the sensitivity and specificity (van
Borkulo et al., 2014). These measures investigate the estimated edges versus the
edges in the true model, with a ‘positive’ indicating an estimated edge and a ‘neg-
ative’ indicating an edge that is estimated to be zero. Sensitivity, also termed the
true positive rate, gives the ratio of the number of true edges that were detected
in the estimation versus the total number of edges in the true model:

# true positives

sensitivity =
Y # true positives + # of false negatives

Specificity, also termed the true negative rate, gives the ratio of true missing
edges detected in the estimation versus the total number of absent edges in the
true model:

# true negatives
# true negatives + # false positives

specificity =

The specificity can be seen as a function of the number of false positives: a high
specificity indicates that there were not many edges detected to be nonzero that
are zero in the true model. To favor degrees of freedom, model sparsity and in-
terpretability, specificity should be high all-around—estimation techniques should
not result in many false positives—whereas sensitivity should increase as a function
of the sample size.

Simulating Gaussian Graphical models

In all simulation studies reported here, networks were constructed in the same
way as done by Yin and Li (2011) in order to obtain a positive definite inverse-
covariance matrix K. First, a network structure was generated without weights.
Next, weights were drawn randomly from a uniform distribution between 0.5 and
1, and made negative with 50% probability. The diagonal elements of K were
then set to 1.5 times the sum of all absolute values in the corresponding row, or
1 if this sum was zero. Next, all values in each row were divided by the diagonal
value, ensuring that the diagonal values become 1. Finally, the matrix was made
symmetric by averaging the lower and upper triangular elements. In the chain
graphs used in the following simulations, this algorithm created networks in which
the non-zero partial correlations had a mean of 0.33 and a standard deviation of
0.04.
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Stepwise Model Search

In exploratory search, we are interested in recovering the network structure of
either Qg in LNM or Qg in RNM. This can be done through a step-wise model
search, either based on x? difference tests (Algorithm 1) or on minimization of
some information criterion (Algorithm 2) such as the Akaike information criterion
(AIC), Bayesian information criterion (BIC) or the extended Bayesian informa-
tion criterion (EBIC; Chen & Chen, 2008) which is now often used in network
estimation (van Borkulo et al., 2014; Foygel & Drton, 2010). In LNM, remov-
ing edges from Qg cannot improve the fit beyond that of an already fitting CFA
model. Hence, model search for Qg should start at a fully populated initial setup
for g. In RNM, on the other hand, a densely populated Qg would lead to an
over-identified model, and hence the step-wise model search should start at an
empty network g = O. The function lvnetSearch in the 1vnet package can be
used for both search algorithms.

Algorithm 1 Stepwise network estimation by x? difference testing.

Start with initial setup for
repeat
for all Unique elements of Q do
Remove edge if present or add edge if absent
Fit model with changed edge
end for
if Adding an edge significantly improves fit (o« = 0.05) then
Add edge that improves fit the most
else if Removing an edge does not significantly worsen fit (o« = 0.05) then
Remove edge that worsens fit the least
end if
until No added edge significantly improves fit and removing any edge signifi-
cantly worsens fit

Algorithm 2 Stepwise network estimation by AIC, BIC or EBIC optimization.

Start with initial setup for £
repeat
for all Unique elements of  do
Remove edge if present or add edge if absent
Fit model with changed edge
end for
if Any changed edge improved AIC, BIC or EBIC then
Change edge that improved AIC, BIC or EBIC the most
end if
until No changed edge improves AIC, BIC or EBIC
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Figure 7.4: Model used in simulation study 1: step-wise model search in latent
network modeling. Four latent variables were each measured by three items. La-
tent variables covary due to the structure of a latent Gaussian graphical model in
which edges indicate partial correlation coefficients. This model has the form of
a chain graph, which cannot be represented in a structural equation model. Fac-
tor loadings, residual variances and latent variances were set to 1 and the latent
partial correlations had an average of 0.33 with a standard deviation of 0.04.

Simulation Study 1: Latent Network Modeling

We performed a simulation study to assess the performance of the above mentioned
step-wise search algorithms in LNM models. Figure 7.4 shows the LNM model
under which we simulated data. In this model, four latent factors with three
indicators each were connected in a latent network. The latent network was a chain
network, leading all latent variables to be correlated according to a structure that
cannot be represented in SEM. Factor loadings and residual variances were set to
1, and the network weights were simulated as described in the section “Simulating
Gaussian Graphical models”. The simulation study followed a 5 x 4 design: the
sample size was varied between 50, 100, 250, 500 and 1000 to represent typical
sample sizes in psychological research, and the stepwise evaluation criterion was
either x? difference testing, AIC, BIC or EBIC (using a tuning parameter of
0.5). Each condition was simulated 1000 times, resulting in 20 000 total simulated
datasets.

Figure 7.5 shows the results of the simulation study. Data is represented in
standard boxplots (McGill, Tukey, & Larsen, 1978): the box shows the 25th, 50th
(median) 75th quantiles, the whiskers range from the largest values in 1.5 times
the inter-quantile range (75th - 25th quantile) and points indicate outliers outside
that range. In each condition, we investigated the sensitivity and specificity. The
top panel shows that sensitivity improves with sample size, with AIC performing
best and EBIC worst. From sample sizes of 500 and higher all estimation criterion
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Figure 7.5: Simulation results of simulation study 1: step-wise model search in
latent network modeling. Each condition was replicated 1000 times, leading to
20000 total simulated datasets. High sensitivity indicates that the method is able
to detect edges in the true model, and high specificity indicates that the method
does not detect edges that are zero in the true model.
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D)
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Figure 7.6: Model used in simulation study 2: step-wise model search in residual
network modeling. Two latent variables were each measured by five items; a
Gaussian graphical model, in which edges indicate partial correlation coefficients,
leads to all residuals to be correlated due to a chain graph between residuals, which
cannot be represented in a structural equation model. Factor loadings, residual
variances and latent variances were set to 1, the factor covariance was set to 0.25
and the latent partial correlations had an average of 0.33 with a standard deviation
of 0.04.

performed well in retrieving the edges. The bottom panel shows that specificity
is generally very high, with EBIC performing best and AIC worst. These results
indicate that the step-wise procedure is conservative and prefers simpler models
to more complex models; missing edges are adequately detected but present edges
in the true model might go unnoticed except in larger samples. With sample sizes
over 500, all four estimation methods show both a high sensitivity and specificity.

Simulation Study 2: Residual Network Modeling

We conducted a second simulation study to assess the performance of step-wise
model selection in RNM models. Figure 7.7 shows the model under which data
were simulated: two latent variables with 5 indicators each. The residual network
was constructed to be a chain graph linking a residual of an indicator of one latent
variable to two indicators of the other latent variable. This structure cannot be
represented by a DAG and causes all residuals to be connected, so that © is
fully populated. Factor loadings and residual variances were set to 1, the factor
covariance was set to 0.25, and the network weights were simulated as described
in the section “Simulating Gaussian Graphical models”.

The simulation study followed a 5 x 4 design; sample size was again varied
between 50, 100, 250, 500 and 1000, and models were estimated using either
x? significance testing, AIC, BIC or EBIC. Factor loadings and factor variances
were set to 1 and the factor correlation was set to 0.25. The weights in Qg were
chosen as described in the section “Simulating Gaussian Graphical models”. Each
condition was simulated 1,000 times, leading to 20 000 total datasets.
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Figure 7.7: Simulation results of simulation study 2: step-wise model search in
residual network modeling. Each condition was replicated 1000 times, leading to
20000 total simulated datasets. High sensitivity indicates that the method is able
to detect edges in the true model, and high specificity indicates that the method
does not detect edges that are zero in the true model.
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Figure 7.7 shows the results of the simulation study. The top panel shows
that sensitivity increases with sample size and performs best when using AIC as
the criterion. BIC performed comparably in sensitivity to x? testing and EBIC
performed the worst. The bottom panel shows that specificity was very high for
all sample sizes and all criteria, with EBIC performing best and AIC worst. These
results indicate that the number of false positives is very low and that the method
is on average well capable of discovering true edges for sample size larger than
250. In sum, all four criteria perform well with EBIC erring on the side of caution
and AIC erring on the side of discovery.

LASSO Regularization

While the step-wise model selection algorithms perform well in retrieving the cor-
rect network structure, they are very slow when the number of nodes in the network
increases (e.g., more than 10 nodes). This is particularly important in the context
of RNM, in which the number of indicators can be larger than 10 even in small
models. A popular method for fast estimation of high-dimensional network struc-
tures is by applying the least absolute shrinkage and selection operator (LASSO;
Tibshirani, 1996). LASSO regularization has also recently been introduced in the
SEM literature (Jacobucci et al., 2016) as a method for obtaining sparser struc-
tures of A and B. In the LASSO, instead of optimizing the likelihood function as
described in (7.1), a penalized likelihood is optimized (Jacobucci et al., 2016):

rrgn [log det (f)) + Trace (Sﬁ_l) — log det (S) — P + vPenalty| , (7.7)

in which v denotes a tuning parameter controlling the level of penalization. The
penalty here is taken to be the sum of absolute parameters:

Penalty = Z |wis],

<i,j>

in which w;; denotes an element from either Qg or Qg. Other penalty functions
may be used as well—such as summing the squares of parameter estimates (ridge
regression; Hoerl & Kennard, 1970) or combining both absolute and squared values
(elastic net; Zou & Hastie, 2005)—but these are not currently implemented in
lvnet. The benefit of the LASSO is that it returns models that perform better
in cross-validation. In addition, the LASSO yields sparse models in which many
relationships are estimated to be zero.
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Algorithm 3 LASSO estimation for exploratory network search.

for all Sequence of tuning parameters vy, v, ... do
Estimate LASSO regularized model using given tuning parameter
Count the number of parameters for which the absolute estimate is larger
than e
Determine information criterion AIC or BIC given fit and number of param-
eters

end for

Select model with best AIC, BIC or EBIC

Refit this model without LASSO in which absolute parameters smaller than e

are fixed to zero

The lvnet function allows for LASSO regularization for a given model matrix
(Qe, Ny, O, ¥, A or B) and a given value for the tuning parameter v. The
optimizer used in lvnet does not return exact zeroes. To circumvent this is-
sue, any absolute parameter below some small value e (by default e = 0.0001)
is treated as zero in counting the number of parameters and degrees of freedom
(Zou, Hastie, Tibshirani, et al., 2007). The lvnetLasso function implements the
search algorithm described in Algorithm 3 to automatically choose an appropriate
tuning parameter, use that for model selection and rerun the model to obtain a
comparable fit to non-regularized models. In this algorithm, a sequence of tuning
parameters is tested, which is set by default to a logarithmically spaced sequence
of 20 values between 0.01 and 1.

Simulation Study 3: Latent Network Modeling

We studied the performance of LASSO penalization in estimating the latent net-
work structure in a similar simulation study to the study of the step-wise procedure
described above. Data were simulated under a similar model to the one shown
in Figure 7.4, except that now 8 latent variables were used leading to a total of
24 observed variables. All parameter values were the same as in simulation study
1. The simulation followed a 5 x 3 design. Sample size was varied between 100,
250, 500, 1000 and 2500, and for each sample size 1000 datasets were simulated
leading to a total of 5000 generated datasets. On these datasets the best model
was selected using either AIC, BIC or EBIC, leading to 15000 total replications.
In each replication, sensitivity and specificity were computed. Figure 7.8 shows
that AIC had a relatively poor specificity all-around, but a high sensitivity. EBIC
performed well with sample sizes of 500 and higher.

Simulation Study 4: Residual Network Modeling

To assess the performance of LASSO in estimating the residual network structure
we simulated data as in Figure 7.6, except that in this case four latent variables
were used, each with 5 indicators, the residuals of which were linked via a chain
graph. All parameter values were the same as in simulation study 2. The design
was the same as in simulation study 3, leading to 5000 generated datasets on
which AIC, BIC or EBIC were used to select the best model. While Figure 7.9
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Figure 7.8: Simulation results of simulation study 3: model selection via penalized
maximum likelihood estimation in latent network modeling. The same model as
in Figure 7.4 was used except now with 4 latent variables leading to 24 observed

variables.

For each sample size 1000 datasets were generated, leading to 5000

total simulated datasets on which AIC, BIC or EBIC was used to select the best
model. High sensitivity indicates that the method is able to detect edges in the
true model, and high specificity indicates that the method does not detect edges
that are zero in the true model.
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Figure 7.9: Simulation results of simulation study 4: model selection via penalized
maximum likelihood estimation in residual network modeling. The same model as
in Figure 7.6 was used except now with 4 latent variables leading to 20 observed
variables. For each sample size 1000 datasets were generated, leading to 5000
total simulated datasets on which AIC, BIC or EBIC was used to select the best
model. High sensitivity indicates that the method is able to detect edges in the
true model, and high specificity indicates that the method does not detect edges
that are zero in the true model.

shows good performance of the LASSO in retrieving the residual network structure
and similar results as before: AIC performs the worst in specificity and EBIC the
best.
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7.5 Empirical Example: Personality Inventory

In this section, we demonstrate LNM and RNM models by confirmative testing
a model and exploratively searching a residual and a latent network structure.
We use the lvnet package, which can be installed directly from Github using the
devtools package in R:

> library("devtools")
> install_github("sachaepskamp/lvnet")
> library("lvnet")

To exemplify the method, we will use a dataset from the psych package (Revelle,
2010) on the Big 5 personality traits (Benet-Martinez & John, 1998; Digman, 1989;
Goldberg, 1990a, 1993; McCrae & Costa, 1997). This dataset consists of 2800 ob-
servations of 25 items designed to measure the 5 central personality traits with 5
items per trait. We estimated the CFA model on the BFI dataset. Next, we used
LASSO estimation to the RNM model using 100 different tuning parameters and
using EBIC as criterion to maximize specificity and search for a sparse residual
network. The fully correlated covariance matrix of latent variables is equivalent
to a fully connected latent network structure. Thus, after fitting a RNM model,
we can again apply LASSO to estimate a latent network in the resulting model,
which we abbreviate here to an RLNM model. The R code used for this analysis
can be found in the supplementary materials.

df X2 AIC BIC EBIC RMSEA TLI CFI

CFA 265 4713.94 183233.7 183589.9 184542.4 0.08 0.75 0.78
RNM 172 806.63 179511.0 180419.4 182848.2 0.04 094 0097
RLNM 176 843.18  179539.5  180424.2  182789.5 0.04 094 097

Table 7.1: Fit measures for three models estimated on the BFI dataset in the psych
R package. CFA is the correlated five-factor model. RNM is the same model as
the CFA model with a residual network. RLNM denotes the same model as the
RNM model in which edges of the latent network have been removed.

Table 7.1 shows the fit of the three models. The CFA model fits poorly. The
RNM model has substantively improved fit and resulted in good fit indices overall.
The estimated RLNM model showed that 5 edges could be removed from the
latent network after taking residual interactions into account. Figure 7.10 shows
the factor structure and residual network of the final RLNM model. It can be
seen that Agreeableness is now only connected to extraversion: after taking into
account someone’s level of extraversion agreeableness is independent of the other
three personality traits. Extraversion is the most central node in this network and
the only trait that is directly linked to all other traits. The residual network shows
many meaningful connections. While seemingly densely connected, this network
only has 30% of all possible edges in a network of that size, leading the model to
have 176 degrees of freedom. The corresponding residual covariance structure is
fully populated with no zero elements.

It should be noted that the procedures used in this example are highly explo-
rative. While Table 7.1 shows that the RNM fits better than the CFA model,

138



7.5. Empirical Example: Personality Inventory

"9INJONIIS J{IOMIU JUSYR] 97} SUIMO[[O] PUR SINIONI)S JIOMISU [ENPISAI S} 9)BUWIISS JSIY O) PIsTL Sem UOTIPIS[9S
[Ppow DIGH YA UOIpeuIquiod Ul siojewrered Surung yUoIfIp 00T M UoIyewise OSSYT Y ul odexoed yoAsd o) woIj joseIRp
Ayrreuosiod 144 oY) JO (9SL1) {I0MIOU [RNIPISOI O} PUR (1J9]) JIOMIOU JUSJR] PUR SINJONIYS 10J0R] 91} JO UOTIRZI[RNSIA (T 'L 0INS1]

100[gns e ojul Adeap aqoud Jou |jIMm SO
*sBuiy) uo Bunosyjes aw puads :yO

"lena] Jaybly e o} uonesianuod ay} ALe) :e0
‘[eLiayew Buipeas Jndupp 1oAY :20

'Seap! JO [Inj wy ;L0

ssauuadQ

‘Aisea olued :GN

‘an|q (99} USYO ‘PN

‘sBuims poow juanbaiy eneH :gN
“Aises pajeni 199 gN

*Aiisea AiBue 199 1 LN
wsionoINaN

“abureyo axel g3

“AlIsea spualy exe v3

-g|doad ajeanded 0} moy mouy] :€3
*s18yio yoeoidde o} ynoyIp ¥ puld 123
o1 e e puoq i3

uoisianenx3

‘awi Aw 9iseM SO

“Jouuew Aem—yjey e ul sbuiy oq v
-ueyd e o} Buipioooe sbuiyy og :€D
"1oapad s| BuiyiAiens [un enuluoy ;2o
yiom Aw uy Bunoexs wy : 1D
S$SOUSNOURIOSU0D

-asea Je |99} a|doad axep gy

“UBIPIIYD BAOT HY

*S19U10 LIOJWOD O} MOY MOUY ‘€Y
-Bureg-|jem ,s18yjo Jnoge ainbuj :2y
*s19Y30 Jo sBuljaay 8y} 0} Juaiayipul Wy : Ly
ssaua|qeaalby

©000O0O0 00000 oo o000 oo o000

»}IOMIBU [enpisay }IOMIBU JUBIE| @ 8INJONJIS J0j0BS

139



7. GENERALIZED NETWORK PSYCHOMETRICS

the CFA model is solely based on theory whereas the RNM model was found
through high-dimensional model search. As a result, to substantially interpret the
structure found in Figure 7.10 it should first be replicated in independent samples.

7.6 Conclusion

In this chapter we introduced a formal psychometric model for network modeling
of multivariate normal data. We contrasted this model with latent variable mod-
els as commonly used in CFA and SEM. Furthermore, using the CFA and SEM
frameworks, we proposed two generalizations of the network model to encompass
latent variable structures within the network paradigm. In the first generalization,
LNM, we construct a network among the latent variables, whereas in the second
generalization, RNM, a network is formed among residuals of indicators. Both
frameworks offer powerful benefits over both latent variable and network model-
ing. From the perspective of latent variable modeling, the LNM framework allows
one to exploratively search for conditional independence relationships between la-
tent variables without the need for prior theory, and the RNM framework allows
one to model latent common causes without assuming local independence. From
the perspective of network modeling, the LNM framework allows one to model
network structures while taking measurement error into account, and the RNM
framework allows one to estimate a network structure, even when all nodes are in
part caused by unobserved or latent variables. In addition, both frameworks allow
for network models to be fitted and compared to SEM models. The discussed
methodology has been implemented in the freely available R package lvnet.

Simulation studies showed that step-wise search and penalized maximum like-
lihood estimation of the residual or latent network structures resulted in high
specificity all around—the methods did not result often in false positives—and
rapidly increasing sensitivity as a function of the sample size; the higher the sam-
ple size, the more true edges were detected in the algorithm. These numbers are
comparable to state-of-the-art network estimation techniques in sample and model
sizes that are plausible in psychological settings (van Borkulo et al., 2014). In all
four simulation studies, using AIC as the model selection criterion led to the best
sensitivity and using EBIC led to the best specificity. However, it is important
to note that the choice of a particular information criterion cannot be argued by
these numbers alone, and depends on the relative importance one assigns to the
side of discovery (optimizing sensitivity) or the side of caution (optimizing speci-
ficity; Dziak et al., 2012). Furthermore, it should be noted that these simulation
results are specific for the particular model setup and sample sizes used; results
might be different for other kinds of models or sample size ranges.

In addition to the LNM and RNM frameworks, other combinations of CFA,
SEM and network modeling are possible as well. For example, a framework can be
constructed which contains both a latent and a residual network (as shown in our
empirical example), or directed regression paths as in the SEM model can be added
to the LNM model. While these models are all estimable in the 1vnet software,
in the current chapter we chose to focus on the distinct benefits that modeling a
residual or latent network presents. Thus, in this chapter, we only described the
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modeling of multivariate normal data. More advanced models are possible, but
not yet implemented in the lvnet software. In the case of binary variables, the
appropriate model to use is the Ising model, which has been shown to be equivalent
to multivariate item response models (see Chapter 8). Future research could aim
at constructing Ising models among binary latent variables in latent class analysis,
or constructing residual networks in models with binary indicators. Finally, the
expressions optimized in Equations (7.1) and (7.7) are based on summary statistics
and therefore only truly applicable to complete data. With incomplete data,
the appropriate estimation method is to use full-information maximum likelihood
(FIML; Arbuckle, Marcoulides, & Schumacker, 1996); however, FIML has not yet
been implemented in the 1lvnet software.

In our view, the presented modeling framework is a versatile and promising
addition to the spectrum of psychometric models. The GGM, which has a central
place in this modeling framework, acts as a natural interface between correlation
and causality, and we think this representation should receive more attention in
psychometrics. From the point of view afforded by the current chapter, the typical
attempt to determine directed SEMs from correlation structures in fact appears
somewhat haphazard in psychology, a historical accident in a field that has been
prematurely directed to hypothesis testing at the expense of systematic explo-
ration. Perhaps, psychometrics as a field should consider taking a step back to
focus on the consistent identification of GGMs, instead of wanting to jump to the
causal conclusion immediately. In this regard, the fact that GGMs do not have
equivalent models would appear to be a major benefit, as they allow us to focus
on charting connections between variables systematically, without being forced to
adhere to one particular causal interpretation or another. In addition, because the
GGM does not specify the nature or direction of interactions between variables, it
appears a natural model for research situations where no temporal information or
experimental interventions are present, so that associations may arise for a mul-
titude of reasons: the GGM can be consistently interpreted regardless of whether
associations arise from direct causal relations, reciprocal causation, latent common
causes, semantic overlap between items, or homeostatic couplings of parameters.
While this can be seen as a downside of the GGM—the lack of directionality leads
to less falsifiable hypotheses—it can also be a major asset in a field like psychology,
where strong causal theory is sparse and the identification of DAGs often appears
a bridge too far.
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