
Chapter 6

Discovering Psychological Dynamics

Abstract

This chapter outlines statistical network models in cross-sectional and
time-series data, that attempt to highlight potential causal relationships be-
tween observed variables. The chapter describes three kinds of datasets.
In cross-sectional data (1), one can estimate a Gaussian graphical model
(GGM; a network of partial correlation coefficients). In single-subject time-
series analysis (2), networks are typically constructed through the use of
(multilevel) vector autoregression (VAR). VAR estimates a directed net-
work that encodes temporal predictive e↵ects—the temporal network. We
show that GGM and VAR models are closely related: VAR generalizes the
GGM by taking violations of independence between consecutive cases into
account. VAR analyses can also return a GGM that encodes relationships
within the same window of measurement—the contemporaneous network.
When multiple subjects are measured (3), multilevel VAR estimates fixed
and random temporal networks. We show that between-subject e↵ects can
also be obtained in a GGM network—the between-subjects network. We pro-
pose a novel two-step multilevel estimation procedure to obtain fixed and
random e↵ects for contemporaneous network structures. This procedure is
implemented in the R package mlVAR. The chapter presents a simulation
study to show the performance of mlVAR and showcases the method in an
empirical example on personality inventory items and physical exercise.

6.1 Introduction

Network modeling of psychological data has increased in recent years. This is con-
sistent with a general call to conceptualize observed psychological processes that
are not merely indicative of latent common causes but rather reflect the emergent

This chapter has been adapted from: Epskamp, S., Waldorp, L.J., Mõttus, R., and Bors-
boom, D. (2016). Discovering Psychological Dynamics: The Gaussian Graphical Model in Cross-
sectional and Time-series Data. arXiv preprint, arXiv:1609.04156.
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6. Discovering Psychological Dynamics

behavior of complex, dynamical systems in which psychological, biological, and
sociological components directly interact with each other (Borsboom et al., 2011;
Cramer, Sluis, et al., 2012; Cramer et al., 2010; Schmittmann et al., 2013; Van
Der Maas et al., 2006). Such relationships are typically not known, and proba-
bilistic network models (Koller & Friedman, 2009) are used to explore potential
causal relationships between observables (Epskamp et al., in press; van Borkulo et
al., 2014)—the dynamics of psychology. This chapter provides a methodological
overview of statistical network models in cross-sectional and time-series data. Fur-
thermore, this chapter shows that the common network models for cross-sectional
and time-series data are closely related. In time-series modeling, this relationship
allows researchers to extend the modeling framework to incorporate contempora-
neous and between-subject e↵ects. We propose a novel estimation procedure to
do so, which we implemented in the free software package mlVAR.1

We can distinguish two lines of research in which networks are utilized on
psychological datasets: modeling of cross-sectional data and modeling of intensive
repeated measures in relatively short time frames (e.g., several times per day
during several weeks). In cross-sectional modeling, a model is applied to a dataset
in which multiple persons are measured only once. The most popular method is
to estimate undirected network models, indicating pairwise interactions—so-called
pairwise Markov random fields (Lauritzen, 1996; Murphy, 2012). When the data
are continuous, the Gaussian graphical model (GGM; Lauritzen, 1996) can be
estimated. The GGM estimates a network of partial correlation coefficients—the
correlation between two variables after conditioning on all other variables in the
dataset. This model is applied extensively to psychological data (e.g., Cramer,
Sluis, et al., 2012; Fried, Epskamp, et al., 2016; Isvoranu, van Borkulo, et al.,
2016; Kossakowski et al., 2016; McNally et al., 2015; van Borkulo et al., 2015).

Time-series data can be obtained by using the experience sampling method
(ESM; Myin-Germeys et al., 2009), in which subjects are asked several times per
day to fill in a short questionnaire through a device or smartphone app. Of-
ten in ESM data, repeated measures of one or multiple participants are modeled
through the use of (multilevel) vector autoregressive (VAR) models, which esti-
mate how well each variable predicts the measured variables at the next time point
(Borsboom & Cramer, 2013). These models are growing increasingly popular in
assessing intraindividual dynamical structures (e.g., Bringmann et al., 2013, 2015;
Wigman et al., 2015). As will be shown below, the VAR model can be seen as
a generalization of the GGM that takes violations of independence between con-
secutive cases into account. Thus, the lines of research on cross-sectional and
time-series data can naturally be combined. The GGM is, however, not yet com-
monly used in time-series analysis.

In this chapter we present an overview of out-of-the-box methods, applicable
to normally distributed data, that aim to map out the dynamics present in psycho-
logical data. We will do so in two distinct settings: cross-sectional data, in which
observations are plausibly independent, and intensive repeated measures in a rel-
atively short time span obtained through ESM data. In multivariate normal data,

1CRAN link: http://cran.r-project.org/package=mlVAR
Github link (developmental): http://www.github.com/SachaEpskamp/mlVAR
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all relationships between variables are contained within the variance–covariance
matrix. Thus, characterizing the covariances in estimable ways provides a method
to characterize all relationships that are present. This information can then be
represented in networks. In cross-sectional data, one network can be obtained—
an undirected network of partial correlation coefficients. In time-series data, up
to three networks can be obtained—the temporal network, a directed network in-
dicating within-person relationships across time; the contemporaneous network,
an undirected partial correlation network within the same measurement; and the
between-subjects network, an undirected partial correlation network between the
means of the subject’s scores within the time span of measurement. We describe
how all three networks can highlight potential causal pathways and thereby act as
hypothesis-generating structures.

The chapter is structured in the following manner. We first characterize the
joint likelihood of full ESM data in three steps: (a) when cases are deemed to be
plausibly independent, (b) when the time-series data of a single subject contain
plausibly nonindependent observations, and (c) when we have time-series data of
several subjects that combine both independent and nonindependent observations.
In each of these situations, we outline estimation procedures including a descrip-
tion of open-source software packages. We also implement the novel methods of
this chapter, the methods for analyzing ESM data of multiple subjects, in the
software package mlVAR. Furthermore, we show the functionality of this pack-
age in an empirical example by reanalyzing personality inventory items measured
in an ESM design (Mõttus, Epskamp, & Francis, 2016). Finally, we assess the
performance of these methods in a large-scale simulation study.

6.2 Characterizing Multivariate Gaussian Data

In this chapter we will model measurements of N subjects (p 2 1, 2, . . . , N),
in which subject p is measured Tp times (t 2 1, 2, . . . , Tp) on I variables (i 2
1, 2, . . . , I). Let YYY represent the set of random variables measured in each subject:

YYY =
n

YYY (1),YYY (2), . . . ,YYY (N)

o

.

Element YYY (p) contains the random responses of a subject on all Tp measurements:
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in which YYY
(p)
t contains the row vector with random responses of subject p on time-

point t, which we assume to be a multivariate Gaussian distribution with some
mean vector µµµ(p) and some variance–covariance matrix ⌃⌃⌃(p):
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We will denote realizations of the above described random variables by lowercase

letters (e.g., yyy and y
(p)
ti ). It is important to note that measurements are nested in

persons and not the other way around (two subjects can have a di↵erent number
of measurements) and that the measurement t of one subject does not correspond
to measurement t of another subject.2 In typical data representation used in

statistical software, YYY
(p)
t will correspond to a row of responses from a given subject

on all items. We will term these the cases: A case is the set of responses of a
subject on a time point on all items.

Given a set of parameters ⇠⇠⇠, let L denote the likelihood function

L (⇠⇠⇠;yyy) = fYYY (yyy | ⇠⇠⇠) ,

in which fYYY (yyy | ⇠⇠⇠) denotes a probability density function, which we will shorten
to f (yyy | ⇠⇠⇠) for the remainder of this chapter. The likelihood function is crucial
in estimating the set of parameters ⇠⇠⇠, either by maximum likelihood estimation
(MLE) or by playing a crucial role in the formation of the posterior distribution
of ⇠⇠⇠ in Bayes’ rule. An important assumption in computing such a likelihood
function is the assumption of independence. Given a set of estimated parameters
⇠⇠⇠, and assuming the model is correct, we can reasonably assume that scores of
subjects are independent, allowing us to write the joint likelihood as a product of
marginal likelihoods:

f (yyy | ⇠⇠⇠) =
N
Y

p=1

f
⇣

yyy(p) | ⇠⇠⇠
⌘

.

Suppose we measured subjects only once and on one variable—say, their IQ level.
This assumption of independence indicates, for example, that knowing Peter has
an IQ of 90 does not help us predict Sarah’s IQ level, given that IQ has a mean
of 100 and a standard deviation of 15.

In order to fully characterize the likelihood of all observations, we further need
to characterize f(yyy(p) | ⇠⇠⇠), the joint likelihood of all cases of a single subject. This
is easily done in the cross-sectional example described above because every subject
has only one observation. When multiple cases of a subject can be assumed to
be independent, this likelihood similarly can be expressed as a product of all the
likelihoods of the cases. However, as we will detail below, often the assumption
of independent cases is not valid. The remainder of this section will first describe
graphical models based on cross-sectional data, in which cases can be assumed to
be independent, followed by a description of dependent cases for a single subject
(N = 1) as well as for multiple subjects (N > 1).

6.3 The Gaussian Graphical Model

In cross-sectional data, every subject is only measured once on a set of response
items. In this case, as described above, we can reasonably assume that cases
are independent and thus characterize the likelihood as factorized over subjects.

2Data cannot be represented as a box (Cattell, 1988), as would be the case if subjects were
all measured at fixed measurement occasions (e.g., at baseline, one week after treatment, etc.).
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Because only one observation per subject is available, however, we cannot expect to
estimate subject-specific mean and variance–covariance structures. It is typically
assumed that the cases all share the same distribution. That is,

YYY (p) ⇠ N (µµµ,⌃⌃⌃) 8p,

in which 8p should be read as “for all subjects.” Now, the full likelihood can
be readily obtained and the mean vector µµµ and variance–covariance matrix ⌃⌃⌃ can
reliably be estimated using MLE, least squares estimation, or Bayesian estimation.

Our focus point is on ⌃⌃⌃. Because we assume multivariate normality, ⌃⌃⌃ encodes
all the information necessary to determine how the observed measures relate to
one another. It is to this end that great e↵ort has been made to further model the
structure of ⌃⌃⌃. Elements of this variance–covariance matrix can be standardized
to correlation coefficients, allowing researchers to investigate marginal pairwise
associations. This matrix, however, encodes more than just marginal associations.
The Schur complement (Ouellette, 1981) shows that all conditional distributions
of a set of variables, given another set of variables, can be obtained from blocks of
⌃⌃⌃. Therefore, in order to discover dynamics in psychological data, investigating
the structure of ⌃⌃⌃ is of great importance.

However, we will not focus on ⌃⌃⌃ in this chapter but rather on its inverse—the
precision matrix KKK,

KKK = ⌃⌃⌃−1,

also know as the GGM (Lauritzen, 1996). Of particular importance is that the
standardized elements of the precision matrix encode partial correlation coeffi-
cients of two variables given all other variables:

Cor
�

Yi, Yj | YYY −(i,j)

�

= − ijp
ii

p
jj

,

in which ij denotes an element of KKK, and YYY −(i,j) denotes the set of variables
without i and j (we dropped the person superscript for notational clarity). These
partial correlations can be used as edge weights in a weighted network. Each
variable Yi is represented as a node, and connections (edges) between these nodes
represent the partial correlation between two variables. When drawing such a
network, positive partial correlations are typically visualized with green edges and
negative partial correlations with red edges, and the absolute strength of a partial
correlation is represented by the width and saturation of an edge (see Chapter 9).
When a partial correlation is zero, we draw no edge between two nodes. As such,
the GGM can be seen as a network model of conditional associations; no edge
indicates that two variables are independent after conditioning on other variables
in the dataset.

Figure 6.1 shows a hypothetical example of such a GGM in psychology. Three
nodes represent if someone is able to concentrate well, if someone is fatigued,
or if someone is su↵ering from insomnia. This figure shows that someone who
is tired is also more likely to su↵er from concentration problems and insomnia.
Furthermore, this network shows that concentration problems and insomnia are
conditionally independent given the level of fatigue. The GGM shown in Figure 6.1
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−0.25 0.3

Fatigue

InsomniaConcentration

Figure 6.1: A hypothetical example of a GGM on psychological variables. Nodes
represent someone’s ability to concentrate, someone’s level of fatigue, and some-
one’s level of insomnia. Connections between the nodes, termed edges, represent
partial correlation coefficients between two variables after conditioning on the
third. Green edges indicate positive partial correlations, red edges indicate nega-
tive partial correlations, and the width and saturation of an edge corresponds to
the absolute value of the partial correlation.

can be interpreted in three di↵erent ways: (a) potential causal relationships, (b)
predictive e↵ects and predictive mediation, and (c) genuine mutual interactions.

First, a GGM can be taken to show potential causal relationships because the
structure can be equivalent to three causal structures (Pearl, 2000):

1. Concentration ! Fatigue ! Insomnia

2. Concentration  Fatigue ! Insomnia

3. Concentration  Fatigue  Insomnia

In these structures,! denotes that what is on the left side of the arrow causes what
is on the right side of the arrow. In observational data without temporal informa-
tion, distinguishing between these models beyond only identifying the conditional
independency is not possible. Thus, we may not know exactly why conditioning on
fatigue leads to insomnia and concentration being independent—this finding may
represent the smoke of a figurative causal fire. With more variables, the number
of potential equivalent causal models can increase drastically (MacCallum et al.,
1993).

The GGM is useful for generating hypotheses that can, at least in principle,
later be experimentally tested. Specifically, the causal structures above hypothe-
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6.3. The Gaussian Graphical Model

size what happens when you intervene on the nodes (Pearl, 2000). For example, if
we observe that someone is less able to concentrate after being fatigued in an ex-
periment, the relationship fatigue ! concentration appears more plausible. If we
also observe that the person does not become more fatigued after we have experi-
mentally impaired his or her ability to concentrate, the reverse causal relationship
becomes less plausible.

Second, an edge in a GGM indicates that one node predicts a connected node
after controlling for all other nodes in the network. This can be shown in the
relationship between coefficients obtained from least-squares prediction and the
inverse variance–covariance matrix. Let ΓΓΓ represent an I⇥ I matrix with zeros on
the diagonal. Each row of ΓΓΓ, without the diagonal element γγγi.−(i), contains the
regression coefficients obtained in

yi = ⌧ + γγγi.−(i)yyy−(i) + "i. (6.1)

As such, γij encodes how well the jth variable predicts the ith variable. This
predictive e↵ect is naturally symmetric; if knowing someone’s level of insomnia
predicts his or her level of fatigue, then conversely knowing someone’s level of
fatigue allows us to predict his or her level of insomnia. As a result, γij is propor-
tional to γji. There is a direct relationship between these regression coefficients
and the inverse variance–covariance matrix (Meinshausen & Bühlmann, 2006).
Let DDD denote a diagonal matrix on which the ith diagonal element is the inverse
of the ith residual variance: dii = 1/Var("i). Then, it can be shown (Pourahmadi,
2011) that

KKK =DDD (III −ΓΓΓ) . (6.2)

Thus, γij is proportional to ij . A zero in the inverse variance–covariance ma-
trix indicates that one variable does not predict another variable. Consequently,
the network tells us something about the extent to which variables predict each
other. In the case of Figure 6.1, the network demonstrates that both insomnia
and fatigue as well as fatigue and concentration predict each other. This does
not mean that knowing someone’s level of fatigue does not say anything about
that person’s concentration problems—because these nodes are connected via an
indirect path, they may correlate with each other—but merely that fatigue medi-
ates this predictive e↵ect. When someone’s level of fatigue is known, also knowing
that person’s level of insomnia does not add any predictive value to that person’s
ability to concentrate.

Third, the network structure found in a GGM can be interpreted as showing
genuine mutual causation between two nodes of the network—manipulating one
node can a↵ect the other and vise versa. Mathematically, the GGM can be shown
to have the same form as the Ising model (Ising, 1925) from statistical physics (see
Chapter 8), except that the Ising model only models binary data and therefore
has a di↵erent normalizing constant. This is because both models are part of a
class of models, called pairwise Markov random fields (Lauritzen, 1996; Murphy,
2012), which have been extensively used to model complex behavior in physical
systems. For example, the Ising model represents particles with nodes and the
distance between particles with edges. Particles, in essence very small magnets,
are then modeled to have their north pole face up or down. Particles tend to
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6. Discovering Psychological Dynamics

oriented themselves randomly at normal temperatures but align at low temper-
atures. Because particles tend to align at low temperatures, one particle being
aligned somehow causes an adjacent particle to align in that same way and vice
versa. These relationships are naturally symmetric (see Chapter 8). Applying the
analogy of the Ising model for particles to the GGM shown in Figure 6.1, we could
say that these symptoms tend to be in the same state (of alignment) if there is a
positive connection between them and if they tend to be in di↵erent states if there
is a negative connection. In this system, a person su↵ering from fatigue could also
su↵er from insomnia as well as concentration problems (van Borkulo et al., 2014).

Estimation

The maximum likelihood solution of KKK can readily be obtained by standardizing
the inverse sample variance–covariance matrix and by multiplying all o↵-diagonal
elements by −1. An interesting problem pertains to elements ofKKK which are close
to, but not exactly, zero. In the interest of parsimony, researchers may want to
remove these edges and obtain conditional independence with fewer parameters in
the model. One way to obtain this is to use the sampling distribution of the partial
correlation coefficients represented in KKK to test if edges are significantly di↵erent
from zero. The network can then be thresholded by removing the nonsignificant
edges (by fixing them at zero). Alternatively, lengthy model search algorithms
can be applied to iteratively add and remove edges. In recent literature, it has
become increasingly popular to use regularization techniques, such as penalized
MLE, to jointly estimate model structure and parameter values (van Borkulo et
al., 2014; see also Chapter 2). In particular, the least absolute shrinkage and
selection operator (LASSO; Tibshirani, 1996) has been shown to perform well in
quickly estimating model structure and parameter estimates of a sparse GGM
(Friedman et al., 2008; Meinshausen & Bühlmann, 2006; Yuan & Lin, 2007). A
particularly fast variant of LASSO is the graphical LASSO (glasso; Friedman et al.,
2008), which directly penalizes elements of the inverse variance–covariance matrix
(Witten, Friedman, & Simon, 2011; Yuan & Lin, 2007). In addition, glasso utilizes
a tuning parameter that controls the sparsity of the network: A sparse network
is one with few edges (i.e., KKK contains mostly zeros). The tuning parameter
can be chosen in a way that optimizes cross-validated prediction accuracy or that
minimizes information criteria such as the extended Bayesian information criterion
(EBIC; Chen & Chen, 2008). Estimating a GGM with the glasso algorithm in
combination with EBIC model selection has been shown to work well in retrieving
the true network structure (Foygel & Drton, 2010; see also Chapter 2) and is
currently the dominant method for estimating the GGM in psychological data
(see also Chapter 2 for an introduction to this methodology aimed at empirical
researchers).

Figure 6.2 shows an example of a GGM estimated using glasso in combina-
tion with EBIC model selection. This network was estimated on the bfi dataset
from the psych R package (Revelle, 2010). This dataset contains the responses
of 2,800 people on 25 items designed to measure the Big Five personality traits
(McCrae & Costa, 1997). The network shows many meaningful connections, such
as “make friends easily” being linked to “make people feel at ease,” “don’t talk
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E2: Find it difficult to approach others.
E3: Know how to captivate people.
E4: Make friends easily.
E5: Take charge.

Neuroticism
N1: Get angry easily.
N2: Get irritated easily.
N3: Have frequent mood swings.
N4: Often feel blue.
N5: Panic easily.
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O1: Am full of ideas.
O2: Avoid difficult reading material.
O3: Carry the conversation to a higher level.
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C2: Continue until everything is perfect.
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E1: Don't talk a lot.
E2: Find it difficult to approach others.
E3: Know how to captivate people.
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E5: Take charge.

Neuroticism
N1: Get angry easily.
N2: Get irritated easily.
N3: Have frequent mood swings.
N4: Often feel blue.
N5: Panic easily.

Openness
O1: Am full of ideas.
O2: Avoid difficult reading material.
O3: Carry the conversation to a higher level.
O4: Spend time reflecting on things.
O5: Will not probe deeply into a subject.

Figure 6.2: An example of a network model estimated on the BFI personality
dataset from the psych package in R (cross-sectional data, N = 2,800). Nodes
represent variables (in this case personality inventory items) and edges between
the nodes represent partial correlation coefficients. The network was estimated
using the glasso in combination with EBIC model selection, using the EBICglasso
function in the qgraph package.

a lot” being linked to “find it difficult to approach others,” and “carry the con-
versation to a higher level” being linked to “know how to captivate people.” For
a detailed discussion on the interpretation of such models in personality research
(see Chapter 10).

The GGM can be estimated by inverting and standardizing the sample variance–
covariance matrix, which can be done in the open-source statistical programming
language R (R Core Team, 2016) by using the corpcor (Schäfer et al., 2015) or
qgraph (Epskamp et al., 2012) R package. The qgraph package also supports
thresholding via significance testing or false discovery rates. The glasso algorithm
is implemented in the packages glasso (Friedman et al., 2014) and huge (Zhao et
al., 2015). The huge package also allows for selection of the tuning parameter
using cross-validation or EBIC. The EBIC-based tuning parameter selection with
the glasso package, using only a variance–covariance matrix as input, has been
implemented in the qgraph package. The parcor package (Krämer et al., 2009)
implements other LASSO variants for estimating the GGM. Finally, fitting an es-
timated GGM to data can be done in the R packages ggm (Marchetti, Drton, &
Sadeghi, 2015) and lvnet (see Chapter 7).
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6.4 When Cases Are Not Independent: n = 1

Di↵erent kinds of data in psychology occur when only one subject is measured
several times. The likelihood is fully characterized by the likelihood of the single
subject:

f(yyy | ⇠⇠⇠) = f(yyy(1) | ⇠⇠⇠).

We need to characterize f(yyy(p) | ⇠⇠⇠). In repeated measures of psychological con-
structs—assuming a reasonably short interval between consecutive measurements
is typical in ESM studies—we cannot reasonably assume that cases are indepen-
dent. For example, suppose we measured Peter multiple times on his level of
fatigue, measured on a scale from 1 (not at all fatigued) to 10 (extremely fa-
tigued). Suppose we know Peter has an average fatigue level of 5 with a standard
deviation of 1. Knowing that Peter scored a 2 at some time point, we can make a
better prediction regarding the level of Peter’s fatigue at the next time point (it is
probably still low a few hours later) than if we only knew his mean and standard
deviation, which would predict this level most likely to be somewhere between 3
and 7. This is because someone’s fatigue, like most psychological and physiological
states, is likely to show some stability over a time interval of several hours.

It is important to note that f (yyy | ⇠⇠⇠) cannot be computed by multiplying the
marginal likelihoods of every response. Instead, we now need to express the full
joint likelihood. When we drop superscript (1) denoting the single subject, this
becomes

f (yyy | ⇠⇠⇠) = f
⇣

yyyT | yyy
1

, . . . , yyyT
p

−1

, ⇠⇠⇠
⌘

· · · f (yyy
3

| yyy
1

, yyy
2

, ⇠⇠⇠) f (yyy
2

| yyy
1

, ⇠⇠⇠) f (yyy
1

| ⇠⇠⇠) .

The model above, although fully characterizing the joint likelihood, is not es-
timable without stringent assumptions, so we make the following assumptions.

1. The joint probability distribution can be factorized according to a graph.

2. The conditional probability distributions are stable and independent of t.

3. The first measurements are treated as exogenous and not modeled.

4. The conditional distributions are multivariate normal.

The first assumption is that the time series follows some graph structure such
that the factorization of the joint probability distribution can be made easier.
Figure 6.3 shows three such potential graph structures. The first panel shows the
Lag 0 factorization, in which each observation is assumed to be independent of
others. As described above, although this is a sparse representation, the Lag 0
model is not plausible in most time-series psychological datasets. As such, we could
use the graph factorization of the second panel of Figure 6.3 instead, denoting the
Lag 1 factorization

f (yyy | ⇠⇠⇠) = f
⇣

yyyT | yyyT
p

−1

, ⇠⇠⇠
⌘

· · · f (yyy
2

| yyy
1

, ⇠⇠⇠) f (yyy
1

| ⇠⇠⇠) .

This is a powerful factorization because it does not assume that measurement
are independent of one another. For example, the Lag 1 factorization does not
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Figure 6.3: Here are three possible graph factorizations of the within-subject like-
lihood of subject p. Each node represents a vector of measurements at some time
point. The top panel shows the Lag 0 factorization, indicating that cases are inde-
pendent. Because this is usually not a plausible assumption in psychology, we can
instead use another factorization. The middle panel shows the Lag 1 factorization,
indicating that cases are independent given only the previous case. The bottom
panel shows the Lag 2 factorization, indicating that cases are independent given
the past two cases.
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assume there are no Lag 2 correlations—correlations between yyyt−2

and yyyt for
any t—but instead that these Lag 2 correlations can fully be explained by the
Lag 1 interactions, yyyt−2

?? yyyt | yyyt−1

for all t. However, more flexible models
can be specified as well, such as the Lag 2 model shown in the last panel of
Figure 6.3. Because the number of observations in ESM studies is often relatively
low (people cannot be expected to fill out tens of questionnaires daily over the
course of several days), adding complexity to the model requires more observations
to reliably estimate parameter values. Therefore, we will only describe the Lag 1
factorization in the remainder of this chapter because this factorization is the
simplest that also controls for the most obvious violations of independence between
consecutive cases.

The second assumption is that the conditional probability distributions do
not depend on t and are thus stable over time. This is called the assumption
of stationarity. Using this assumption, the time series of a single subject now
features multiple observations of the same relationship (e.g., the Lag 1 relation-
ship), making the model estimable. Combining this with the third assumption of
first measurements being treated as exogenous, and thereby not modeled, renders
the probability distribution simple and straightforward. For example, the Lag 1
factorization then becomes

f (yyy | yyy
1

, ⇠⇠⇠)
lag−1

=
Y

t

f
�

yyyt | yyyt−1

, ⇠⇠⇠
�

.

The assumption of stationarity is not trivial because people can develop over time.
In a typical ESM study, data are gathered in a relatively short time span (e.g.,
a few weeks). Assuming a person stays relatively stable in such a short interval
is much more plausible. It is therefore important to note that the assumption of
stability does not assume a person never changes, merely that the person’s scores
are distributed similarly in a relatively short time span (Fleeson, 2001).

Finally, we assume that these conditional distributions are multivariate normal.
Using the Schur complement, these distributions can be shown to be equivalent to
a linear regression model with correlated multivariate normal residuals. We can,
without loss of information, center the lagged predictors such that we obtain

YYY t | yyyt−1

⇠ N
�

µµµ+BBB
�

yyyt−1

−µµµ
�

,⇥⇥⇥
�

,

in which BBB denotes an I⇥I matrix of temporal e↵ects, µµµ denotes the I length vec-
tor of stationary means, and ⇥⇥⇥ denotes the I ⇥ I variance–covariance matrix con-
ditional on the previous time point, which we will term contemporaneous e↵ects.
This model is also known as the VAR because it can be seen as a multivariate multi-
ple regression on the previous time point. VAR has become popular in psychology

because BBB encodes temporal prediction: Element β
(p)
ij being nonzero means that

Yti is predicted by Yt−1,j . Such a temporal prediction is termed Granger causality
in the economic literature (Eichler, 2007; Granger, 1969) because it satisfies at
least the temporal requirement for causation (i.e., cause must precede the e↵ect).

This model implies a stationary distribution of cases:

yyyt ⇠ N (µµµ,⌃⌃⌃) ,
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0.1

−0.25

Exercising

Energetic

Temporal network

0.3

Exercising

Energetic

Contemporaneous network

Figure 6.4: A hypothetical example of two network structures obtained from a
vector-autoregression model. The network on the left indicates the temporal net-
work, demonstrating that a variable predicts another variable at the next time
point. The network on the right indicates the contemporaneous network, demon-
strating that two variables predict each other in the same time point.

in which ⌃⌃⌃ can be obtained fromBBB and⇥⇥⇥, making use of the vectorization operator
Vec and the Kronecker product ⌦:

Vec (⌃⌃⌃) = (III −BBB ⌦BBB)
−1

Vec (⇥⇥⇥) . (6.3)

A proof of Equation (6.3) is beyond the scope of this chapter and can be requested
from the author. It is important to note that in addition to the estimation of
temporal e↵ects, the VAR model can be used to obtain the GGM (the inverse of
the variance–covariance matrix described above) for nonindependent cases. We
can further note that if cases are independent, BBB = OOO and subsequently ⌃⌃⌃ = ⇥⇥⇥.
Thus, the GGM is a special case of the VAR model. This leads to a strikingly
di↵erent interpretation of the VAR model; the VAR model can be seen as an
inclusion of temporal e↵ects on a GGM.

Contemporaneous Causation

In order to disentangle the temporal and contemporaneous relationship, it is best
not to combine them into a single GGM model but rather to investigate them
separately. Following Wild et al. (2010), the inverse of ⇥⇥⇥ can be standardized to a
GGM model encoding residual partial correlation coefficients, which can be drawn
in a network model. As a result, the VAR model returns two network models: the
temporal network, a directed network indicating temporal prediction or Granger
causality, and the contemporaneous network, a partial-correlation network of ef-
fects in the same window of measurement. Both network structures can highlight
potential causal pathways. In psychology, there will likely be many causal rela-
tionships that occur much faster than the lag interval in a typical ESM study;
in which case, these pathways will be captured in the contemporaneous network.
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For example, if someone is experiencing bodily discomfort, that will immediately
negatively a↵ect that person’s ability to enjoy him or herself.

Figure 6.4 shows a hypothetical example of the two network structures ob-
tained in a VAR analysis. The left panel shows the temporal network (a graphical
representation of BBB). This network shows that whenever the subject in question
felt energetic (or tired) this person also felt more (or less) energetic in the next
measurement. The temporal network also shows us that after exercising, this per-
son felt less energetic as well. The contemporaneous network in the right panel
(a graphical representation of the GGM based on ⇥⇥⇥) shows a plausible reverse
relationship: Whenever this person exercised, he or she felt more energetic in the
same measurement occasion.

Estimation

We can estimate the VAR model by specifying it as a regression model. Without
the loss of information, we can center the variables to have a mean of zero. The
corresponding multivariate regression model then becomes

yyyt = BBByyyt−1

+ """t

"""t ⇠ N(000,⇥⇥⇥).

Alternatively, the VAR model can be estimated in steps using separate univariate
models for every variable:

yti = βββiyyyt−1

+ "ti

"ti ⇠ N(0,
p

✓ii),

in which βββi denotes the ith row of BBB. Figure 6.5 shows the di↵erence between
univariate and multivariate estimation. In univariate estimation, every model
contains a di↵erent subset of the parameters of interest. In addition, the contem-
poraneous covariance ✓

12

is not obtained in any of the models and needs to be
estimated post hoc by correlating the residuals of both regression models.

Abegaz and Wit (2013) proposed to apply LASSO estimation of BBB and ⇥⇥⇥ us-
ing the multivariate regression with the covariance estimation (MRCE) algorithm
described by Rothman et al. (2010). MRCE involves iteratively optimizing BBB
using cyclical-coordinate descent and KKK using the glasso algorithm (Friedman et
al., 2008, 2014). EBIC model selection can be used to obtain the best performing
model. This methodology has been implemented in two open source R packages:
sparseTSCGM (Abegaz & Wit, 2015), which aims to estimate the model on re-
peated multivariate genetic data, and graphicalVAR (Epskamp, 2015), which was
designed to estimate the model on the psychological data of a single subject. The
graphicalVAR package also allows for unregularized multivariate estimation.

6.5 When Cases Are Not Independent: n > 1

When multiple subjects are measured, we need to characterize the likelihood for
every subject. Using the assumptions described above, we can model the time

98



6.5. When Cases Are Not Independent: n > 1

β11

β21
β12

β22

θ12

θ11 θ22

Y1 Y2

ε1 ε2

(a) Multivariate estimation

β11

β21
β12

β22

θ12

θ11 θ22

Y1 Y2

ε1 ε2

(b) Univariate estimation

β11

β21
β12

β22

θ12

θ11 θ22

Y1 Y2

ε1 ε2

(c) Univariate estimation

Figure 6.5: A multivariate and univariate estimation of a VAR model with two ob-
served variables. Intercepts are not shown to improve clarity. Panel A shows that
in multivariate estimation, the entire model is estimated at once whereas Panels
B and C show that in sequential estimation two separate models are estimated.

series of each subject with a subject-specific VAR model:

yyy
(p)
t | yyy(p)t−1

⇠ N
⇣

µµµ(p) +BBB(p)
⇣

yyy
(p)
t−1

−µµµ(p)
⌘

,⇥⇥⇥(p)
⌘

.

Often, however, researchers are not interested in the dynamics of a single partic-
ipant but rather in the generalizability of dynamics over multiple subjects. To
this end, researchers may want to estimate the average e↵ects and interindividual
di↵erences of such intraindividual dynamics. We can model these by using the
language of multilevel modeling (Bringmann et al., 2013). For each parameter,
we denote the average e↵ect as the fixed e↵ects, fff , and the person-level deviance
from this mean as the random e↵ects, RRR(p), with the realization rrr(p). Using this
notation, the parameter vector of a single subject becomes
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,

in which Vec stacks the columns of a matrix, and Vech does the same but only
takes the upper-triangular elements including the diagonal. The random e↵ects
are centered on zero:

E

0

@

2

4

RRRµµµ

RRRBBB

RRR
⇥

⇥

⇥

3

5

1

A = 000,

such that the fixed e↵ects reflect the population means of the parameters. The
variance of the random e↵ects can be interpreted as the individual di↵erences.

The fixed e↵ects and random e↵ect variances and covariances can be estimated
by estimating a VAR model for every subject, pooling the parameter estimates,
and computing the mean (fixed e↵ects) and variance–covariance matrix (random
e↵ects distribution). This estimation, however, is separate for every subject. To
combine all observations in a single model, we can assign distributions over the
parameters; in which case, we make use of multilevel modeling. Assigning distri-
butions has two main benefits. First, instead of having a single parameter per
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subject, we now only need to estimate the parameters of the distribution. For
example, when we model observations from 100 subjects, instead of estimating
each parameter 100 times, we now only need to estimate its mean and variance.
Second, the multilevel structure acts as a prior distribution in Bayesian estimation
procedures—in case we wish to obtain person-specific parameter estimates post
hoc. In particular, multilevel modeling leads to shrinkage; parameter values that
are very di↵erent from the fixed e↵ects are likely to be estimated closer to the fixed
e↵ect in multilevel modeling than when using a separate model for every subject.
For example, if we estimate a certain temporal regression in five people and find
the values 1.1, 0.9, 0.7, 1.3, and 10, it is likely that the fifth statistic, 10, is an
outlier. Ideally, we would estimate this value to be closer to the other values.

Modeling and estimating a random distribution for the contemporaneous var-
iance–covariance matrix is still a topic for future research and not readily im-
plemented in open-source software. This is mainly because these matrices must
be positive definite. We cannot simply assign normal distributions to elements of
the contemporaneous (partial) variance–covariance matrix because doing so might
lead to nonzero probability of matrices that are not positive definite. Therefore,
we do not define this distribution here and merely state that there is some pop-
ulation mean for its elements, fff

⇥

⇥

⇥

. We assume the means and lagged regression
parameters to be normally distributed:



RRRµµµ

RRRBBB

�

⇠ N

✓

000,



⌦⌦⌦µµµ ⌦⌦⌦µµµBBB

⌦⌦⌦BBBµµµ ⌦⌦⌦BBB

�◆

.

To summarize, the multilevel VAR model makes use of the following parameters
for all subjects:

• fffBBB : The average within-person temporal relationships between consecutive
time points.

• fff
⇥

⇥

⇥

: The average within-person contemporaneous relationships.

• ⌦⌦⌦µµµ: The between-person relationships between observed variables.

• ⌦⌦⌦µµµBBB and ⌦⌦⌦BBB : Individual di↵erences between the temporal relationships
and other temporal relationships or the means. Of particular interest is
p

Diag (⌦⌦⌦BBB), which shows the individual di↵erences of each temporal rela-
tionship (Bringmann et al., 2013).

For any researcher interested in investigating results of particular subjects, the
subject-specific structures are also of interest:

• µµµ(p): The stationary means of subject p.

• BBB(p): The within-person temporal relationships of subject p.

• ⇥⇥⇥(p): The within-person contemporaneous relationships of subject p.
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A New Look at Cross-Sectional Analysis

Such variance decomposition exposes a major limitation of cross-sectional analyses.
In cross-sectional data, each subject is only measured once: T

1

= T
2

= . . . = TP =
1. This can be seen as a special case of the multilevel VAR model in which the
Lag 0 factorization is used to model the single response of a subject. This single
response can then be written as the stationary mean of person p and the deviation
from that mean:

yyy
(p)
1

= µµµ(p) + """
(p)
1

"""
(p)
1

⇠ N(000,⇥⇥⇥(p)).

It is immediately clear that ⇥⇥⇥(p) cannot be estimated from a single set of responses.
Moreover, even if we assume that within-person contemporaneous e↵ects are equal
across people and drop the superscript (p), this still leaves us without an estimable
model because RRRµµµ is also assumed to be normally distributed. Therefore, we get

"""
(p)
1

⇠ N(000,⇥⇥⇥)

RRRµµµ ⇠ N(000,⌦⌦⌦µµµ).

In no way do we know if deviations from the grand mean are due to the within-
person variance in⇥⇥⇥ or the between-person variance in ⌦⌦⌦µµµ. Thus, in cross-sectional
analysis, within- and between-subject variances are not distinguishable. We can
estimate ⇥⇥⇥ by assuming ⌦⌦⌦µµµ = OOO, or we can estimate ⌦⌦⌦µµµ by assuming ⇥⇥⇥ = OOO.
Both assumptions lead to the exact same estimates. This does not mean that
cross-sectional analysis is unusable by default because the obtained structure can
highlight potential causal relationships between variables; however, it cannot dis-
entangle between-subject relationships from short-term, within-subject relation-
ships (Hamaker, 2012).

Between-Subjects Causation

The variance–covariance matrix ⌦⌦⌦µµµ encodes how variables relate to one another
across subjects and can be modeled using a GGM network of partial correlation
coefficients. As such, the multilevel VAR model returns three types of network
structures describing relationships between observed variables. In addition to the
temporal and contemporaneous network fixed e↵ects (the average temporal and
contemporaneous network) and random e↵ects (the personal deviations from these
averages), the multilevel VAR model also returns a between-subjects network—the
network structure between stationary means of subjects based on ⌦⌦⌦µµµ.

Hamaker (2012) described an example of how within- and between-person ef-
fects can strongly di↵er from each other. Suppose we let people write several
texts, and we measure the number of spelling errors they made and the number
of words per minute they typed (typing speed). We would expect the seemingly
paradoxical three network structures shown in Figure 6.6. First, we would not
expect the temporal network to show any relationships. There is no logical reason
to assume that observing someone type a text faster than his or her average has
any influence on the number of spelling errors in the next text. Second, we expect
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Figure 6.6: A hypothetical example three network structures obtained from a mul-
tilevel vector-autoregression model. The network on the left indicates the temporal
network, showing that a variable predicts another variable at the next time point.
The network in the middle indicates the contemporaneous network, showing that
personal deviations from the means predict each other at the same time point.
Finally, the network on the right indicates the between-subjects network, showing
how the means of di↵erent subjects relate to one another

a positive relationship in the contemporaneous network. When a person types
faster than his or her average typing speed, that person will make more spelling
errors. Finally, we expect a negative relationship in the between-person network
(e.g., people who type fast, on average, generally make fewer spelling errors). This
is because people who type fast, on average, are likely to be more skilled in writ-
ing (e.g., a court room stenographer) and therefore are less likely to make a lot of
spelling errors, compared to someone who types infrequently.

The di↵erent ways of thinking about the e↵ects of manipulations in time-series
models can be organized in terms of recently developed interventionist accounts
of causation (Woodward, 2005). According to Woodward, causation is fleshed
out in terms of interventions: X is a cause of Y if an intervention (natural or
experimental) on X would lead to a change in Y . Statistically, the interventionist
account is compatible with, for example, Pearl’s (2000) semantics in terms of a “do-
operator.” Here, an intervention onX is represented as Do (X = x), and the causal
e↵ect on Y is formally expressed as E (Y | Do (X = x)). Pearl distinguished this
from the classical statistical association, in which no intervention is present, and we
get the ordinary regression E (Y | See (X = x)). This is a useful notation because
it immediately raises the important point that there is a di↵erence between doing
and seeing, which of course parallels the classic distinction between experimental
and correlational research (Cronbach & Meehl, 1955).

Cashing out causal e↵ects in terms of interventions is useful to get a grip on
the causal information in the di↵erent GGMs defined in this chapter. In a time-
series model, interventions on variables can be conceptualized in di↵erent ways.
In particular, consider the intervention Do (X = x). We can think of this in terms
of a random shock to the system, which sets X to value x on a particular time
point and evaluates the e↵ect on another variable Y on the next time point (or
series of time points as in continuous time models). If we want to gauge this
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type of causal relationship, we may look at the within-subjects VAR model. To
take Hamaker’s (2014) example, say we want to know what would happen to the
number of typing errors: If a researcher forced a given person to type very fast,
that researcher would need to evaluate the within-person data, which would show
a negative association between typing speed and typing errors. Between-subject
data would be misleading because individual di↵erences would probably yield a
positive correlation between speed and accuracy—faster typists are likely to be
more accurate typists.

However, we can also think of a manipulation that sets X to value x in a
di↵erent way, for instance, by inducing a long-term change in the system that
leads it to converge on X = x in expectation. To evaluate the e↵ect of this type
of intervention, we should consider the behavior of the system on the changes
of the intercept of X. Clearly, in order to evaluate this type of intervention,
the within-subject time-series model is useless (as per stationarity). However,
the between-subjects model may contain important clues because it contains the
relationships between the long-term averages across people. Thus, if we want to
gauge the e↵ect of a long-term change (most plausibly conceptualized as a change
in intercept), the between-subjects model is a better guide. In terms of Hamaker’s
(2014) example, if we are interested in the e↵ect of changing someone’s typing
speed structurally (e.g., by training a person systematically), our preferred source
of causal information would likely lie in the between-subjects model because the
parameters of the within-subjects model would undoubtedly lead to the wrong
conclusion.

Estimation

A straightforward technique is to estimate separate VAR models for each subject.
Afterwards, fixed e↵ects (i.e., average e↵ects in the population) can be estimated
by pooling the parameters and averaging them. This estimation technique is rela-
tively fast even for large models, but it requires a high number of observations per
person. As described above, an alternative is to use multilevel modeling (Hamaker,
2012). The benefit of the latter approach is that instead of estimating the VAR
model in each subject, only the fixed e↵ects and variance–covariance of the random
e↵ects need to be estimated. This can be done by integrating over the distribu-
tion of the random e↵ects or by specifying the model using hierarchical Bayesian
Monte-Carlo sampling methods (Gelman & Hill, 2006; Schuurman, Grasman, &
Hamaker, 2016). Here, we propose a novel two-step, multilevel estimation pro-
cedure that estimates the fixed e↵ects for the temporal, between-subjects, and
contemporaneous networks as well as the random e↵ects for the temporal and
contemporaneous networks. The contemporaneous networks are estimated in a
second step, by analyzing the residuals of the first step.

Temporal network. Although multivariate multilevel estimation is possible in
theory, it is computationally expensive in practice. For example, when we want
to explore potential dynamics in medium-sized ESM datasets on around 10 to
20 variables, multivariate multilevel estimation becomes very slow in both MLE
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and Bayesian estimation. Therefore, we only describe univariate estimation pro-
cedures (Bringmann et al., 2013). Because the joint conditional distribution of

yyy
(p)
t | yyy(p)t−1

is normal, it follows that the marginal distribution of every variable is
univariate normal and can be obtained by dropping all other parameters from the
distribution:

y
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in which βββi indicates the row vector of the ith row of BBB(p). When drawn as a
temporal network, the edges point to node i. Many software packages do not
allow the estimation of µµµ(p) as described above. In this case, the sample means of
every subject, ȳyy(p), can be taken as a substitute for µµµ(p) (Hamaker & Grasman,
2014). The model then becomes a univariate multilevel regression model with
within-subject centered predictors, estimable by functions such as the lmer in
lme4 (Bates, Mächler, Bolker, & Walker, 2015). The Level 1 model becomes
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Estimation of such univariate models only requires the numeric approximation
of an I + 1 dimensional integral, which is much easier to compute. Therefore,
sequential estimation using univariate models have been used in estimating mul-
tilevel VAR models (Bringmann et al., 2013). A downside, however, is that not
all parameters are included in the model. In particular, o↵-diagonal elements of
⇥⇥⇥(p) and ⌦⌦⌦µµµ as well as certain elements of ⌦⌦⌦µµµBBB and ⌦⌦⌦BBB are not obtained. A
second downside is that estimating correlated random e↵ects does not work well
for models with many predictors. In particular, lmer becomes very slow with ap-
proximately more than eight predictors. As such, networks with more than eight
nodes are hard to estimate. To estimate larger networks (e.g., 20 nodes), we can
choose to estimate uncorrelated random e↵ects, which we term orthogonal estima-
tion. The performance of orthogonal estimation, although the random e↵ects are
in reality correlated, is assessed in the simulation study below.

Between-subjects network. To obtain estimates of between-subject e↵ects,
Hamaker and Grasman (2014) suggest that the sample means of every subject,
ȳyy(p) in Equation (6.4), can be included as predictors at the subject level. With
this extension, the Level 2 model for the person-specific mean of the ith variable
now becomes

µ
(p)
i = fµ

i

+ γγγµ,iȳyy
(p)
−(i) + r(p)µ

i

, (6.6)
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in which we use γγγµ,i to denote the ith row (without the diagonal element i) of a I⇥I

matrix ΓΓΓµ, and ȳyy
(p)
−(i) denotes the vector ȳyy

(p) without the i-th element. Because ȳ
(p)
i

is itself an estimate of µ
(p)
i , Equation (6.6) seems to take the form of Equation (6.1).

As such, these estimates can be used, as seen in Equation (6.2), to estimate a
GGM between the means (Lauritzen, 1996; Meinshausen & Bühlmann, 2006)—
the between-subjects network. Due to the estimation in a multilevel framework,
the resulting matrix will not be perfectly symmetric and must be made symmetric
by averaging lower and upper triangular elements. Thus, each edge (i.e., partial
correlation) in the between-subjects network is estimated by standardizing and
averaging two regression parameters: the parameter denoting how well mean A
predicts mean B and the regression parameter denoting how well mean B predicts
mean A.

Contemporaneous network. An estimate for contemporaneous networks can
be obtained in a second step by investigating the residuals of the multilevel model
that estimate the temporal and between-subject e↵ects. These residuals can be
used to run multilevel models that predict the residuals of one variable from the
residuals of other variables at the same time point. Let "̂ti

(p) denote the estimated

residual of variable i at time point t of person p, and let "̂""
(p)
t,−(i) denote the vector of

residuals of all other variables at this time point. The Level 1 model then becomes
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in which γγγ
(p)
",i represents the i-th row (without the diagonal element i) of a I ⇥ I

matrix, ΓΓΓ(p)
µ , ⌧

(p)
i represents some intercept, and ⇣

(p)
ti represents a residual. In the

Level 2 model, we again assign a multivariate normal distribution to parameters

⌧
(p)
i and γγγ

(p)
",i . It can be seen that Equation (6.7) also takes the form of Equa-

tion (6.1). Thus, this model can again be seen as the node-wise GGM estimation
procedure. Estimates of both the person-specific and fixed-e↵ects contemporane-
ous networks can be obtained by using Equation (6.2), where again the matrices
need to be made symmetric by averaging upper and lower triangle elements. As
with the temporal network, orthogonal estimation can be used when the number
of variables is large (i.e., larger than approximately eight).

Thresholding. After estimating network structures, researchers may be inter-
ested in removing edges that may be spurious and due to sampling error. By
setting edge weights to zero, e↵ectively removing edges from a network, a sparse
network is obtained that is more easily interpretable. One method of doing so is by
removing all edges that are not significantly di↵erent from zero. For fixed e↵ects,
multilevel software returns standard errors and p values, allowing this thresholding
to be done. For the temporal networks, each edge is represented by one parameter
and thus by one p value. The contemporaneous and between-subjects networks,
however, are a function of two parameters that are standardized and averaged:
a regression parameter for the multiple regression model of the first node and a
regression parameter for the multiple regression model of the second node. As
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such, for every edge, two p values are obtained. We can choose to retain edges
of which at least one of the two p values is significant, termed the OR-rule, or
we can choose to retain edges in which both p values are significant, termed the
AND-rule (Barber, Drton, & Others, 2015).

Summary. In sum, the above described two-step estimation method proposes
to estimate a multilevel model per variable, using within-person centered lagged
variables as within-subject predictors and the sample means as between-subject
predictors. These models can be used to obtain estimates for the temporal network
and between-subjects network. In a second step, the contemporaneous networks
can be estimated by estimating a second multilevel on the residuals of the first
multilevel model. The mlVAR R package implements these methods (Epskamp,
Deserno, & Bringmann, 2016). In this package, temporal coefficients can be es-
timated as being “unique” per subject (unique VAR models per subject), “corre-
lated” (estimating correlations between temporal e↵ects), “orthogonal” (assuming
temporal e↵ects are not correlated), or “fixed” (no multilevel structure on temporal
e↵ects). The contemporaneous e↵ects can also be estimated as being “unique” (all
residuals are used to obtain one GGM), “correlated” (second step multilevel model
with correlated random e↵ects), “orthogonal” (second step multilevel model with
uncorrelated random e↵ects), or “unique” (residuals are used to obtain a GGM
per subject). The mlVAR package can also be used to plot the estimated networks,
in which significance thresholding is used by default with a significance level of
↵ = 0.05.

6.6 Empirical Example

To provide an empirical example of the multilevel VAR methods described above,
we reanalyzed the data of Mõttus et al. (2016). This data consists of two inde-
pendent ESM samples, in which items tapping three of the five Five-Factor Model
(McCrae & John, 1992) domains (neuroticism, extraversion, and conscientious-
ness) were administered as was an additional question that asked participants
how much they had exercised since the preceding measurement occasion. Sam-
ple 1 consisted of 26 people providing 1,323 observations in total, and Sample 2
consisted of 62 people providing a total of 2,193 observations. Participants in
Sample 1 answered questions three times per day whereas participants in Sam-
ple 2 answered questions five times per day. In both samples, the minimum time
between measurements was 2 hr. For more information about the samples and
the specific questions asked, we refer readers to Mõttus et al. (2016).

To obtain an easier and more interpretable example, we first only analyzed
questions aimed to measure the extraversion trait and the question measuring
exercise. This lead to five variables of interest: questions pertaining to feeling
outgoing, energetic, adventurous, or happy and the question measuring partici-
pants’ exercise habits. We analyzed the data using the mlVAR package. Because
the number of variables was small, we estimated the model using correlated tem-
poral and contemporaneous random e↵ects. We ran the model separately for both
samples and computed the fixed e↵ects for the temporal, contemporaneous, and
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between-subjects networks. Correlations of the edge weights indicated that all
three networks showed high correspondence between the two samples (temporal
network: 0.82, contemporaneous network: 0.94, between-subjects network: 0.70).
Owing to the degree of replicability, we combined the two samples and estimated
the model on the combined data.

Figure 6.7 shows the estimated fixed e↵ects of the temporal, contemporaneous,
and between-subjects network. In these figures, only significant edges (↵ = 0.05)
are shown. In the contemporaneous and between-subjects networks, an edge was
retained if one of the two regressions on which the partial correlation is based
was significant (the so-called OR-rule; van Borkulo et al., 2014). These results
are in line with the hypothetical example shown in Figure 6.4: People who ex-
ercised were more energetic while exercising and less energetic after exercising.
In the between-subjects network, no relationship between exercising and energy
was found. The between-subjects network, however, showed a strong relationship
between feeling adventurous and exercising: People who, on average, exercised
more also felt, on average, more adventurous. This relationship was not present
in the temporal network and much weaker in the contemporaneous network. Also
noteworthy is that people were less outgoing after exercising. Figure 6.8 shows
the standard deviation of the random e↵ects in the temporal and contemporane-
ous networks. Although not many di↵erences can be detected in the temporal
network, the contemporaneous network shows strong di↵erences: People mostly
di↵ered in their relationship between exercising and feeling energetic.

In addition to using only the extraversion and exercise items, we also ran the
model on all 17 administered items in the dataset. In this instance, we used or-
thogonal random e↵ects to estimate the model. Figure 6.9 shows the estimated
fixed e↵ects of the three network structures. It can be seen that indicators of the
three traits tend to cluster together in all three networks. Regarding the node
exercise, we found the same relationships between exercise, energetic, and adven-
turous (also found in the previous example) in the larger networks. Furthermore,
we noted that exercising was connected to feeling angry in the between-subjects
network but not in the other networks. Finally, there was a between-subjects con-
nection between exercising and feeling self-disciplined: People who, on average,
exercised more also felt, on average, more self-disciplined.

6.7 Simulation Study

In this section, we present a simulation study to assess the performance of ml-
VAR and the above-described methods for estimating network structures on ESM
data of multiple subjects. Simulation studies on the described methods for cross-
sectional and n = 1 studies are available elsewhere (Abegaz & Wit, 2013; Foygel
& Drton, 2010; see also Chapter 2). For this study, we simulated datasets of
10 variables, in which the fixed-e↵ect temporal, contemporaneous, and between-
subjects networks were simulated to be 50% sparse (i.e., containing only half the
possible edges). A more detailed description of how the models were simulated
can be read in the Appendix. We varied the number of subjects (50, 100, and 250)
and the number of measurements per subject (25, 50, 75, and 100) and replicated
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Figure 6.8: The networks showing the standard deviation of random e↵ects in the
temporal and contemporaneous networks. Due to scale di↵erences, networks are
plotted using di↵erent maximum values.

each condition 100 times. This led to a total number of 1,200 simulated datasets.
In each dataset, we estimated a multilevel VAR model using orthogonal random
e↵ects.

In order to assess how well the estimated networks resemble the true networks,
we computed for each dataset the correlations between true and estimated fixed
temporal, contemporaneous, and between-subjects networks and the correlations
between true and estimated random e↵ects of the temporal and contemporaneous
networks—because the between-subjects network does not have random e↵ects.
In addition, we assessed the performance of using significance in thresholding the
network. We used the OR-rule in thresholding the fixed-e↵ects contemporaneous
and between-subjects network and removed in all the networks all edges not sig-
nificant at ↵ = 0.05. In line with other studies on assessing how well a method
retrieves the structure of a network (e.g., van Borkulo et al., 2014), we computed
the sensitivity and specificity. The sensitivity (also termed true positive rate) is
high when the method retains edges that are in the true network, and the speci-
ficity (also termed true negative rate) is high when the method does not retain
edges that are not in the true model (i.e., models without edges that are, in reality,
zero).

Figure 6.10 shows the results of the simulation study. It can be seen that per-
formance was generally good. Fixed e↵ects of the temporal and contemporaneous
networks were well estimated (high correlations), most edges in the true network
were detected (high sensitivity), and few edges were detected to be nonzero that
were, in truth, zero (high specificity). Random-e↵ect estimation was poorer but
steeply increased with more measurements per subject. The between-subjects net-
work was better estimated with more people. At low sample-sizes, the method
lacked power to detect true edges (low sensitivity) but did not estimate false edges
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Figure 6.9: The estimated fixed e↵ects of the three network structures based
on all 17 variables administered. Only significant edges are shown. Legend: 1 =
“Worried”; 2 = “Organized”; 3 = “Ambitious”; 4 = “Depressed”; 5 = “Outgoing”;
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10 = “Focused”; 11 = “Guilty”; 12 = “Adventurous”; 13 = “Happy”; 14 =
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Figure 6.10: Here are the results of the simulation study. Boxplots indicate the
distribution of the measures over all the 100 simulated datasets per condition.
From left to right is shown: the correlation between true and estimated fixed
e↵ects, the sensitivity (i.e., the ability to detect true edges), the specificity (i.e.,
the ability to remove false edges), and the correlation between true and estimated
random e↵ects.

(high specificity).

6.8 Conclusion

In this chapter, we presented an overview of statistical methods that estimate
network models—both cross-sectional and time-series—of multivariate Gaussian
data. In our cross-sectional data analysis, we described the GGM, which takes the
form of a network of partial correlation coefficients. In time-series data, we de-
scribed that two network structures can be obtained: a temporal network, which is
a directed network of regression coefficients between lagged and current variables,
and a contemporaneous network, which is a GGM describing the relationships that
remain after controlling for temporal e↵ects. We argued that both can generate
causal hypotheses. When multiple subjects were measured, the natural combina-
tion of cross-sectional and time-series data came by adding a third network struc-
ture: the between-subjects network, which is a GGM that describes relationships
between the stationary means of people. We argued that this network can also
show potential causal relationships but in a di↵erent way than the temporal and
contemporaneous networks. We proposed a two-step, multilevel estimation pro-
cedure to estimate temporal, contemporaneous, and between-subjects networks,
which we implemented in the open-source R package, mlVAR. We presented a
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simulation study showing that mlVAR closely estimates the true network struc-
ture and presented an empirical example showcasing the three network structures
described above.

The outlined methodology in this chapter is not the only possible methodol-
ogy for obtaining network structures from multivariate Gaussian data. A detailed
description of these methods was beyond the scope of this chapter, as this chap-
ter focussed on the GGM and its natural generalizations in time-series data. In
particular, much work has been done on the estimation of directed acyclic graphs
(DAG; Kalisch & Bühlmann, 2007; Pearl, 2000) which aim to model causal ef-
fects. When cases can be assumed to be independent, such DAGs can be fitted in
standard structural equation (SEM) modeling software (see Chapter 7). Several
software packages exist that aim to find such a DAG (e.g., pcalg, Kalisch et al.,
2012; bnlearn, Scutari, 2010; BDgraph, Mohammadi & Wit, 2015). In time-series
data, one can use structural VAR (Chen et al., 2011; also termed unified SEM,
Gates, Molenaar, Hillary, Ram, & Rovine, 2010) to fit contemporaneous e↵ects in
a directed network. Structural VAR can be shown to be equivalent to the VAR
model discussed in this chapter, and can under strict assumptions be interpreted
as a causal model. A promising estimation procedure to estimate such models over
many individuals, while dealing with potential heterogeneity, is ‘group iterative
multiple model estimation’ (GIMME; Gates & Molenaar, 2012), which is imple-
mented in R in the gimme package (Lane, Gates, Molenaar, Hallquist, & Pike,
2016).

The presented methods are not without problems and have several limitations.
First, multivariate estimation of the multilevel VAR model is not yet feasible
for larger datasets. As such, we only focused on combining univariate models.
Doing so, however, means that not all parameters are in the same model. It is
important to note that univariate models do not readily provide estimates of the
contemporaneous networks, which must be estimated in a second step. Second,
even when multivariate estimation is possible, it is still challenging to estimate
a multilevel model on the contemporaneous networks due to the requirement of
positive definite matrices. Third, when more than approximately eight variables
are measured, estimating the multilevel models with correlated random e↵ects is
no longer feasible in open-source, MLE software. In this case, orthogonal random
e↵ects can be used. Although the simulation study showed that the networks
are still attainable when using orthogonal random e↵ects (even though random
e↵ects were correlated in the true model), using orthogonal estimation enforces
parsimony on the model that may not be plausible. Finally, even when orthogonal
estimation was used, the analysis ran very slowly in models with more than 20
variables. As such, multilevel VAR analysis of high-dimensional datasets is not yet
feasible. LASSO estimation as used in n = 1 models can also be used with multiple
subjects, but it does not take individual di↵erences into account (Abegaz & Wit,
2013). LASSO estimation methods that combine the strengths of high-dimensional
network estimation in n = 1 models, with the ability to use information of other
subjects, could be promising in this regard, but they have not yet been worked
out in detail.

It should further be noted that all network structures only generate hypotheses
and are in no way confirmatory of causal relationships. The analyses showcased in
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this chapter are therefore exploratory and allow researchers to obtain insights into
the predictive relationships present in the data—regardless of theory with respect
to the data-generating model. Under the assumptions of multivariate normality,
stationarity, and the Lag 1 factorization, the networks show how variables predict
each other over time (temporal network), within time (contemporaneous network),
and on average (between-subjects network). Furthermore, in the thresholding of
edges, no correction for multiple testing was applied by default. We deliberately
chose this because our aim was to present exploratory hypothesis-generating struc-
tures, and not correcting for multiple testing yields greater sensitivity. This means
that care should be taken in substantively interpreting the selected edges of the
networks.

One of the main innovations in this chapter comes in the substantial inter-
pretation of between-subjects e↵ects being potentially causal. The function of
between-subjects di↵erences in causal models has been argued to be problematic
(Borsboom, Mellenbergh, & Van Heerden, 2003; Markus & Borsboom, 2013a).
In order to make inferences on causal processes based on how people di↵er from
each other, we must place very strong assumptions on the homogeneity of causal
structures across individuals. In essence, we must assume that individuals are
independent realizations of the same causal model (see also Hamaker, 2012). It
is rarely acknowledged, however, that a similar problem holds for intraindividual
data. As in the between-subjects case, the inference from a statistical associa-
tion in the data to a causal model, operative at the level of the individual, is
dependent on the strength of the research design and does not follow from the
statistical associations themselves. In addition, if time series do not contain ac-
tual manipulations, the generalization in question can be equally problematic as
in between-subjects designs.

Suppose we found a robust association between X and Y together with the
temporal precedence of X (e.g., as in Granger causality) in a time-series analysis;
we still would not know whether interventions onX would actually lead to changes
in Y . Associations in within-subjects models can be subject to third-variable
issues, such as Simpson’s paradox, just as well as between-subjects models can.
Correlations remain correlations, whether they come from individual di↵erences
or from time series, and rather than categorically preferring one type of data over
another, it appears more sensible to let our judgment on optimal inferences depend
on the substantive context.

In sum, this chapter provided methodological tools that can be used to gain
insight in the potential dynamics present in psychological data. The described
software packages and estimation methods present the current state-of-the-art in
a field that is growing rapidly. These methods provide new ways to look at data—
both literally, through the use of networks to visualize the results, and figuratively,
by investigating contemporaneous and between-subjects e↵ects in combination
with temporal e↵ects.
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6.9 Appendix A: Simulating Multi-level VAR Models and
Data

This algorithm generates data for P subjects on T measurement occasions of I
items, using a lag-1 factorization. The fixed e↵ect temporal, contemporaneous,
and between-subjects networks all have a sparsity of 50%. This algorithm is
implemented in the mlVARsim function. Given parameters are

• DF
⇥

⇥

⇥

: The degrees of freedom (sampling variation) in sampling contempo-
raneous covariance matrices (default: 2I)

• Sfff
�

�

�

: The shrinkage factor of the temporal fixed e↵ects (default: 0.9)

• Sσσσ2
�

�

�

: The shrinkage factor of the temporal random e↵ects (default: 0.9)

• VVV BBB : Vector of variances of the temporal e↵ects (default uniformly drawn
between 0.01 and 1)

1. Generate the following structures:

• Inverse I ⇥ I variance–covariance matrices ⇥⇥⇥−1, ⌦⌦⌦−1

µµµ , and I2 ⇥ I2

variance–covariance matrix ⌦⌦⌦−1

BBBBBBBBB . All with 50% sparsity and 50% nega-
tive edges, using the methodology described by Yin and Li (2011) with
a constant of 1.1 and a parameter range of 0.5 to 1. Standardize these
matrices such that the diagonals of ⇥⇥⇥ and ⌦⌦⌦µµµ are equal to ones and the
diagonal of ⌦⌦⌦BBBBBBBBB is equal to VVV BBB .

• I length vector fffµµµ ⇠ N (000, III)

• I2 length vector fffβββ ⇠ N (000, III). Subsequently, set 50% lowest absolute
values to zero.

2. Generate P covariance matrices ⇥⇥⇥(p) ⇠ Wishart−1 (⇥⇥⇥/DF
⇥

⇥

⇥

,DF
⇥

⇥

⇥

)

3. Generate P parameter sets µµµ(p) ⇠ N
�

fffµµµ,⌦⌦⌦µµµ

�

and Vec(BBB(p)) ⇠ N
�

fffβββ ,⌦⌦⌦BBB

�

4. Compute eigenvalues of BBB(p): λ
(1)

1

. . . λ
(P )

I

5. If max
⇣

Re(λ
(p)
i )2 + Im(λ

(p)
i )2 > 1

⌘

a) Set fffβββ  Sfff
�

�

�

fffβββ

b) Scale ⌦⌦⌦BBB such that diag (⌦⌦⌦BBB)  Sσσσ2
�

�

�

diag (⌦⌦⌦BBB)

c) Go to 3

6. For each p, set yyy
(p)
−100

= µµµ(p)

7. For each p, generate for t = −99,−98, . . . , T the scores yyy
(p)
t

8. Discard all scores with t < 1

9. If any |y(p)ti |> 100, go to 5a
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