
Chapter 3

Accuracy of Psychological Networks

Abstract

The usage of psychological networks that conceptualize psychological be-
havior as a complex interplay of psychological and other components has
gained increasing popularity in various fields of psychology. While prior
publications have tackled the topics of estimating and interpreting such net-
works, little work has been conducted to check how accurate (i.e., prone to
sampling variation) networks are estimated, and how stable (i.e., interpre-
tation remains similar with less observations) inferences from the network
structure (such as centrality indices) are. In this chapter, we aim to in-
troduce the reader to this field and tackle the problem of accuracy under
sampling variation. We first introduce the current state-of-the-art of net-
work estimation. Second, we provide a rationale why researchers should
investigate the accuracy of psychological networks. Third, we describe how
bootstrap routines can be used to (A) assess the accuracy of estimated net-
work connections, (B) investigate the stability of centrality indices, and (C)
test whether network connections and centrality estimates for di↵erent vari-
ables di↵er from each other. We introduce two novel statistical methods: for
(B) the correlation stability coefficient, and for (C) the bootstrapped di↵er-

ence test for edge-weights and centrality indices. We conducted and present
simulation studies to assess the performance of both methods. Finally, we
developed the free R-package bootnet that allows for estimating psychological
networks in a generalized framework in addition to the proposed bootstrap
methods. We showcase bootnet in a tutorial, accompanied by R syntax, in
which we analyze a dataset of 359 women with posttraumatic stress disorder
available online.

This chapter has been adapted from: Epskamp, S., Borsboom, D., and Fried, E.I. (in press).
Estimating Psychological Networks and their Accuracy: A Tutorial Paper. Behavior Research
Methods.
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3. Accuracy of Psychological Networks

3.1 Introduction

In the last five years, network research has gained substantial attention in psy-
chological sciences (Borsboom & Cramer, 2013; Cramer et al., 2010). In this field
of research, psychological behavior is conceptualized as a complex interplay of
psychological and other components. To portray a potential structure in which
these components interact, researchers have made use of psychological networks.
Psychological networks consist of nodes representing observed variables, connected
by edges representing statistical relationships. This methodology has gained sub-
stantial footing and has been used in various di↵erent fields of psychology, such as
clinical psychology (e.g., Boschloo et al., 2015; Fried et al., 2015; McNally et al.,
2015; Forbush, Siew, & Vitevitch, 2016), psychiatry (e.g., Isvoranu, van Borkulo,
et al., 2016; Isvoranu, Borsboom, et al., 2016; van Borkulo et al., 2015), person-
ality research (e.g., Costantini, Epskamp, et al., 2015; Costantini, Richetin, et al.,
2015; Cramer, Sluis, et al., 2012), social psychology (e.g., Dalege et al., 2016), and
quality of life research (Kossakowski et al., 2016).

These analyses typically involve two steps: (1) estimate a statistical model
on data, from which some parameters can be represented as a weighted network
between observed variables, and (2), analyze the weighted network structure us-
ing measures taken from graph theory (Newman, 2010) to infer, for instance, the
most central nodes.1 Step 1 makes psychological networks strikingly di↵erent from
network structures typically used in graph theory, such as power grids (Watts &
Strogatz, 1998), social networks (Wasserman & Faust, 1994) or ecological networks
(Barzel & Biham, 2009) in which nodes represent entities (e.g., airports, people, or-
ganisms) and connections are generally observed and known (e.g., electricity lines,
friendships, mutualistic relationships). In psychological networks, the strength of
connection between two nodes is a parameter estimated from data. With increas-
ing sample size, the parameters will be more accurately estimated (close to the
true value). However, in the limited sample size psychological research typically
has to o↵er, the parameters may not be estimated accurately, and in such cases,
interpretation of the network and any measures derived from the network is ques-
tionable. Therefore, in estimating psychological networks, we suggest a third step
is crucial: (3) assessing the accuracy of the network parameters and measures.

To highlight the importance of accuracy analysis in psychological networks,
consider Figure 3.1 and Figure 3.2. Figure 3.1 (Panel A) shows a simulated net-
work structure of 8 nodes in which each node is connected to two others in a chain
network. The network model used is a Gaussian graphical model (Lauritzen, 1996),
in which nodes represent observed variables and edges represent partial correlation
coefficients between two variables after conditioning on all other variables in the
dataset. A typical way of assessing the importance of nodes in this network is to
compute centrality indices of the network structure (Costantini, Epskamp, et al.,
2015; Newman, 2010; Opsahl et al., 2010). Three such measures are node strength,
quantifying how well a node is directly connected to other nodes, closeness, quan-
tifying how well a node is indirectly connected to other nodes, and betweenness,

1An introduction on the interpretation and inference of network models has been included in
the online supplementary materials at http://sachaepskamp.com/files/bootnet Supplementary

.pdf.
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Figure 3.1: Simulated network structure (Panel A) and the importance of each
node quantified in centrality indices (Panel B). The simulated network is a chain
network in which each edge has the same absolute strength. The network model
used was a Gaussian graphical model in which each edge represents partial corre-
lation coefficients between two variables after conditioning on all other variables.
Centrality indices are shown as standardized z-scores, which leads to all centrality
indices to be equal to zero.

quantifying how important a node is in the average path between two other nodes.
Figure 3.1 (Panel B) shows the centrality indices of the true network: all indices
are exactly equal. We simulated a dataset of 500 individuals (typically regarded a
moderately large sample size in psychology) using the network in Figure 3.1 and
estimated a network structure based on the simulated data (as further described
below). Results are presented in Figure 3.2; this is the observed network structure
that researchers are usually faced with, without knowing the true network struc-
ture. Of note, this network closely resembles the true network structure.2 As can
be seen in Figure 3.2 (Panel B), however, centrality indices of the estimated net-
work do di↵er from each other. Without knowledge on how accurate the centrality
of these nodes are estimated, a researcher might in this case falsely conclude that
nodes B and C play a much more important role in the network than other nodes.

Only few analyses so far have taken accuracy into account (e.g., Fried, Ep-
skamp, et al., 2016), mainly because the methodology has not yet been worked
out. This problem of accuracy is omnipresent in statistics. Imagine researchers
employ a regression analysis to examine three predictors of depression severity,
and identify one strong, one weak, and one unrelated regressor. If removing one of
these three regressors, or adding a fourth one, substantially changes the regression

2Penalized maximum likelihood estimation used in this analysis typically leads to slightly
lower parameter estimates on average. As a result, the absolute edge-weights in Figure 3.2 are
all closer to zero than the absolute edge-weights in the true network in Figure 3.1.
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Figure 3.2: Estimated network structure based on a sample of 500 people simu-
lated using the true model shown in Figure 3.1 (Panel A) and computed centrality
indices (Panel B). Centrality indices are shown as standardized z-scores. Central-
ity indices show that nodes B and C are the most important nodes, even though
the true model does not di↵erentiate in importance between nodes.

coefficients of the other regressors, results are unstable and depend on specific
decisions the researchers make, implying a problem of accuracy. The same holds
for psychological networks. Imagine in a network of psychopathological symptoms
that we find that symptom A has a much higher node strength than symptom B
in a psychopathological network, leading to the clinical interpretation that A may
be a more relevant target for treatment than the peripheral symptom B (Fried,
Epskamp, et al., 2016). Clearly, this interpretation relies on the assumption that
the centrality estimates are indeed di↵erent from each other. Due to the current
uncertainty, there is the danger to obtain network structures sensitive to spe-
cific variables included, or sensitive to specific estimation methods. This poses
a major challenge, especially when substantive interpretations such as treatment
recommendations in the psychopathological literature, or the generalizability of
the findings, are important. The current replication crisis in psychology (Open
Science Collaboration, 2015) stresses the crucial importance of obtaining robust
results, and we want the emerging field of psychopathological networks to start
o↵ on the right foot.

The remainder of the article is structured into three sections. In the first sec-
tion, we give a brief overview of often used methods in estimating psychological
networks, including an overview of open-source software packages that implement
these methods available in the statistical programming environment R (R Core
Team, 2016). In the second section, we outline a methodology to assess the accu-
racy of psychological network structures that includes three steps: (A) estimate
confidence intervals (CIs) on the edge-weights, (B) assess the stability of central-
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3.2. Estimating Psychological Networks

ity indices under observing subsets of cases, and (C) test for significant di↵erences
between edge-weights and centrality indices. We introduce the freely available R
package, bootnet3, that can be used both as a generalized framework to estimate
various di↵erent network models as well as to conduct the accuracy tests we pro-
pose. We demonstrate the package’s functionality of both estimating networks and
checking their accuracy in a step-by-step tutorial using a dataset of 359 women
with post-traumatic stress disorder (PTSD; Hien et al., 2009) that can be down-
loaded from the Data Share Website of the National Institute on Drug Abuse.
Finally, in the last section, we show the performance of the proposed methods for
investigating accuracy in three simulations studies. It is important to note that
the focus of our tutorial is on cross-sectional network models that can readily be
applied to many current psychological datasets. Many sources have already out-
lined the interpretation of probabilistic network models (e.g., Koller & Friedman,
2009; Lauritzen, 1996), as well as network inference techniques, such as centrality
measures, that can be used once a network is obtained (e.g., Costantini, Epskamp,
et al., 2015; Kolaczyk, 2009; Newman, 2004; Sporns, Chialvo, Kaiser, & Hilgetag,
2004).

To make this tutorial stand-alone readable for psychological researchers, we
included a detailed description of how to interpret psychological network models
as well as an overview of network measures in the online supplementary materials4.
We hope that this tutorial will enable researchers to gauge the accuracy and
certainty of the results obtained from network models, and to provide editors,
reviewers, and readers of psychological network papers the possibility to better
judge whether substantive conclusions drawn from such analyses are defensible.

3.2 Estimating Psychological Networks

As described in more detail in Chapter 1 and Chapter 2, a popular network model
to use in estimating psychological networks is a pairwise Markov Random Field
(PMRF; Costantini, Epskamp, et al., 2015; van Borkulo et al., 2014), on which
the present chapter is focused. It should be noted, however, that the described
methodology could be applied to other network models as well. A PMRF is a
network in which nodes represent variables, connected by undirected edges (edges
with no arrowhead) indicating conditional dependence between two variables; two
variables that are not connected are independent after conditioning on all other
variables. When data are multivariate normal, such a conditional independence
would correspond to a partial correlation being equal to zero. Conditional inde-
pendencies are also to be expected in many causal structures (Pearl, 2000). In
cross-sectional observational data, causal networks (e.g. directed networks) are
hard to estimate without stringent assumptions (e.g., no feedback loops). In ad-
dition, directed networks su↵er from a problem of many equivalent models (e.g.,
a network A ! B is not statistically distuinghuisable from a network A  B;
MacCallum et al., 1993, but see Mooij, Peters, Janzing, Zscheischler, & Schölkopf,

3CRAN link: http://cran.r-project.org/package=bootnet
Github link (developmental): http://www.github.com/SachaEpskamp/bootnet

4Included in this dissertation as Section 1.2
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2016, when nonlinearities are included). PMRFs, however, are well defined and
have no equivalent models (i.e., for a given PMRF, there exists no other PMRF
that describes exactly the same statistical independence relationships for the set
of variables under consideration). Therefore, they facilitate a clear and unambigu-
ous interpretation of the edge-weight parameters as strength of unique associations
between variables, which in turn may highlight potential causal relationships.

When the data are binary, the appropriate PMRF model to use is called the
Ising model (van Borkulo et al., 2014), and requires binary data to be estimated.
When the data follow a multivariate normal density, the appropriate PMRF model
is called the Gaussian graphical model (GGM; Costantini, Epskamp, et al., 2015;
Lauritzen, 1996), in which edges can be interpreted as partial correlation coeffi-
cients. The GGM requires an estimate of the covariance matrix as input,5 for
which polychoric correlations can also be used in case the data are ordinal (see
Chapter 2). For continuous data that are not normally distributed, a transforma-
tion can be applied (e.g., by using the nonparanormal transformation; Liu, Han,
Yuan, La↵erty, & Wasserman, 2012) before estimating the GGM. Finally, mixed
graphical models can be used to estimate a PMRF containing both continuous
and categorical variables (Haslbeck & Waldorp, 2016b).

Dealing with the problem of small N in psychological data. Estimating
a PMRF features a severe limitation: the number of parameters to estimate grows
quickly with the size of the network. In a 10-node network, 55 parameters (10
threshold parameters and 10⇥ 9/2 = 45 pairwise association parameters) need be
estimated already. This number grows to 210 in a network with 20 nodes, and
to 1275 in a 50-node network. To reliably estimate that many parameters, the
number of observations needed typically exceeds the number available in charac-
teristic psychological data. To deal with the problem of relatively small datasets,
recent researchers using psychological networks have applied the ‘least absolute
shrinkage and selection operator’ (LASSO; Tibshirani, 1996). This technique is
a form of regularization. The LASSO employs such a regularizing penalty by
limiting the total sum of absolute parameter values—thus treating positive and
negative edge-weights equally—leading many edge estimates to shrink to exactly
zero and dropping out of the model. As such, the LASSO returns a sparse (or, in
substantive terms, conservative) network model: only a relatively small number
of edges are used to explain the covariation structure in the data. Because of this
sparsity, the estimated models become more interpretable. The LASSO utilizes a
tuning parameter to control the degree to which regularization is applied. This
tuning parameter can be selected by minimizing the Extended Bayesian Informa-
tion Criterion (EBIC; Chen & Chen, 2008). Model selection using the EBIC has
been shown to work well in both estimating the Ising model (Foygel Barber &
Drton, 2015; van Borkulo et al., 2014) and the GGM (Foygel & Drton, 2010).
The remainder of this chapter focuses on the GGM estimation method proposed

5While the GGM requires a covariance matrix as input, it is important to note that the
model itself is based on the (possibly sparse) inverse of the covariance matrix. Therefore, the
network shown does not show marginal correlations (regular correlation coefficients between two
variables). The inverse covariance matrix instead encodes partial correlations.
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by Foygel & Drton (2010; see also Chapter 2, for a detailed introduction of this
method for psychological researchers).

Estimating regularized networks in R is straightforward. For the Ising model,
LASSO estimation using EBIC has been implemented in the IsingFit package (van
Borkulo et al., 2014). For GGM networks, a well established and fast algorithm
for estimating LASSO regularization is the graphical LASSO (glasso; Friedman
et al., 2008), which is implemented in the package glasso (Friedman et al., 2014).
The qgraph package utilizes glasso in combination with EBIC model selection
to estimate a regularized GGM. Alternatively, the huge (Zhao et al., 2015) and
parcor (Krämer et al., 2009) packages implement several regularization methods—
including also glasso with EBIC model selection—to estimate a GGM. Finally,
mixed graphical models have been implemented in the mgm package (Haslbeck &
Waldorp, 2016a).

3.3 Network Accuracy

The above description is an overview of the current state of network estimation
in psychology. While network inference is typically performed by assessing edge
strengths and node centrality, little work has been done in investigating how accu-
rate these inferences are. In this section, we outline several methods that should
routinely be applied after a network has been estimated. These methods will
follow three steps: (A) estimation of the accuracy of edge-weights, by drawing
bootstrapped CIs; (B) investigating the stability of (the order of) centrality in-
dices after observing only portions of the data; and (C) performing bootstrapped
di↵erence tests between edge-weights and centrality indices to test whether these
di↵er significantly from each other. We introduced these methods in decreasing
order of importance: while (A) should always be performed, a researcher not inter-
ested in centrality indices might not perform other steps, whereas a researcher not
interested in testing for di↵erences might only perform (A) and (B). Simulation
studies have been conducted to assess the performance of these methods, which
are reported in a later section in the chapter.

Edge-weight Accuracy

To assess the variability of edge-weights, we can estimate a CI: in 95% of the
cases such a CI will contain the true value of the parameter. To construct a
CI, we need to know the sampling distribution of the statistic of interest. While
such sampling distributions can be difficult to obtain for complicated statistics
such as centrality measures, there is a straight-forward way of constructing CIs
many statistics: bootstrapping (Efron, 1979). Bootstrapping involves repeatedly
estimating a model under sampled or simulated data and estimating the statistic
of interest. Following the bootstrap, a 1 − ↵ CI can be approximated by taking
the interval between quantiles 1/2↵ and 1− 1/2↵ of the bootstrapped values. We
term such an interval a bootstrapped CI. Bootstrapping edge-weights can be done
in two ways: using non-parametric bootstrap and parametric bootstrap (Bollen
& Stine, 1992). In non-parametric bootstrapping, observations in the data are
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resampled with replacement to create new plausible datasets, whereas parametric
bootstrapping samples new observations from the parametric model that has been
estimated from the original data; this creates a series of values that can be used
to estimate the sampling distribution. Bootstrapping can be applied as well to
LASSO regularized statistics (Hastie et al., 2015).

Non-parametric bootstrapping can always be applied, whereas parametric boot-
strapping requires a parametric model of the data. When we estimate a GGM,
data can be sampled by sampling from the multivariate normal distribution through
the use of the R package mvtnorm (Genz et al., 2008); to sample from the Ising
model, we have developed the R package IsingSampler (Epskamp, 2014). Us-
ing the GGM model, the parametric bootstrap samples continuous multivariate
normal data—an important distinction from ordinal data if the GGM was esti-
mated using polychoric correlations. Therefore, we advise the researcher to use
the non-parametric bootstrap when handling ordinal data. Furthermore, when
LASSO regularization is used to estimate a network, the edge-weights are on av-
erage made smaller due to shrinkage, which biases the parametric bootstrap. The
non-parametric bootstrap is in addition fully data-driven, whereas the parametric
bootstrap is more theory driven. As such, we will only discuss the non-parametric
bootstrap in this chapter and advice the researcher to only use parametric boot-
strap when no regularization is used and if the non-parametric results prove un-
stable or to check for correspondence of bootstrapped CIs between both methods.

It is important to stress that the bootstrapped results should not be used
to test for significance of an edge being di↵erent from zero. While unreported
simulation studies showed that observing if zero is in the bootstrapped CI does
function as a valid null-hypothesis test (the null-hypothesis is rejected less than
↵ when it is true), the utility of testing for significance in LASSO regularized
edges is questionable. In the case of partial correlation coefficients, without using
LASSO the sampling distribution is well known and p-values are readily available.
LASSO regularization aims to estimate edges that are not needed to be exactly
zero. Therefore, observing that an edge is not set to zero already indicates that
the edge is sufficiently strong to be included in the model. In addition, as later
described in this chapter, applying a correction for multiple testing is not feasible,
In sum, the edge-weight bootstrapped CIs should not be interpreted as significance
tests to zero, but only to show the accuracy of regularized edge-weights and to
compare edges to one-another.

Centrality Stability

While the bootstrapped CIs of edge-weights can be constructed using the boot-
strap, we discovered in the process of this research that constructing CIs for cen-
trality indices is far from trivial. As discussed in more detail in the online sup-
plementary materials, both estimating centrality indices based on a sample and
bootstrapping centrality indices result in biased sampling distributions, and thus
the bootstrap cannot readily be used to construct true 95% CIs even without regu-
larization. To allow the researcher insight in the accuracy of the found centralities,
we suggest to investigate the stability of the order of centrality indices based on
subsets of the data. With stability, we indicate if the order of centrality indices re-
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mains the same after re-estimating the network with fewer cases or nodes. A case
indicates a single observation of all variables (e.g., a person in the dataset) and is
represented by rows of the dataset. Nodes, on the other hand, indicate columns
of the dataset. Taking subsets of cases in the dataset employs the so called m out
of n bootstrap, which is commonly used to remediate problems with the regular
bootstrap (Chernick, 2011). Applying this bootstrap for various proportions of
cases to drop can be used to assess the correlation between the original centrality
indices and those obtained from subsets. If this correlation completely changes
after dropping, say, 10% of the cases, then interpretations of centralities are prone
to error. We term this framework the case-dropping subset bootstrap. Similarly,
one can opt to investigate the stability of centrality indices after dropping nodes
from the network (node-dropping subset bootstrap; Costenbader & Valente, 2003),
which has also been implemented in bootnet but is harder to interpret (dropping
50% of the nodes leads to entirely di↵erent network structures). As such, we only
investigate stability under case-dropping, while noting that the below described
methods can also be applied to node-dropping.

To quantify the stability of centrality indices using subset bootstraps, we pro-
pose a measure we term the correlation stability coefficient, or short, the CS-
coefficient. Let CS(cor = 0.7) represent the maximum proportion of cases that
can be dropped, such that with 95% probability the correlation between original
centrality indices and centrality of networks based on subsets is 0.7 or higher.
The value of 0.7 can be changed according to the stability a researcher is inter-
ested in, but is set to 0.7 by default as this value has classically been interpreted
as indicating a very large e↵ect in the behavioral sciences (Cohen, 1977). The
simulation study below showed that to interpret centrality di↵erences the CS-
coefficient should not be below 0.25, and preferably above 0.5. While these cuto↵
scores emerge as recommendations from this simulation study, however, they are
somewhat arbitrary and should not be taken as definite guidelines.

Testing for Significant Di↵erences

In addition to investigating the accuracy of edge weights and the stability of the
order of centrality, researchers may wish to know whether a specific edge A–B is
significantly larger than another edge A–C, or whether the centrality of node A
is significantly larger than that of node B. To that end, the bootstrapped values
can be used to test if two edge-weights or centralities significantly di↵er from one-
another. This can be done by taking the di↵erence between bootstrap values of one
edge-weight or centrality and another edge-weight or centrality, and constructing a
bootstrapped CI around those di↵erence scores. This allows for a null-hypothesis
test if the edge-weights or centralities di↵er from one-another by checking if zero
is in the bootstrapped CI (Chernick, 2011). We term this test the bootstrapped
di↵erence test.

As the bootstraps are functions of complicated estimation methods, in this
case LASSO regularization of partial correlation networks based on polychoric
correlation matrices, we assessed the performance of the bootstrapped di↵erence
test for both edge-weights and centrality indices in two simulation studies below.
The edge-weight bootstrapped di↵erence test performs well with Type I error rate
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close to the significance level (↵), although the test is slightly conservative at low
sample sizes (i.e, due to edge-weights often being set to zero, the test has a Type I
error rate somewhat less than ↵). When comparing two centrality indices, the test
also performs as a valid, albeit somewhat conservative, null-hypothesis test with
Type I error rate close to or less than ↵. However, this test does feature a somewhat
lower level of power in rejecting the null-hypothesis when two centralities do di↵er
from one-another.

A null-hypothesis test, such as the bootstrapped di↵erence test, can only be
used as evidence that two values di↵er from one-another (and even then care
should be taken in interpreting its results; e.g., Cohen, 1994). Not rejecting the
null-hypothesis, however, does not necessarily constitute evidence for the null-
hypothesis being true (Wagenmakers, 2007). The slightly lower power of the
bootstrapped di↵erence test implies that, at typical sample sizes used in psycho-
logical research, the test will tend to find fewer significant di↵erences than actually
exist at the population level. Researchers should therefore not routinely take non-
significant centralities as evidence for centralities being equal to each other, or for
the centralities not being accurately estimated. Furthermore, as described below,
applying a correction for multiple testing is not feasible in practice. As such, we
advise care when interpreting the results of bootstrapped di↵erence tests.

A note on multiple testing. The problem of performing multiple significance
tests is well known in statistics. When one preforms two tests, both at ↵ = 0.05,
the probability of finding at least one false significant result (Type I error) is higher
than 5%. As a result, when performing a large number of significance tests, even
when the null-hypothesis is true in all tests one would likely find several significant
results purely by chance. To this end, researchers often apply a correction for
multiple testing. A common correction is the ‘Bonferroni correction’ (Bland &
Altman, 1995), in which ↵ is divided by the number of tests. To test, for example,
di↵erences between all edge-weights of a 20-node network requires 17,955 tests,
leading to a Bonferroni corrected significance level of 0.000003.6 Testing at such
a low significance level is not feasible with the proposed bootstrap methods, for
three reasons:

1. The distribution of such LASSO regularized parameters is far from normal
(Pötscher & Leeb, 2009), and as a result approximate p-values cannot be
obtained from the bootstraps. This is particularly important for extreme
significance levels that might be used when one wants to test using a cor-
rection for multiple testing. It is for this reason that this chapter does not
mention bootstrapping p-values and only investigates null-hypothesis tests
by using bootstrapped CIs.

2. When using bootstrapped CIs with NB bootstrap samples, the widest in-
terval that can be constructed is the interval between the two most extreme
bootstrap values, corresponding to ↵ = 2/NB . With 1,000 bootstrap sam-
ples, this corresponds to ↵ = 0.002. Clearly, this value is much higher than

6One might instead only test for di↵erence in edges that were estimated to be non-zero with
the LASSO. However, doing so still often leads to a large number of tests.
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0.000003 mentioned above. Taking the needed number of bootstrap sam-
ples for such small significance levels is computationally challenging and not
feasible in practice.

3. In significance testing there is always interplay of Type I and Type II error
rates: when one goes down, the other goes up. As such, reducing the Type
I error rate increases the Type II error rate (not rejecting the null when
the alternative hypothesis is true), and thus reduces statistical power. In
the case of ↵ = 0.000003, even if we could test at this significance level, we
would likely find no significant di↵erences due to the low statistical power.

As such, Bonferroni corrected di↵erence tests are still a topic of future research.

Summary

In sum, the non-parametric (resampling rows from the data with replacement)
bootstrap can be used to assess the accuracy of network estimation, by investi-
gating the sampling variability in edge-weights, as well as to test if edge-weights
and centrality indices significantly di↵er from one-another using the bootstrapped
di↵erence test. Case-dropping subset bootstrap (dropping rows from the data),
on the other hand, can be used to assess the stability of centrality indices, how
well the order of centralities are retained after observing only a subset of the data.
This stability can be quantified using the CS-coefficient. The R code in the on-
line supplementary materials show examples of these methods on the simulated
data in Figure 3.1 and Figure 3.2. As expected from Figure 3.1, showing that
the true centralities did not di↵er, bootstrapping reveals that none of the central-
ity indices in Figure 3.2 significantly di↵er from one-another. In addition, node
strength (CS(cor = 0.7) = 0.13), closeness (CS(cor = 0.7) = 0.05) and between-
ness (CS(cor = 0.7) = 0.05) were far below the thresholds that we would consider
stable. Thus, the novel bootstrapping methods proposed and implemented here
showed that the di↵erences in centrality indices presented in Figure 3.2 were not
interpretable as true di↵erences.

3.4 Tutorial

In this section, we showcase the functionality of the bootnet package for estimating
network structures and assessing their accuracy. We do so by analyzing a dataset
(N = 359) of women su↵ering from posttraumatic stress disorder (PTSD) or
sub-threshold PTSD. The bootnet package includes the bootstrapping methods,
CS-coefficient and bootstrapped di↵erence tests as described above. In addition,
bootnet o↵ers a wide range of plotting methods. After estimating nonparametric
bootstraps, bootnet produces plots that show the bootstrapped CIs of edge-weights
or which edges and centrality indices significantly di↵er from one-another. After
estimating subset bootstrap, bootnet produces plots that show the correlation
of centrality indices under di↵erent levels of subsetting (Costenbader & Valente,
2003). In addition to the correlation plot, bootnet can be used to plot the average
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Default set R chain

EBICglasso Data %>% qgraph::cor_auto %>% qgraph::EBICglasso

pcor Data %>% qgraph::cor_auto %>% corpcor::cor2pcor

IsingFit Data %>% bootnet::binarize %>% IsingFit::IsingFit

IsingLL Data %>% bootnet::binarize %>%

IsingSampler::EstimateIsing(method = \ll")

huge Data %>% as.matrix %>% na.omit %>% huge::huge.npn %>%

huge::huge(method = \glasso") %>%

huge::huge.select(criterion = \ebic")

adalasso Data %>% parcor::adalasso.net

Table 3.1: R chains to estimate network models from data. The default
sets "EBICglasso", "pcor", "huge" and "adalasso" estimate a Gaussian
graphical model and the default sets "IsingFit" and "IsingLL" estimate
the Ising model. The notation package::function indicates that the func-
tion after the colons comes from the package before the colons. Chains are
schematically represented using magrittr chains: Whatever is on the left of
%>% is used as first argument to the function on the right of this opera-
tor. Thus, the first chain corresponding to "EBICglasso" can also be read as
qgraph::EBICglasso(qgraph::cor_auto(Data)).

estimated centrality index for each node under di↵erent sampling levels, giving
more detail on the order of centrality under di↵erent subsetting levels.

With bootnet, users can not only perform accuracy and stability tests, but also
flexibly estimate a wide variety of network models in R. The estimation technique
can be specified as a chain of R commands, taking the data as input and returning
a network as output. In bootnet, this chain is broken in several phases: data
preparation (e.g., correlating or binarizing), model estimation (e.g., glasso) and
network selection. The bootnet package has several default sets, which can be
assigned using the default argument in several functions. These default sets can
be used to easily specify the most commonly used network estimation procedures.
Table 3.1 gives an overview of the default sets and the corresponding R functions
called.7

Example: Post-traumatic Stress Disorder

To exemplify the usage of bootnet in both estimating and investigating network
structures, we use a dataset of 359 women enrolled in community-based sub-
stance abuse treatment programs across the United States (study title: Women’s
Treatment for Trauma and Substance Use Disorders; study number: NIDA-CTN-
0015).8 All participants met the criteria for either PTSD or sub-threshold PTSD,
according to the DSM-IV-TR (American Psychiatric Association, 2000). Details
of the sample, such as inclusion and exclusion criteria as well as demographic
variables, can be found elsewhere (Hien et al., 2009). We estimate the network

7The notation makes use of notation introduced by the magrittr R package (Bache & Wick-
ham, 2014)

8
https://datashare.nida.nih.gov/protocol/nida-ctn-0015
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using the 17 PTSD symptoms from the PTSD Symptom Scale-Self Report (PSS-
SR; Foa, Riggs, Dancu, & Rothbaum, 1993). Participants rated the frequency of
endorsing these symptoms on a scale ranging from 0 (not at all) to 3 (at least 4
or 5 times a week).

Network estimation. Following the steps in the online supplementary materi-
als, the data can be loaded into R in a data frame called Data, which contains the
frequency ratings at the baseline measurement point. We will estimate a Gaussian
graphical model, using the graphical LASSO in combination with EBIC model se-
lection as described above (Foygel & Drton, 2010). This procedure requires an
estimate of the variance-covariance matrix and returns a parsimonious network of
partial correlation coefficients. Since the PTSD symptoms are ordinal, we need
to compute a polychoric correlation matrix as input. We can do so using the
cor auto function from the qgraph package, which automatically detects ordinal
variables and utilizes the R-package lavaan (Rosseel, 2012) to compute polychoric
(or, if needed, polyserial and Pearson) correlations. Next, the EBICglasso func-
tion from the qgraph package can be used to estimate the network structure, which
uses the glasso package for the actual computation (Friedman et al., 2014). In
bootnet, as can be seen in Table 3.1, the "EBICglasso" default set automates this
procedure. To estimate the network structure, one can use the estimateNetwork
function:

library("bootnet")

Network <- estimateNetwork(Data, default = "EBICglasso")

Next, we can plot the network using the plot method:

plot(Network, layout = "spring", labels = TRUE)

The plot method uses qgraph to plot the network. Figure 3.3 (Panel A) shows the
resulting network structure, which is parsimonious due to the LASSO estimation;
the network only has 78 non-zero edges out of 136 possible edges. A description
of the node labels can be seen in Table 3.2. Especially strong connections emerge
among Node 3 (being jumpy) and Node 4 (being alert), Node 5 (cut o↵ from
people) and Node 11 (interest loss), and Node 16 (upset when reminded of the
trauma) and Node 17 (upsetting thoughts/images). Other connections are absent,
for instance between Node 7 (irritability) and Node 15 (reliving the trauma); this
implies that these symptoms can be statistically independent when conditioning
on all other symptoms (their partial correlation is zero) or that there was not
sufficient power to detect an edge between these symptoms.

Computing centrality indices. To investigate centrality indices in the net-
work, we can use the centralityPlot function from the qgraph package:

library("qgraph")

centralityPlot(Network)
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Figure 3.3: Estimated network structure of 17 PTSD symptoms (Panel A) and
the corresponding centrality indices (Panel B). Centrality indices are shown as
standardized z-scores. The network structure is a Gaussian graphical model, which
is a network of partial correlation coefficients.

ID Variable
1 Avoid reminds of the trauma
2 Bad dreams about the trauma
3 Being jumpy or easily startled
4 Being over alert
5 Distant or cut o↵ from people
6 Feeling emotionally numb
7 Feeling irritable
8 Feeling plans won’t come true
9 Having trouble concentrating
10 Having trouble sleeping
11 Less interest in activities
12 Not able to remember
13 Not thinking about trauma
14 Physical reactions
15 Reliving the trauma
16 Upset when reminded of trauma
17 Upsetting thoughts or images

Table 3.2: Node IDs and corresponding symptom names of the 17 PTSD symp-
toms.
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The resulting plot is shown in Figure 3.3 (Panel B). It can be seen that nodes
di↵er quite substantially in their centrality estimates. In the network, Node 17
(upsetting thoughts/images) has the highest strength and betweenness and Node 3
(being jumpy) has the highest closeness. However, without knowing the accuracy
of the network structure and the stability of the centrality estimates, we cannot
conclude whether the di↵erences of centrality estimates are interpretable or not.

Edge-weight accuracy. The bootnet function can be used to perform the
bootstrapping methods described above. The function can be used in the same way
as the estimateNetwork function, or can take the output of the estimateNetwork
function to run the bootstrap using the same arguments. By default, the nonpara-
metric bootstrap with 1,000 samples will be used. This can be overwritten using
the nBoots argument, which is used below to obtain more smooth plots.9 The
nCores argument can be used to speed up bootstrapping and use multiple com-
puter cores (here, eight cores are used):

boot1 <- bootnet(Network, nBoots = 2500, nCores = 8)

The print method of this object gives an overview of characteristics of the sample
network (e.g., the number of estimated edges) and tips for further investigation,
such as how to plot the estimated sample network or any of the bootstrapped
networks. The summary method can be used to create a summary table of certain
statistics containing quantiles of the bootstraps.

The plot method can be used to show the bootstrapped CIs for estimated
edge parameters:

plot(boot1, labels = FALSE, order = "sample")

Figure 3.4 shows the resulting plots and reveals sizable bootstrapped CIs around
the estimated edge-weights, indicating that many edge-weights likely do not sig-
nificantly di↵er from one-another. The generally large bootstrapped CIs imply
that interpreting the order of most edges in the network should be done with
care. Of note, the edges 16 (upset when reminded of the trauma) – 17 (upsetting
thoughts/images), 3 (being jumpy) – 4 (being alert) and 5 (feeling distant) – 11
(loss of interest), are reliably the three strongest edges since their bootstrapped
CIs do not overlap with the bootstrapped CIs of any other edges.10

Centrality stability. We can now investigate the stability of centrality indices
by estimating network models based on subsets of the data. The case-dropping
bootstrap can be used by using type = "case":

boot2 <- bootnet(Network, nBoots = 2500, type = "case",

nCores = 8)

9Using many bootstrap samples, such as the 2,500 used here, might result in memory prob-
lems or long computation time. It is advisable to first use a small number of samples (e.g., 10)
and then try more. The simulations below show that 1,000 samples may often be sufficient.

10As with any CI, non-overlapping CIs indicate two statistics significantly di↵er at the given
significance level. The reverse is not true; statistics with overlapping CIs might still significantly
di↵er.
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Figure 3.4: Bootstrapped confidence intervals of estimated edge-weights for the
estimated network of 17 PTSD symptoms. The red line indicates the sample values
and the gray area the bootstrapped CIs. Each horizontal line represents one edge
of the network, ordered from the edge with the highest edge-weight to the edge
with the lowest edge-weight. In the case of ties (for instance, multiple edge-weights
were estimated to be exactly 0), the mean of the bootstrap samples was used in
ordering the edges. y-axis labels have been removed to avoid cluttering.

To plot the stability of centrality under subsetting, the plot method can again be
used:

plot(boot2)

Figure 3.5 shows the resulting plot: the stability of closeness and betweenness
drop steeply while the stability of node strength is better. This stability can be
quantified using the CS-coefficient, which quantifies the maximum proportion of
cases that can be dropped to retain, with 95% certainty, a correlation with the
original centrality of higher than (by default) 0.7. This coefficient can be computed
using the corStability function:

corStability(boot2)

The CS-coefficient indicates that betweenness (CS(cor = 0.7) = 0.05) and (CS(cor =
0.7) = 0.05) closeness are not stable under subsetting cases. Node strength per-
forms better (CS(cor = 0.7) = 0.36), but does not reach the cuto↵ of 0.5 from
our simulation study required consider the metric stable. Therefore, we conclude
that the order of node strength is interpretable with some care, while the orders
of betweenness and closeness are not.
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Figure 3.5: Average correlations between centrality indices of networks sampled
with persons dropped and the original sample. Lines indicate the means and areas
indicate the range from the 2.5th quantile to the 97.5th quantile.

Testing for significant di↵erences. The differenceTest function can be
used to compare edge-weights and centralities using the bootstrapped di↵erence
test. This makes use of the non-parametric bootstrap results (here named boot1)
rather than the case-dropping bootstrap results. For example, the following code
tests if Node 3 and Node 17 di↵er in node strength centrality:

differenceTest(boot1, 3, 17, "strength")

The results show that these nodes do not di↵er in node strength since the boot-
strapped CI includes zero (CI: −0.17, 0.37). The plot method can be used to plot
the di↵erence tests between all pairs of edges and centrality indices. For example,
the following code plots the di↵erence tests of node strength between all pairs of
edge-weights:

plot(boot1, "edge", plot = "difference", onlyNonZero = TRUE,

order = "sample")

In which the plot argument has to be used because the function normally de-
faults to plotting bootstrapped CIs for edge-weights, the onlyNonZero argument
sets so that only edges are shown that are nonzero in the estimated network, and
order = "sample" orders the edge-weights from the most positive to the most
negative edge-weight in the sample network. We can use a similar code for com-
paring node strength:
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plot(boot1, "strength")

In which we did not have to specify the plot argument as it is set to the "difference"
by default when the statistic is a centrality index.

The resulting plots are presented in Figure 3.6. Panel A shows that many
edges cannot be shown to significantly di↵er from one-another, except for the pre-
viously mentioned edges 16 (upset when reminded of the trauma) – 17 (upsetting
thoughts/images), 3 (being jumpy) – 4 (being alert) and 5 (feeling distant) – 11
(loss of interest), which significantly di↵er from most other edges in the network.
Panel B shows that most node strengths cannot be shown to significantly di↵er
from each other. The node with the largest strength, Node 17, is significantly
larger than almost half the other nodes. Furthermore, Node 7 and Node 10 and
also feature node strength that is significantly larger than some of the other nodes.
In this dataset, no significant di↵erences were found between nodes in both be-
tweenness and closeness (not shown). For both plots it is important to note that
no correction for multiple testing was applied.

3.5 Simulation Studies

We conducted three simulation studies to assess the performance of the meth-
ods described above. In particular, we investigated the performance of (1) the
CS-coefficient and the bootstrapped di↵erence test for (2) edge-weights and (3)
centrality indices. All simulation studies use networks of 10 nodes. The net-
works were used as partial correlation matrices to generate multivariate normal
data, which were subsequently made ordinal with four levels by drawing random
thresholds; we did so because most prior network papers estimated networks on
ordinal data (e.g., psychopathological symptom data). We varied sample size be-
tween 100, 250, 500, 1,000, 2,500 and 5,000, and replicated every condition 1,000
times. We estimated Gaussian graphical models, using the graphical LASSO in
combination with EBIC model selection (Foygel & Drton, 2010; see also Chap-
ter 2), using polychoric correlation matrices as input. Each bootstrap method
used 1,000 bootstrap samples. In addition, we replicated every simulation study
with 5-node and 20-node networks as well, which showed similar results and were
thus not included in this chapter to improve clarity.

CS-coefficients. We assessed the CS-coefficient in a simulation study for two
cases where: networks where centrality did not di↵er between nodes, and networks
where centrality did di↵er. We simulated chain networks as shown in Figure 3.1
consisting of 10 nodes, 50% negative edges and all edge-weights set to either 0.25
or −0.25. Next, we randomly rewired edges as described by Watts and Strogatz
(1998) with probability 0, 0.1, 0.5 or 1. A rewiring probability of 0.5 indicates
that every edge had a 50% chance of being rewired to another node, leading to
a di↵erent network structure than the chain graph. This procedure creates a
range of networks, ranging from chain graphs in which all centralities are equal
(rewiring probability = 0) to random graphs in which all centralities may be dif-
ferent (rewiring probability = 1). Every condition (rewiring probability ⇥ sample
size) was replicated 1,000 times, leading to 24,000 simulated datasets. On each of
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3. Accuracy of Psychological Networks

these datasets, case-dropping bootstrap was performed and the CS-coefficient was
computed. Figure 3.7 shows the results, showing that the CS-coefficient remains
low in networks in which centrality does not di↵er and rises as a function of sample
size in networks in which centralities do di↵er. It can be seen that under a model
in which centralities do not di↵er the CS-coefficient remains stable as sample size
increases and stays mostly below .5, and roughly 75% stays below 0.25. Therefore,
to interpret centrality di↵erences the CS-coefficient should not be below 0.25, and
preferably above 0.5.

Edge-weight bootstrapped di↵erence test. We ran a second simulation
study to assess the performance of the bootstrapped di↵erence test for edge-
weights. In this simulation study, chain networks were constructed consisting
of 10 nodes in which all edge-weights were set to 0.3. Sample size was again var-
ied between 100, 250, 500, 1,000, 2,500 and 5,000 and each condition was again
replicated 1,000 times, leading to 6,000 total simulated datasets. Data were made
ordinal and regularized partial correlation networks were estimated in the same
manner as in the previous simulation studies. We only compared edges that were
nonzero in the true network (thus, edges with a weight of 0.3 that were not dif-
ferent from one-another), and we investigated the rejection rate under di↵erent
levels of ↵: 0.05, 0.01, 0.001 and 0.0001. For every significance level, the expected
significance level given a certain number of bootstrap samples (in this case 1,000)
was computed using the following R code:

alpha <- 0.05

mean(replicate(10000,quantile(runif(1000),alpha/2)) +

(1 - replicate(10000,quantile(runif(1000),1-alpha/2))))

Figure 3.8 shows that rejection rate converged on the expected rejection rate with
higher samples, and was lower than the expected rejection rate in the low sample
condition of N = 100—a result of the LASSO pulling many edge-weights to zero
in low sample sizes.

Centrality bootstrapped di↵erence test. We conducted a third simulation
study to assess the performance of the bootstrapped di↵erence test for centrality
indices. The design was the same as the first simulation study, leading to 24,000 to-
tal simulated datasets. We performed the bootstrapped di↵erence test to all pairs
of nodes in all networks and computed the rate of rejecting the null-hypothesis of
centralities being equal. Figure 3.9 shows the results of this simulation study. It
can be seen that the average rate of rejecting the null-hypothesis of two centrality
indices being equal under a chain-network such as shown in Figure 3.1 stays below
0.05 at all sample sizes for all centrality indices. As such, checking if zero is in the
bootstrapped CI on di↵erences between centralities is a valid null-hypothesis test.
Figure 3.9, however, also shows that the rejection rate often is below 0.05, lead-
ing to a reduced power in the test. As such, finding true di↵erences in centrality
might require a larger sample size. When centralities di↵er (rewiring probability
> 0), power to detect di↵erences goes up as a function of sample size. Unreported
simulation studies showed that using Pearson or Spearman correlations on ordinal
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Figure 3.7: Simulation results showing the CS-coefficient of 24,000 simulated
datasets. Datasets were generated using chain networks (partial correlations) of
10 nodes with edge-weights set to 0.25 or −0.25. Edges were randomly rewired to
obtain a range from networks ranging from networks in which all centralities are
equal to networks in which all centralities di↵er. The CS-coefficient quantifies the
maximum proportion of cases that can be dropped at random to retain, with 95%
certainty, a correlation of at least 0.7 with the centralities of the original network.
Boxplots show the distribution of CS-coefficients obtained in the simulations. For
example, plots on top indicate that the CS-coefficient mostly stays below 0.2 when
centralities do not di↵er from one-another (chain graph as shown in Figure 3.1).
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Figure 3.8: Simulation results showing the rejection rate of the bootstrapped dif-
ference test for edge-weights on 6,000 simulated datasets. Datasets were generated
using chain networks (partial correlations) of 10 nodes with edge-weights set to
0.3. Only networks that were nonzero in the true network were compared to one-
another. Lines indicate the proportion of times that two random edge-weights were
significantly di↵erent (i.e., the null-hypothesis was rejected) and their CI (plus and
minus 1.96 times the standard error). Solid horizontal lines indicate the intended
significance level and horizontal dashed line the expected significance level given
1,000 bootstrap samples. The y-axis is drawn using a logarithmic scale.

data using this method leads to an inflated Type-I error rate. Our simulations
thus imply that bootstrapped di↵erence test for centrality indices for ordinal data
should use polychoric correlations as input to the graphical LASSO.

3.6 Conclusion

In this chapter, we have summarized the state-of-the-art in psychometric network
modeling, provided a rationale for investigating how susceptible estimated psy-
chological networks are to sampling variation, and described several methods that
can be applied after estimating a network structure to check the accuracy and
stability of the results. We proposed to perform these checks in three steps: (A)
assess the accuracy of estimated edge-weights, (B) assess the stability of centrality
indices after subsetting the data, and (C) test if edge-weights and centralities di↵er
from one-another. Bootstrapping procedures can be used to perform these steps.
While bootstrapping edge-weights is straight-forward, we also introduced two new
statistical methods: the correlation stability coefficient (CS-coefficient) and the
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Figure 3.9: Simulation results showing the rejection rate of the bootstrapped
di↵erence test for centrality indices. Datasets were generated using the same
design as in Figure 3.7. Lines indicate the proportion of times that two random
centralities were significantly di↵erent (i.e., the null-hypothesis was rejected).

bootstrapped di↵erence test for edge-weights and centrality indices to aid in steps 2
and 3 respectively. To help researchers conduct these analyses, we have developed
the freely available R package bootnet, which acts as a generalized framework for
estimating network models as well as performs the accuracy tests outlined in this
chapter. It is of note that, while we demonstrate the functionality of bootnet in
this tutorial using a Gaussian graphical model, the package can be used for any
estimation technique in R that estimates an undirected network (such as the Ising
model with binary variables).

Empirical example results. The accuracy analysis of a 17-node symptom net-
work of 359 women with (subthreshold) PTSD showed a network that was sus-
ceptible to sampling variation. First, the bootstrapped confidence intervals of the
majority of edge-weights were large. Second, we assessed the stability of central-
ity indices under dropping people from the dataset, which showed that only node
strength centrality was moderately stable; betweenness and closeness centrality
were not. This means that the order of node strength centrality was somewhat
interpretable, although such interpretation should be done with care. Finally,
bootstrapped di↵erence tests at a significance level of 0.05 indicated that only
in investigating node strength could statistical di↵erences be detected between
centralities of nodes, and only three edge-weights were shown to be significantly
higher than most other edges in the network.
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Limitations and Future Directions

Power-analysis in psychological networks. Overall, we see that networks
with increasing sample size are estimated more accurately. This makes it easier
to detect di↵erences between centrality estimates, and also increases the stability
of the order of centrality estimates. But how many observations are needed to
estimate a reasonably stable network? This important question usually referred
to as power-analysis in other fields of statistics (Cohen, 1977) is largely unanswered
for psychological networks. When a reasonable prior guess of the network structure
is available, a researcher might opt to use the parametric bootstrap, which has
also been implemented in bootnet, to investigate the expected accuracy of edge-
weights and centrality indices under di↵erent sample sizes. However, as the field
of psychological networks is still young, such guesses are currently hard to come
by. As more network research will be done in psychology, more knowledge will
become available on graph structure and edge-weights that can be expected in
various fields of psychology. As such, power calculations are a topic for future
research and are beyond the scope of the current chapter.

Future directions. While working on this project, two new research questions
emerged: is it possible to form an unbiased estimator for centrality indices in
partial correlation networks, and consequently, how should true 95% confidence
intervals around centrality indices be constructed? As our example highlighted,
centrality indices can be highly unstable due to sampling variation, and the es-
timated sampling distribution of centrality indices can be severely biased. At
present, we have no definite answer to these pressing questions that we discuss in
some more detail in the online supplementary materials. In addition, construct-
ing bootstrapped CIs on very low significance levels is not feasible with a limited
number of bootstrap samples, and approximating p-values on especially networks
estimated using regularization is problematic. As a result, performing di↵erence
tests while controlling for multiple testing is still a topic of future research. Fi-
nally, future research should focus on identifying why the bootstrapped di↵erence
test has low statistical power and extend the presented simulation studies in an
attempt to identify if the test works under multiple conditions (e.g., di↵erent net-
work structures or network models). Given the current emergence of network
modeling in psychology, remediating these questions should have high priority.

Related research questions. We only focused on accuracy analysis of cross-
sectional network models. Assessing variability on longitudinal and multi-level
models is more complicated and beyond the scope of current chapter; it is also
not implemented in bootnet as of yet. We refer the reader to Bringmann and
colleagues (2015) for a demonstration on how confidence intervals can be obtained
in a longitudinal multi-level setting. We also want to point out that the results
obtained here may be idiosyncratic to the particular data used. In addition, it
is important to note that the bootstrapped edge-weights should not be used as a
method for comparing networks based on di↵erent groups, (e.g., comparing the
bootstrapped CI of an edge in one network to the bootstrapped CI of the same edge
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in another network) for which a statistical test is being developed.11 Finally, we
wish to point out promising research on obtaining exact p-values and confidence
intervals based on the results of LASSO regularized analyses (see Hastie et al.,
2015, for an overview), which may in the future lead to a lesser need to rely on
bootstrapping methods.

Conclusion

In addition to providing a framework for network estimation as well as performing
the accuracy tests proposed in this chapter, bootnet o↵ers more functionality to fur-
ther check the accuracy and stability of results that were beyond the scope of this
chapter, such as the parametric bootstrap, node-dropping bootstrap (Costenbader
& Valente, 2003) and plots of centrality indices of each node under di↵erent levels
of subsetting. Future development of bootnet will be aimed to implement function-
ality for a broader range of network models, and we encourage readers to submit
any such ideas or feedback to the Github Repository.12 Network accuracy has
been a blind spot in psychological network analysis, and the authors are aware of
only one prior paper that has examined network accuracy (Fried, Epskamp, et al.,
2016), which used an earlier version of bootnet than the version described here.
Further remediating the blind spot of network accuracy is of utmost importance
if network analysis is to be added as a full-fledged methodology to the toolbox of
the psychological researcher.

11
http://www.github.com/cvborkulo/NetworkComparisonTest

12
http://www.github.com/sachaepskamp/bootnet
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