Chapter 2

Regularized Partial Correlation
Networks

Abstract

Recent years have seen an emergence of network modeling applied to
moods, attitudes, and problems in the realm of psychology. In this frame-
work, psychological variables are understood to directly interact with each
other rather than being caused by an unobserved latent entity. In this tuto-
rial, we introduce the reader to estimating the most popularly used network
model for psychological data: the partial correlation network. We describe
how regularization techniques can be used to efficiently estimate a parsi-
monious and interpretable network structure on cross-sectional data. We
show how to perform these analyses in R and demonstrate the method in an
empirical example on post-traumatic stress disorder data. In addition, we
discuss the effect of the hyperparameter that needs to be manually set by the
researcher and provide a checklist with potential solutions for problems often
arise when estimating regularized partial correlation networks. The chap-
ter concludes with a simulation study that shows the performance of the
discussed methodology using a plausible psychological network structure.

2.1 Introduction

Recent years have seen the emergence of the use of network modeling for ex-
ploratory studies of psychological behavior as an alternative to latent-variable
modeling (Borsboom & Cramer, 2013; Schmittmann et al., 2013). In these so-
called psychological networks (Epskamp, Borsboom, & Fried, 2016), nodes rep-
resent psychological variables such as mood states, symptoms or attitudes, and

This chapter has been adapted from: Epskamp, S., and Fried, E.I. (2016). A Tutorial on
Regularized Partial Correlation Networks. arXiv preprint, arXiv:1607.01367, and: Epskamp,
S. (2016). Regularized Gaussian Psychological Networks: Brief Report on the Performance of
Extended BIC Model Selection. arXiv preprint, arXiv:1606.05771.
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2. REGULARIZED PARTIAL CORRELATION NETWORKS

links between the nodes represent unknown statistical relationships that need to
be estimated. As a result, this class of network models is strikingly different
from e.g., social networks in which links are known (Wasserman & Faust, 1994),
and poses novel problems of statistical inference. A great body of technical lit-
erature exists on the estimation of such network models (e.g., Meinshausen &
Biithlmann, 2006; Friedman, Hastie, & Tibshirani, 2008; Hastie, Tibshirani, &
Friedman, 2001; Hastie, Tibshirani, & Wainwright, 2015; Foygel & Drton, 2010).
However, this line of literature often requires a more technical background than
can be expected from psychological researchers and does not focus on the unique
problems that come with analyzing psychological data, such as the handling of or-
dinal data, interpretability of networks based on different samples and attempting
to find evidence for an underlying causal mechanism. While this tutorial is aimed
at empirical researchers in psychology, it should be noted that the methodology
can readily be applied to other fields of research as well.

The main type of model used to estimate psychological methods are so-called
pairwise Markov random fields (PMRF; Lauritzen, 1996; Murphy, 2012). The
present chapter will focus on the most common PMRF for continuous data: partial
correlation networks. Partial correlation networks are usually estimated using
regularization, an important statistical procedure that helps to recover the true
network structure of the data. In this chapter, we present a tutorial on estimating
such regularized partial correlation networks, using a methodology implemented
in the ggraph package (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom,
2012) for the statistical programming language R (R Core Team, 2016). This
methodology has already been used in a substantive number of publications in
diverse fields, such as psychology, psychiatry, health sciences and more (e.g., Fried,
Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016; Isvoranu, van Borkulo, et al.,
2016; Isvoranu, Borsboom, van Os, & Guloksuz, 2016; Knefel, Tran, & Lueger-
Schuster, 2016; Levine & Leucht, 2016; Jaya, Hillmann, Reininger, Gollwitzer,
& Lincoln, 2016; Deserno, Borsboom, Begeer, & Geurts, 2016; McNally, 2016;
Kossakowski et al., 2016; Langley, Wijn, Epskamp, & Van Bork, 2015; van Borkulo
et al., 2015). However, the methodology itself has not yet been introduced in
psychological literature. In addition, because of the novelty of regularized partial
correlation networks in psychological research, we are not aware of concise and
clear introductions aimed at empirical researchers that explain regularization. The
goal of this chapter is thus (1) to provide a short introduction to regularization
partial correlation networks, (2) to outline the commands used in R to perform this
procedure, and (3) to present a checklist for identifying the most common problems
and questions arising from regularized networks. In addition, this chapter will
present simulation results that show the described estimation method works well
with plausible psychological networks on both continuous and ordinal data.

12



2.2. Partial Correlation Networks

2.2 Partial Correlation Networks

The most commonly used framework for constructing a psychological network on
data that can be assumed to be multivariate normal® is to estimate a network of
partial correlation coefficients (McNally et al., 2015; Borsboom & Cramer, 2013).
Such networks can also be termed concentration graphs (Cox & Wermuth, 1994)
or Gaussian graphical models (Lauritzen, 1996). Each link in the network rep-
resents a partial correlation coefficient between two variables after conditioning
on all other variables in the dataset. These coefficients range from —1 to 1 and
encode the remaining association between two nodes after controlling for all other
information possible, also known as conditional independence associations. Typ-
ically, the connections are visualized using red lines indicating negative partial
correlations, green lines indicating positive partial correlations, and wider and
more saturated connections indicate partial correlations that are far from zero
(see Chapter 9). Whenever the partial correlation is exactly zero, no connection
is drawn between two nodes, indicating that two variables are independent after
controlling for all other variables in the network. This is of particular interest
since such a missing connection indicates one of the two variables could not have
caused the other (Pearl, 2000). As such, whenever there is a connection present, it
highlights a potential causal pathway between two variables (see also Chapter 6).

Due to sampling variation, we do not obtain partial correlations that are ex-
actly zero when estimating a partial correlation network. Instead, even when in
reality two variables are conditionally independent, we still obtain partial correla-
tions that are very small and are represented as very weak edges in the network.
These connections are called spurious (Costantini, Epskamp, et al., 2015), as they
represent relationships that are not true in reality. We wish to control for such spu-
rious connections, especially considering the fact that we estimate a large number
of parameters in partial correlation networks that can also lead to false positive
associations. One way to do so is to test all partial correlations for statistical
significance and remove all connections that fail to reach significance (Drton &
Perlman, 2004). However, this poses a problem of multiple testing, and control-
ling for this problem (e.g., by using a Bonferroni correction) results in a loss of
power (Costantini, Epskamp, et al., 2015).

2.3 LASSO Regularization

An increasingly popular method for controlling for spurious connections—as well
as to obtain easier interpretable networks that may perform better in cross-
validation prediction—is to use statistical regularization techniques originating
in the field of machine learning. The goal here is to obtain a network structure
in which as few connections as possible are required to parsimoniously explain
the covariance among variables in the data. Especially prominent is to use of
the ‘least absolute shrinkage and selection operator’ (LASSO; Tibshirani, 1996).

1The assumption of normality can be relaxed by applying a transformation when data are
continuous but not normal (Liu, Lafferty, & Wasserman, 2009), or by basing the network esti-
mation on polychoric correlations when the data are ordinal.
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2. REGULARIZED PARTIAL CORRELATION NETWORKS

In essence, the LASSO shrinks partial correlation coefficients when estimating a
network model, which means that small coefficients are estimated to be exactly
zero. This results in fewer connections in the network, or in other words, a sparse
network in which likely spurious connections are removed. The LASSO utilizes
a tuning parameter A (lambda) that needs to be set, controlling this level of
sparsity. When the tuning parameter is low, only few connections are removed,
likely resulting in too many spurious connections. When the tuning parameter
is high, many connections are removed, likely resulting in too many true connec-
tions to be removed in addition to all spurious connections. More broadly, when
A equals zero every connection remains in the network and when A is substan-
tively high no connection remains in the network. As such, the tuning parameter
needs to be carefully selected to result in a network structure that minimizes the
number of spurious connections while maximizing the number of true connections
(Foygel Barber & Drton, 2015; Foygel & Drton, 2010).

Typically, a range of networks is estimated under different values of A (Zhao &
Yu, 2006). The value for A under which no edges are retained (the empty network),
Amax; 1S set to the largest absolute correlation (Zhao et al., 2015). A minimum
value can be chosen by multiplying some ratio R with this maximum value?:

>\min = R)\max-

A logarithmically spaced range of tuning parameters (typically 100 different val-
ues), ranging from Apin t0 Amax, can be used to estimate different networks. To
summarize, the LASSO can be used to estimate a range of networks rather than
a single network, ranging from a fully connected network to a fully disconnected
network. Next, one needs to select the best network out of this range of networks.
This selection can be done by optimizing the fit of the network to the data (i.e. by
minimizing some information criterion). Minimizing the Extended Bayesian Infor-
mation Criterion (EBIC; Chen & Chen, 2008) has been shown to work particularly
well in retrieving the true network structure (Foygel Barber & Drton, 2015; Foygel
& Drton, 2010; van Borkulo et al., 2014), especially when the generating network
is sparse (i.e., does not contain many edges). LASSO regularization with EBIC
model selection has been shown to have high specificity all-around (i.e., does not
estimate edges that are not in the true network) but a varying sensitivity (i.e.,
estimates edges that are in the true network) based on the true network structure
and sample size. For example, sensitivity typically is less when the true network
is dense (contains many connections) or features some nodes with many edges
(hubs).

Many variants of the LASSO with different methods for selecting the LASSO
tuning parameter have been implemented in open-source software (e.g., Kramer,
Schéfer, & Boulesteix, 2009; Zhao et al., 2015). We suggest to use the variant
termed the ‘graphical LASSO’ (glasso; Friedman et al., 2008), which is a fast vari-
ant of the LASSO specifically aimed at estimating partial correlation networks.
The glasso algorithm has been implemented in the glasso package (Friedman,
Hastie, & Tibshirani, 2014) for the statistical programming language R (R Core
Team, 2016). An automatic function that uses this package in combination with

2The ggraph package uses R = 0.01 by default.
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.33

Figure 2.1: True network structure used in simulation example. The network
represents a partial correlation network: nodes represent observed variables and
links represent partial correlations between two variables after conditioning on all
other variables. The simulated structure is a chain graph in which all absolute
partial correlation coefficients were drawn randomly between 0.3 and 0.4.

EBIC model selection as described by Foygel and Drton (2010) has been imple-
mented in the R package ggraph (Epskamp et al., 2012). We suggest using this
routine because—in addition to simple input commands—it only requires an es-
timate of the covariance matrix and not the raw data, allowing one to use, e.g.,
polychoric correlation matrices when the data are ordinal.

The EBIC uses a hyperparameter v (gamma) that controls how much the EBIC
prefers simpler models (fewer connections). This hyperparameter  should not be
confused with the LASSO tuning parameter A, and needs to be set manually. It
typically is set between 0 and 0.5 (Foygel & Drton, 2010, suggest to use 0.5),
with higher values indicating that simpler models (more parsimonious models
with fewer connections) are preferred. Setting the hyperparameter to 0 errs on
the side of discovery: more connections are estimated, including possible spurious
ones (the network has a higher specificity). Setting the hyperparameter to 0.5, on
the other hand, errs on the side of caution or parsimony: fewer connections are
obtained including hardly any spurious connections but also less true connections
(the network has a higher sensitivity). It is important to mention that even when
setting the hyperparameter to 0, the network will still be sparser compared to
a partial correlation network that does not employ any form of regularization;
setting v to 0 indicates that the EBIC reduces to the standard BIC, which is still
a criterion that prefers simple models.

To exemplify the above-described method of selecting a best fitting regular-
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ized partial correlation network, we simulated a dataset of 100 people and 8 nodes
based on the chain graph shown in Figure 2.1. Such graphs are particularly suit-
able for our example because the true network (the one we want to recover with
our statistical analysis) only features connections among neighboring nodes vi-
sualized in a circle. This makes spurious connections—any edge that connects
non-neighboring nodes—easy to identify visually. We used the qgraph package
to estimate 100 different network structures, based on different values for A, and
compute the EBIC under different values of 7. Figure 2.2 depicts a representative
sample of 10 of these networks. As can be seen, networks 1 through 7 feature
spurious connections and err on the side of discovery, while networks 9 and 10
recover too few connections and err on the side of caution. For each network, we
computed the EBIC based on « of 0, 0.25 and 0.5 (the parameter the researchers
needs to set manually). The boldface values show the best fitting models, indi-
cating which models would be selected using a certain value of v. When v = 0
was used, network 7 was selected that featured three weak spurious connections.
When « was set to 0.25 or 0.5 (the default in ggraph) respectively, network 8 was
selected, which has the same structure as the true network shown in Figure 2.1.
These results show that in our case, varying v changed the results only slightly.
Importantly, this simulation does not imply that v = 0.5 always leads to the true
model; simulation work has shown that 0.5 is fairly conservative and may result in
omitting true edges from the network, while it is very unlikely that spurious ones
are obtained (Foygel & Drton, 2010). In sum, the choice of the hyperparameter
is somewhat arbitrary and up to the researcher, and depending on the relative
importance assigned to caution or discovery (Dziak, Coffman, Lanza, & Li, 2012).
Which of these v values work best is a complex function of the (usually unknown)
true network structure.

A note on sparsity. It is important to note that both thresholding networks
based on significance of edges or using LASSO regularization will lead to edges
being removed from the network (termed a sparse network), but do not present
evidence that these edges are, in fact, zero (see Chapter 4). This is because these
methods seek to maximize specificity; that is, they all aim to include as few false
positives (edges that are not in the true model) as possible. All these methods will
return empty network structures when there is not enough data. It is important
to note that observing a structure with missing edges, or even an empty network,
is in no way evidence that there are, in fact, missing edges. This is because these
methods do not try to keep the number of false negatives low, that is, the number
of edges that are not present in the estimated network but are present in the true
network. This is related to a well-known problem of null hypothesis testing (to
which, roughly, all these methods correspond): Not rejecting the null-hypothesis
is not evidence that the null hypothesis is true (Wagenmakers, 2007). That is,
we might not include an edge because the data are too noisy or because the null
hypothesis is true; classical tests and LASSO regularization cannot differentiate
between these two reasons. Quantifying evidence for edge weights being zero is
still a topic of future research (see Chapter 12).
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2. REGULARIZED PARTIAL CORRELATION NETWORKS

2.4 Example

In this paragraph, we use an example dataset to estimate a network on data of 221
people with a sub-threshold post-traumatic stress disorder (PTSD) diagnosis; the
network features 20 PTSD symptoms. A detailed description of the dataset can
be found elsewhere (Armour et al., 2016), and the full R codes for this analysis
can be found in the supplementary materials.

The following R codes perform regularized estimation of a partial correlation
network using EBIC selection (Foygel & Drton, 2010). These codes make use
of the ggraph package (Epskamp et al., 2012), which in turns utilizes the glasso
package for the glasso algorithm (Friedman et al., 2014). These codes assume data
is present in R under the object name Data.

library("qgraph")

corMat <- cor_auto(Data)

graph <- qgraph(corMat,
graph = "glasso",
sampleSize = nrow(Data),
layout = "spring",
tuning = 0.5)

In these codes, library("qgraph") loads the package into R and the cor_auto
function detects ordinal variables (variables with up to 7 unique integer values)
and uses the lavaan package (Rosseel, 2012) to estimate polychoric, polyserial
and Pearson correlations. The ggraph function estimates and plots the network
structure. The argument graph specified that we want to use the glasso algorithm
with EBIC model selection, the argument sampleSize specifies the sample size
of the data, the argument layout specifies the node placement and the argument
tuning specified the EBIC hyperparameter. The hyperparameter is here set to 0.5,
which is also the current default value used in ggraph. For more control on the
estimation procedure, one can use the EBICglasso function, which is automati-
cally called when using qgraph(..., graph = "glasso"). Finally, the estimated
weights matrix can be obtained either directly using EBICglasso or by using the
getWmat function on the output of gqgraph:

getWmat (graph)

Figure 2.3 shows the resulting network estimated under three different values
of the hyperparameter 0, 0.25, and 0.5. Table 2.1 shows the description of the
nodes. If we investigate the number of edges, we would expect that the network
with the largest hyperparameter of 0.5 has the fewest connections. This is indeed
the case: the network features 105 edges with v = 0, 95 edges with v = 0.25, and
87 edges with v = 0.5.

We can further investigate properties of the network structures by investigating
how important nodes are in the network using measures called centrality indices.
A plot of these indices can be obtained as followed:

centralityPlot (graph)

18



2.4. Example

(g0 = D eued ‘gg'g = ¢ [eued ‘(g = y [oued :9ySu1 0 o[ wo) A IejowrerediadAy OGSV Ol
JO s[oAo] Sursearour Ypm ‘swojdwds (S I.d 0g U0 s100(qns 1gg JO Sosuodsol UO PajRmII)SO SYIOMIOU UOTJR[DIIO [RIYIRJ €' 9INSI]

& &
0o o
© @ee/e @99« © ef
A © (=) (=) (@)
O

3 w@ Al W@ [, P

@G)

& )
& 0 o

19



2. REGULARIZED PARTIAL CORRELATION NETWORKS

Table 2.1: Description of nodes shown in Figure 2.3
Node Description

1 Intrusive Thoughts

2 Nightmares

3 Flashbacks

4 Emotional cue reactivity

5 Psychological cue reactivity
6 Avoidance of thoughts

7 Avoidance of reminders

8 Trauma-related amnesia

9 Negative beliefs

10 Blame of self or others

11 Negative trauma-related emotions
12 Loss of interest

13 Detachment

14 Restricted affect
15 Irritability /anger

16 Self-destructive /reckless behavior
17 Hypervigilance

18 Exaggerated startle response

19 Difficulty concentrating

20 Sleep disturbance

An overview of these measures and their interpretation can be found in Chapter 1
and Chapter 10. All measures indicate how important nodes are in a network, with
higher values indicating that nodes are more important. Figure 2.4 was made using
centralityPlot and shows the resulting centrality of all three networks shown in
Figure 2.3. For a substantive interpretation of the network model obtained from
this dataset we refer the reader to Armour et al. (2016).

2.5 Common Problems and Questions

The estimation of regularized networks is not always without problems and can
sometimes lead to network structures that are hard to interpret. Here, we list sev-
eral common problems and questions encountered when estimating these models.

1. The estimated network has no or very few edges. This can occur in the
unlikely case when variables of interest do not exhibit partial correlations.
More likely, it occurs when the sample size is too low for the number of nodes
in the network. The EBIC penalizes edge weights based on sample size to
avoid false positive associations, which means that with increasing sample
size, the partial correlation network will be more and more similar to the
regularized partial correlation network. The smaller the sample, however,
the stronger the impact of the regularization on the network in terms of
parsimony. Figure 2.5 (panel A) shows a network estimated on the same data
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Betweenness Closeness Strength

type

- EBICO
-e- EBIC0.25
- EBICO0.5

Figure 2.4: Closeness, betweenness, and degree centrality of the three networks
described in Figure 2.3 with increasing levels of the LASSO hyperparameter .
Values are standardized to z-scores.
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as Figure 2.3, but this time with only 50 instead of the 221 participants. A
way to remediate this problem is by setting the hyperparameter lower (e.g.,
0; see Figure 2.5 panel B). Note that this likely leads to spurious connections.
An alternative solution is to make a selection of the variables of interest and
estimate a network based only on a subset of variables, as less nodes in the
network leads to less edges to be estimated, resulting in more observations
per parameter to be estimated.

. The network is densely connected (i.e., many edges) including many unex-

pected negative connections and, in particular, including many implausibly
high partial correlations (e.g., higher than 0.8). As the LASSO aims to
remove connections and return a relatively sparse network, we would not
expect densely connected networks. In addition, we would not expect many
partial correlations to be so high, as (partial) correlations above 0.8 indi-
cate near-perfect collinearity between variables. These structures can occur
when the correlation matrix used as input is not positive definite, which in
turn can be a result of a too small sample size, or of the estimation of poly-
choric correlations. In the case of a non-positive definite correlation matrix,
cor_auto will warn the user and attempt to correct for this by searching
for a nearest positive definite matrix. This matrix, however, can still lead
to wildly unstable results. When the network looks very strongly connected
with few (if any) missing connections and partial correlations near 1 and —1,
the network structure is likely resulting from such a problem and should not
be interpreted. We suggest that researchers always compare networks based
on polychoric correlations with networks based on Spearman correlations
(they should look somewhat similar) to rule out if estimating the polychoric
correlations are the source of this problem.

. While in general the graph looks as expected (i.e., relatively sparse), some

connections are extremely high and/or unexpectedly extremely negative.
This problem is related to the previous problem. The estimation of poly-
choric correlations relies on the pairwise cross-tables of variables in the
dataset. When the sample size is relatively low, some cells in the cross-
tables could be zero (e.g., nobody was observed that scored a 2 on one item
and a 1 on another item). This can lead to unstable estimated polychoric
correlations, and in turn to unstable partial correlations. Again, the network
based on polychoric correlations should be compared to a network based on
Spearman correlations. Obtaining very different networks indicates that the
estimation of the polychoric correlations may not be trustworthy.

. Negative connections are found between variables where one would expect

positive connections. For example, two symptoms of the same disorder could,
unexpectedly, feature a negative partial correlation rather than a positive
one. This can occur artificially when one conditions on a common effect
(Pearl, 2000). Suppose one measures students’ grades of a recent test, their
motivation, and the easiness of that test (Koller & Friedman, 2009). We
expect the grade to be positively influenced by the easiness of the test and
the motivation of the student, and we do not expect any correlation between
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A . y=05 B.y=0

Figure 2.5: Network of 20 PTSD symptoms. Instead of the full data like in
Figure 2.3 (221 subjects), only 50 subjects were used. Panel A: LASSO hyperpa-
rameter 7y set to the default of 0.5; panel B: « set to 0 for discovery.

motivation and easiness: knowing a student is motivated does not help us
predict the easiness of a test. However, if we only look at students who
obtained an A for the test (i.e., conditioning on grades), we now can predict
that if the student is not at all motivated, the test must have been very
easy. By conditioning on the common effect (grade) we artificially created
a megative partial correlation between test easiness and student motivation.
Because partial correlation networks indicate such conditional relationships,
these negative relationships can occur when common effect relationships are
present, and unexpected negative relationships might indicate common ef-
fect structures. Another way these relationships can occur is if the network
is based on a subsample of the population, and that subsample is a com-
mon effect of the nodes in the network. For example, when one splits the
sample based on the sum score of variables used also in the network, neg-
ative relationships could be induced. We recommend results based on such
subsamples to be interpreted with care.

In addition to the above-mentioned problems, some questions are often en-
countered in network analysis:

1. How large does my sample have to be for a given number of nodes? Or in
other words, how stable are the estimated network structures and centrality
indices to sampling size? This topic goes beyond the scope of this chapter,
and is further discussed in Chapter 3. In summary, networks are compli-
cated models using many parameters, which can be unstable given relatively
low sample sizes. The LASSO remedies this problem somewhat, and stable
networks can be obtained with much smaller samples compared to unregu-
larized networks. Nonetheless, network models estimate a large number of
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parameters, implying that even when the LASSO is used, the models need
considerable power to obtain stable parameter estimates. It is therefore ad-
visable to always check for the accuracy and stability of edge weights and
centrality measures when these are reported and substantively interpreted
(c.f., Chapter 3).

. Can we compare two different groups of people (e.g., clinical patients and

healthy controls) regarding the connectivity or density of their networks
(i.e. the number of connections)? The answer depends on the differences in
sample size. As mentioned before, the EBIC is a function of the sample size:
the lower the sample size, the more parsimonious the network structure.
This means that comparing the connectivity of two networks is meaningful
if they were estimated on roughly the same sample size, but that differences
should not be compared if this assumption is not met (e.g., see Rhemtulla
et al., 2016). A statistical test for comparing networks based on different
sample sizes is currently being developed (Van Borkulo et al., 2016)3.

. Does the network structure provide evidence that the data are indeed causally

interacting and derive from a true network model, and not from a com-
mon cause model where the covariance of symptoms is explained by one
or more underlying latent variables (Schmittmann et al., 2013)? The short
answer is no. While psychological networks have been introduced as an al-
ternative modeling framework to latent variable modeling, and are capable
of strongly changing the point of focus from the common shared variance
to unique variance between variables (Costantini, Epskamp, et al., 2015),
they do not necessarily disprove the latent variable model. There is a di-
rect equivalence between network models and latent variable models (see
Chapter 7 and Chapter 8), and if we generate data based on a true latent
variable model, the corresponding network model will be fully connected.
However, this does not mean that when the resulting network is not fully
connected, the latent variable model must be false. LASSO estimation will
always return a sparse network with at least some missing connections. As
such, observing that there are missing connections does not indicate that
the true model was a model without missing connections. Because of the
equivalence stated above, observing a model with missing connections can-
not be taken for evidence that a latent variable model was not true. A more
detailed discussion on this topic can be found in Chapter 4 and a method-
ology on statistically comparing fit of a network model and latent variable
model is described in Chapter 7. In addition, statistical tests to distinguish
sparse networks from latent variable models are currently being developed
(Van Bork, 2015).

2.6 Simulation Study

While partial correlation network estimation using EBIC model selection has al-
ready been shown to work well in retrieving the GGM structure (Foygel & Drton,

3github.com/cvborkulo/NetworkComparisonTest .
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Figure 2.6: True Gaussian graphical model used in simulation study. The network
was obtained by computing the (unregularized) sample partial correlation network
on the BFI personality dataset from the psych package in R, followed by removing
absolute edges below 0.05.

2010), it has not been validated in plausible scenarios for psychological networks.
In addition, no simulation study has assessed the performance of using a polychoric
correlation matrix in this methodology. To this end, this report presents a sim-
ulation study that assesses the performance in a plausible psychological network
structure. In addition, the simulation study varied R and ~ in order to provide
recommendations of these parameters in estimating psychological networks. The
simulation study makes use of the ggraph package, using the R codes described
above.

Methods

To obtain a representative psychological network structure, the bfi dataset from
the psych package (Revelle, 2010) was used on the Big 5 personality traits (Benet-
Martinez & John, 1998; Digman, 1989; Goldberg, 1990a, 1993; McCrae & Costa,
1997). The bfi dataset consists of 2,800 observations of 25 personality inven-
tory items. The network structure was obtained by computing the sample par-
tial correlation coefficients (negative standardized inverse of the sample variance—
covariance matrix; Lauritzen, 1996). Next, to create a sparse network all absolute
edge weights below 0.05 were set to zero, thus removing edges from the network.
Figure 2.6 shows the resulting network structure. In this network, 125 out of 300
possible edges were nonzero (41.6%). While this network is not the most appro-
priate network based on this dataset, it functions well as a proxy for psychological
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network structures as it is both sparse (has missing edges) and has parameter
values that are not shrunken by the LASSO.

In the simulation study, data was generated based on the network of Figure 2.6.
Following, the network was estimated using the the ggraph codes described above.
Sample size was varied between 50, 100, 250, 500, 1,000, and 2,500, v was varied
between 0, 0.25, 0.5, 0.75, and 1, and R was varied between 0.001, 0.01 and
0.1. The data was either simulated to be multivariate normal, in which case
Pearson correlations were used in estimation, or ordinal, in which case polychoric
correlations were used in the estimation. Ordinal data was created by sampling
four thresholds for every variable from the standard normal distribution, and next
using these thresholds to cut each variable in five levels. To compute polychoric
correlations, the cor_auto function was used, which uses the lavCor function of
the lavaan package (Rosseel, 2012). The number of different A values used in
generating networks was set to 100 (the default in ggraph).

For each simulation, in addition to the correlation between estimated and true
edge weights, the sensetivity and specificity were computed (van Borkulo et al.,
2014). The sensitivity, also termed the true-positive rate, indicates the proportion
of edges in the true network that were estimated to be nonzero:

# true positives

sensitivity = .
Y # true positives + # of false negatives

Specificity, also termed the true negative rate, indicates the proportion of true
missing edges that were also estimated to be missing:

# true negatives

specificity = .
P Y # true negatives + # false positives

When specificity is high, there are not many false positives (edges detected to be
nonzero that are zero in the true network) in the estimated network.

Results

Each of the conditions was replicated 1,000 times, leading to 180,000 simulated
datasets. Figure 2.7 shows the sensitivity of the analyses. This figure shows that
sensitivity increases with sample size and is high for large sample sizes. When ~ >
0, small sample sizes are likely to result in empty networks (no edges), indicating a
sensitivity of 0. When ordinal data is used, small sample sizes (50 and 100) resulted
in far too densely connected networks that are hard to interpret. Setting v to be
higher remediated this by estimating empty networks. At higher sample sizes, -
does not play a role and sensitivity is comparable in all conditions. Using R = 0.1
remediates the poor performance of polychoric correlations in lower sample sizes,
but also creates an upper bound to sensitivity at higher sample sizes.

Figure 2.8 shows the specificity of the analyses, which was all-around high
except for the lower sample sizes in ordinal data using R = 0.01 or R = 0.001.
Some outliers indicate that fully connected networks were estimated in ordinal
data even when setting v = 0.25 in small sample sizes. In all other conditions
specificity was comparably high, with higher v values only performing slightly
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Figure 2.8: The specificity of the simulated datasets. When specificity is high, there are not many edges in the estimated network
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better. Figure 2.9 shows the correlation between true and estimated edge weights.
This figure shows a comparable good performance from sample sizes of 250 and
higher in all conditions, with v values up to 0.5 outperforming the higher ~ values.
It should be noted that the correlation was set to zero if the estimated network
had no edges (all edge weights were then zero).

2.7 Conclusion

This chapter presented tutorial on how to estimate psychological networks us-
ing a popular estimation technique: LASSO regularization with the EBIC model
selection. The resulting network is a network of partial correlation coefficients con-
trolled for spurious connections. One possibility to do so is provided by the ggraph
R package that allows the estimation of network structure based on the correla-
tion matrix of the data. The method also allows constructing partial correlation
networks of ordered-categorical data by estimating the appropriate (in this case,
polychoric) correlation matrix. The performance was assessed on 180,000 simu-
lated datasets using a plausible psychological network structure. Results indicate
that partial correlation networks could be well retrieved using either Pearson cor-
relations or polychoric correlations. The default setup of ggraph uses v = 0.5 and
R = 0.01, which are shown to work well in all conditions. Setting v = 0.25 im-
proved the detection rate, but sometimes led to poorly estimated networks based
on polychoric correlations. 7y can be set to 0 to err more on the side of discov-
ery (Dziak et al., 2012), but should be done with care in low sample polychoric
correlation matrices. All conditions showed increasing sensitivity with sample size
and a high specificity all-around. This is comparable to other network estimation
techniques (van Borkulo et al., 2014), and shows that even though a network does
not contain all true edges, the edges that are returned can usually be expected
to be genuine. The high correlation furthermore indicated that the strongest true
edges are usually estimated to be strong as well.

Many other estimation techniques exist. Regularized estimation of partial
correlation networks can also be performed using the huge (Zhao et al., 2015)
and parcor (Kramer et al., 2009) packages. When all variables are binary, one
can estimate the Ising Model using, for instance, the IsingFit R package (van
Borkulo & Epskamp, 2014). The resulting network has a similar interpretation as
partial correlation networks, and is also estimated using LASSO with EBIC model
selection (van Borkulo et al., 2014). When the data consist of both categorical and
continuous variables, a state-of-the-art methodology is implemented in the mgm
package (Haslbeck & Waldorp, 2016a) also making use of LASSO estimation with
EBIC model selection. The bootnet package can subsequently be used to assess
the accuracy of the estimated network structure obtained via ggraph or any of the
other packages mentioned above (see also Chapter 3).

Important to note is that the methods described in this chapter are only ap-
propriate to use when the cases in the data (the rows of the spreadsheet) can
reasonably be assumed to be independent of one-another. Such is the case in cross-
sectional analysis—where cases represent people that are measured only once—but
not in longitudinal data where one person is measured on several occasions. In this
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case, temporal information needs to be taken into account when estimating net-
work structures. One way to do so is by using the graphical vector-autoregression
model (graphical VAR; Wild et al., 2010). LASSO regularization making use of
glasso in an iterative algorithm has been developed to estimate the network struc-
tures (Abegaz & Wit, 2013; Rothman, Levina, & Zhu, 2010). EBIC model selec-
tion using these routines has been implemented in the R packages sparse TSCGM
(Abegaz & Wit, 2015; aimed at estimating genetic networks) and graphical VAR
(Epskamp, 2015; aimed at estimating n = 1 psychological networks).

In conclusion, while psychological network analysis is a novel field that is
rapidly changing and developing, we have not seen an accessible description of the
most commonly used estimation procedure in the literature: LASSO regulariza-
tion using EBIC model selection to estimate a sparse partial correlation network.
This chapter aimed to provide a short overview of this common and promising
method.
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