
Chapter 11

Unified Visualizations of Structural

Equation Models

Abstract

Structural Equation Modeling (SEM) has a long history of represent-
ing models graphically as path diagrams. This chapter presents the freely
available semPlot package for R, which fills the gap between advanced, but
time-consuming, graphical software and the limited graphics produced auto-
matically by SEM software. In addition, semPlot o↵ers more functionality
than drawing path diagrams: it can act as a common ground for importing
SEM results into R. Any result useable as input to semPlot can be also repre-
sented in any of the three popular SEM frameworks, as well as translated to
input syntax for the R packages sem (Fox, 2006) and lavaan (Rosseel, 2012).
Special considerations are made in the package for the automatic placement
of variables, using three novel algorithms that extend earlier work of Boker,
McArdle, and Neale (2002). The chapter concludes with detailed instruc-
tions on these node-placement algorithms.

11.1 Introduction

The semPlot package for the freely available statistical programming language
R (R Core Team, 2016) extends various popular structural equation modeling
(SEM) software packages with a free, easy to use and flexible way of producing
high quality graphical model representations—commonly termed path diagrams—
as well as providing a bridge between these software packages and the main SEM
frameworks.

A path diagram utilizes a network representation, in which variables are repre-
sented as nodes—square nodes indicating manifest variables, circular nodes indi-
cating latent variables and triangular indicating constants—and relations between

This chapter has been adapted from: Epskamp, S. (2015). semPlot: Unified visualizations
of Structural Equation Models. Structural Equation Modeling, 22, 474–483.

221

11. Unified Visualizations of Structural Equation Models

variables are represented by a set of unidirectional and bidirectional edges, which
typically represent regression equations and (co)variances respectively.

Currently there are two common ways of drawing path diagrams. Many of
the available SEM software packages have an option to display the path diagram
graphically, either directly in the package (e.g., LISREL; Jöreskog & Sörbom,
1996), by creating syntax for external network drawing software (e.g., sem; Fox,
2006) or through third party extensions (e.g., Lispath; Marcoulides & Papadopou-
los, 1993). Some packages in addition allow the model to be specified in a graphi-
cal way, by letting the user draw the path diagram directly in an interactive com-
mand window (e.g., Amos; Arbuckle, 2010, MPlus; Muthén & Muthén, 1998–2012,
PLSgraph; Chin, 2001, and Onyx; von Oertzen, Brandmaier, & Tsang, 2013). Al-
ternatively, instead of generating a path diagram from a given model, the path
diagram can also be drawn manually, using many free and commercial software
packages (e.g., Cytoscape; Shannon et al., 2003, Microsoft R� Powerpoint R� and
igraph; Csardi & Nepusz, 2006).

Both of these methods, however, have important limitations. The path dia-
grams created by SEM packages produces path diagrams that are hardly customiz-
able, and produce images unsuited for publication. On the other hand, manually
drawing path diagrams in external software can take a very long time and is prone
to error. The semPlot package o↵ers a middle way; it is designed to automatically
produce high quality path diagrams from the output of various popular SEM soft-
ware packages, while retaining a high level of customizability. Thus, in semPlot,
the user feeds a raw output file to the program, which then returns a high-quality
image ready for publication. In addition, as will be described below, semPlot
creates an internal model representation that can serve as a translator between
SEM programs; for instance, on the basis of, say, LISREL model output, semPlot
automatically generates the corresponding lavaan (Rosseel, 2012) input.

The semPlot package supports the output from R packages sem (Fox, 2006),
lavaan (Rosseel, 2012), OpenMx (RAM specification only; Boker et al., 2011)
and standalone software MPlus (Muthén & Muthén, 1998–2012, using R package
MplusAutomation for the import; Hallquist & Wiley, 2013), LISREL (Jöreskog &
Sörbom, 1996, using R package lisrelToR for import; Epskamp, 2013) and Onyx.
Several base R functions for related statistical techniques such as exploratory fac-
tor analysis and general linear modeling are also supported. In addition, semPlot
can also be used without the need of fitting a SEM using the lavaan modeling syn-
tax, or matrix specification according to the RAM (McArdle & McDonald, 1984),
LISREL (Hayduk, 1987) and Mplus (Muthén, 1998–2004) modeling frameworks.

The graphs that semPlot produces are drawn using the qgraph package, which
itself is designed as a network drawing package aimed at applications in statisti-
cal visualizations. Customization of the graphs can be done either via semPlot
itself (using many options designed for SEM models, such as omitting exogenous
variances) or post-hoc via the qgraph package (using options designed to visualize
graphs, such as manually recoloring edges).

This chapter consists of two sections: the first section describes the function-
ality of the package and in the second section describes the algorithms used for
automatically constructing a path diagram.

222

11.2. General Use of the semPlot Package

1.00 0.55 0.73 1.00 1.11 0.93 1.00 1.18 1.08

0.55 1.13 0.84 0.37 0.45 0.36 0.80 0.49 0.57

0.81 0.98 0.38

0.41

0.26

0.17

x1 x2 x3 x4 x5 x6 x7 x8 x9

vsl txt spd

(a)

1.00 0.55 0.73 1.00 1.11 0.93 1.00 1.18 1.08

0.55 1.13 0.84 0.37 0.45 0.36 0.80 0.49 0.57

0.81 0.98 0.38

0.41

0.26

0.17

x1 x2 x3 x4 x5 x6 x7 x8 x9

vsl txt spd

(b)

Figure 11.1: Generated path diagram of the Holzinger-Swineford CFA example.
Panel (a) shows a visualization of the path diagram with estimates as labels and
Panel (b) shows a visualization of the standardized parameter estimates.

11.2 General Use of the semPlot Package

The semPlot package can be downloaded from CRAN or installed directly in R:

install.packages("semPlot")

After which the package can be loaded:

library("semPlot")

223

11. Unified Visualizations of Structural Equation Models

This will load the functions from the semPlot package into R.

Drawing Path Diagrams

The semPaths function can be used to plot path diagrams and visualize (stan-
dardized) parameter estimates. It takes as first argument either a SEM object
(from R packages) or a string indicating the location of an output file from exter-
nal SEM software (MPlus or LISREL). The second and third arguments can be
assigned strings indicating what the edge color and label respectively indicate. For
example, the following code plots a model where the edges are colored according
to standardized values and the edge labels indicate the unstandardized estimates:

semPaths(input, "standardized", "estimates", ...)

Where ... indicate any number of other arguments controlling the output which
are further explained in the package manual:

?semPaths

To illustrate this, one could use one of the lavaan package documentation examples
to compute a confirmatory factor analysis (CFA) on the famous Holzinger and
Swineford (1939) example:

library("lavaan")

example(cfa)

Next, sending the resulting fit object to semPaths plots a path diagram of the
model with parameter estimates on the labels:

semPaths(fit, "model", "estimates")

We could also visualize the parameter estimates by coloring positive parameters
green or red indicating positive or negative estimates and varying the width and
color of an edge to indicate the strength of the estimate (see Chapter 9). This
works best with standardized parameters:

semPaths(fit, "standardized", "hide")

The resulting graphs can be seen in Figure 11.1. This figure also shows that
fixed parameters—in this case scaling by fixing factor loadings—are visualized by
default by using dashed lines.

The semPlot package can handle larger complicated measurement models. The
next example is based on the Mplus output of the multilevel factor analysis model
as described by Little (2013), in which the factor structure of the Life Skills
Profile-16 (LSP-16) was assessed. The following codes produce the two plots in
Figure 11.2:

semPaths(file.choose(), "model", "estimates",

style = "lisrel", curve = 0.8, nCharNodes = 0,

sizeLat = 12, sizeLat2 = 6, title = TRUE,

mar = c(5, 1, 5, 1), edge.label.cex = 0.5)

224

11.2. General Use of the semPlot Package

1.14 1.14 1.39 1.41 2.48 2.91 1.25 0.88 0.66 1.86 1.71 1.99 1.17 0.83 1.27 1.53

0.60
0.48

0.49

0.48
0.55

0.72

ANSWER1 ANSWER2 ANSWER3 ANSWER8 ANSWER4 ANSWER5 ANSWER6 ANSWER9 ANSWER16 ANSWER10 ANSWER11 ANSWER12 ANSWER7 ANSWER13 ANSWER14 ANSWER15

WITHDRAW SELFCARE COMPLIAN ANTISOCI

Within

(a)

0.59 0.56 0.82 0.76 1.34 1.57 0.92 0.59 0.40 0.94 0.87 1.09 0.67 0.51 0.90 1.05

0.83
0.71

0.78

0.73
0.77

0.85

0.14 0.17 0.30 0.46 0.80 0.11 0.200.23 0.19 0.13 0.23 0.21 0.13 0.20 0.180.34

ANSWER1 ANSWER2 ANSWER3 ANSWER8 ANSWER4 ANSWER5 ANSWER6 ANSWER9 ANSWER16 ANSWER10 ANSWER11 ANSWER12 ANSWER7 ANSWER13 ANSWER14 ANSWER15

BWITHDRA BSELFCAR BCOMPLIA BANTISOC

Between

(b)

Figure 11.2: Generated path diagram for multilevel factor analysis model of LSP-
16. Panel (a) shows the within-cluster model, with vertical bars representing
the estimated thresholds of each of the ordinal variables. Panel (b) shows the
between-cluster model.

In which file.choose() is a base R function that opens a convenient file browser
to select the Mplus output file.

Figure 11.2 shows that two plots are now generated: one indicating the within-
cluster model and one indicating the between-cluster model. In the within-cluster
model the closed orbs inside manifest indicate random intercepts and the verti-
cal bars inside the manifest variables indicate the estimated thresholds; in the
between-cluster model the indicators are represented by a circle for random inter-
cepts.

The argument style = "lisrel" specifies that (residual) variances are plot-
ted similar to the way LISREL plots these: as arrows without origin on endoge-
nous variables only. The default, style = "ram", would plot these residuals as
described by Boker et al. (2002): as double-headed self-loops on both endogenous
and exogenous variables. To illustrate this consider an example of the famous
‘Industrialization and Political Democracy’ dataset used by Bollen (1989), which

225

11. Unified Visualizations of Structural Equation Models

has been implemented as example in the Lavaan package:

library("lavaan")

example(sem)

semPaths(fit, "model", "hide", style = "lisrel",

rotation = 2)

semPaths(fit, "model", "hide", style = "ram", rotation = 2,

cardinal = "man cov")

The resulting graphs can be seen in Figure 11.3.
Color can also indicate equality constrains: by coloring parameters that are

constrained to be equal with the same color (unconstrained parameters are still col-
ored gray)—especially useful in identifying the di↵erent steps in assessing measure-
ment invariance (Meredith, 1993). For example, the semTools package (Pornprasertmanit,
Miller, Schoemann, & Rosseel, 2013) can be used to test for measurement invari-
ance using lavaan on the Holzinger and Swineford (1939) example:

library("semTools")

fits <- example(measurementInvariance)

semPaths(fits$value$fit.intercepts, "equality", "estimates",

sizeLat = 5, title = FALSE, ask = FALSE,

levels = c(1, 2, 4), edge.label.cex = 0.5)

Figure 11.4 shows one of the steps in testing for measurement invariance: strict
measurement invariance with free factor means. It can be seen that the factor
loadings and intercepts are constrained to be equal over groups, but the factor
means and variances are not.

Investigating Correlational Structures

SEM models are usually fit by comparing the observed covariances to the model
implied covariances. The qgraph package used as back-end to semPlot supplies a
novel framework for visualizing correlational structures as networks (as is described
in Chapter 9): a correlation matrix can be visualized as a network in which each
variable is represented by a node and each correlation as a weighted edge between
two nodes.

In the semPlot package, the semCors function visualizes the model implied
correlation matrix (which is either provided as input or computed from data)
and the observed correlation matrix (must be provided as input) using qgraph
with parameters automatically chosen such that the graphs are comparable. To
illustrate this, consider the following simulated dataset (using lavaan):

library("lavaan")

Mod <- ’

A =~ 1*a1 + 0.6*a2 + 0.8*a3

B =~ 1*b1 + 0.7*b2 + 0.9*b3

a1 ~~ 1*b1

A ~~ -0.3* B

226

11.2. General Use of the semPlot Package

x1

x2

x3

y1

y2

y3

y4

y5

y6

y7

y8

i60

d60

d65

(a)

x1

x2

x3

y1

y2

y3

y4

y5

y6

y7

y8

i60

d60

d65

(b)

Figure 11.3: Generated path diagrams for Industrialization and Political Democ-
racy dataset example. Panel (a) shows the path diagram with residuals drawn in
‘lisrel’ style and Panel (b) shows the path diagram with residuals drawn in ‘ram’
style.

227

11. Unified Visualizations of Structural Equation Models

1.00 0.58 0.80 1.00 1.12 0.93 1.00 1.13 1.01

0.56 1.30 0.94 0.45 0.50 0.26 0.89 0.54 0.65

0.80 0.88 0.32
0.41

0.18
0.18

5.00 6.15 2.27 2.78 4.03 1.93 4.24 5.63 5.47

0.00 0.00 0.00

x1 x2 x3 x4 x5 x6 x7 x8 x9

vsl txt spd

1 1 1 1 1 1 1 1 1

1 1 1

1.00 0.58 0.80 1.00 1.12 0.93 1.00 1.13 1.01

0.65 0.96 0.64 0.34 0.38 0.44 0.63 0.43 0.52

0.71 0.87 0.51
0.43

0.33
0.24

5.00 6.15 2.27 2.78 4.03 1.93 4.24 5.63 5.47

−0.15 0.58 −0.18

x1 x2 x3 x4 x5 x6 x7 x8 x9

vsl txt spd

1 1 1 1 1 1 1 1 1

1 1 1

Figure 11.4: Path diagrams for two groups in the Holzinger-Swineford CFA ex-
ample, testing for strict measurement invariance with free factor means.

’

set.seed(5)

Data <- simulateData(Mod)

This dataset, called Data, is simulated under a two-factor model with two neg-
atively correlated factors. However, the residuals of the first indicator of each
factor are strongly positively correlated. After fitting a general CFA model to this
data, not including the residual correlation, the implied and observed correlation
matrices can be inspected:

Mod <- ’

A =~ a1 + a2 + a3

B =~ b1 + b2 + b3

228

11.2. General Use of the semPlot Package

a1

a2

a3
b1

b2

b3

a1

a2

a3
b1

b2

b3

Figure 11.5: Observed (left) and model implied (right) correlation matrices of
simulated data example.

’

fit <- cfa(Mod, data=Data)

semCors(fit, layout = "spring", cut = 0.3, esize = 20)

Figure 11.5 shows that the observed and implied correlation matrices are very
similar except for the correlation between a1 and b1, which cause the misfit in
this model. This provides a visual way of judging the fit of a SEM model and a
way of seeing where misfit is occurring.

Linking SEM Software Packages and Models

An important design philosophy of semPlot is unifying di↵erent SEM software
packages in a freely available interface. To this end, the package can also be used
as bridge between di↵erent SEM software packages and SEM models. First, the
semSyntax function generates model syntax for R packages sem and lavaan given
any input supported in semPlot. For example, the output file of example 5.1 of
the MPlus user guide (Muthén & Muthén, 1998–2012) can be imported:

ex5.1 <- tempfile(fileext = ".out")

url <- "http://www.statmodel.com/usersguide/chap5/ex5.1.out"

download.file(url, ex5.1)

Next, the file can be used to generate a model to use in the lavaan package:

lavMod <- semSyntax(ex5.1, "lavaan")

Model <- ’

F1 =~ 1*Y1

F1 =~ Y2

(...)

229

11. Unified Visualizations of Structural Equation Models

Y5 ~~ Y5

Y6 ~~ Y6

’

The function returns an object, and prints the R script needed to create this
object. A useful application of this bridge is to simulate data in R given any SEM
output file using lavaan’s simulateData function. To do this, first specify the
model with all estimated parameters set to fixed:

lavMod <- semSyntax(ex5.1, "lavaan", allFixed = TRUE)

Next the model can be sent to simulateData:

head(simulateData(lavModFixed))

Y1 Y2 Y3 Y4 Y5 Y6

1 0.88695 0.2414 0.8060 0.6778 1.2228 -0.34377

2 1.30715 -0.4904 0.8651 0.4772 0.4611 0.58303

3 -0.62939 -1.5140 -0.3916 1.0225 1.2060 -0.65448

4 0.99210 -1.8682 -1.0856 0.3514 -0.3357 -2.01952

5 0.02836 -0.4113 -0.3776 -1.1781 0.1050 -1.23260

6 1.12654 1.9011 1.0472 0.6976 -0.8670 -0.03874

Second, the semMatrixAlgebra The semMatrixAlgebra function o↵ers a uni-
fied interface for extracting model matrices of any of the three major SEM frame-
works, RAM (McArdle & McDonald, 1984), LISREL (Hayduk, 1987) and Mplus
(Muthén, 1998–2004), using any of the supported input software packages. For
example, the RAM framework uses three model matrices: A, S and F :

v = Av + u

u ⇠ N(0,S)

Var (v) = F (I −A)S (I −A)
−1>

F

>

In which v is a vector containing both manifest and latent variables, A a matrix
of regression parameters (usually termed the asymmetric matrix), S a matrix of
(residual) variances (usually termed the symmetric matrix) and F (usually termed
the filter matrix) can be used to distinguish between latent and manifest variables.
semMatrixAlgebra can be used to extract e.g., the A matrix of Mplus user guide
example 5.1:

semMatrixAlgebra(ex5.1, A)

F1 F2 Y1 Y2 Y3 Y4 Y5 Y6

F1 0.000 0.000 0 0 0 0 0 0

F2 0.000 0.000 0 0 0 0 0 0

Y1 1.000 0.000 0 0 0 0 0 0

Y2 1.126 0.000 0 0 0 0 0 0

Y3 1.019 0.000 0 0 0 0 0 0

Y4 0.000 1.000 0 0 0 0 0 0

Y5 0.000 1.059 0 0 0 0 0 0

Y6 0.000 0.897 0 0 0 0 0 0

230

11.3. Algorithms for Drawing Path Diagrams

Note that the use of A automatically let semMatrixAlgebra detect that we are
interested in the RAM framework specifically. Requesting matrices from other
frameworks, such as the ⇤ matrix—containing factor loadings—from the MPlus
modeling framework, works in the same way:

semMatrixAlgebra(ex5.1, Lambda)

F1 F2

Y1 1.000 0.000

Y2 1.126 0.000

Y3 1.019 0.000

Y4 0.000 1.000

Y5 0.000 1.059

Y6 0.000 0.897

The semMatrixAlgebra function cannot only be used for extracting individual
model matrices but also for extracting the result of algebraic computations using
these model matrices. For example, one could compute the implied covariances
on the same example model as follows—using helper function Imin(A,TRUE) to
compute (I −A)

−1

:

semMatrixAlgebra(ex5.1,

F %*% Imin(A,TRUE) %*% S %*% t(Imin(A, TRUE)) %*% t(F))

Y1 Y2 Y3 Y4 Y5 Y6

Y1 1.97100 1.02128 0.92423 -0.03000 -0.03177 -0.02691

Y2 1.02128 1.94796 1.04069 -0.03378 -0.03577 -0.03030

Y3 0.92423 1.04069 1.95179 -0.03057 -0.03237 -0.02742

Y4 -0.03000 -0.03378 -0.03057 2.05000 0.80484 0.68172

Y5 -0.03177 -0.03577 -0.03237 0.80484 1.70633 0.72194

Y6 -0.02691 -0.03030 -0.02742 0.68172 0.72194 1.67750

semMatrixAlgebra returns the results in a list rather than a single matrix if the
model contains multiple groups.

11.3 Algorithms for Drawing Path Diagrams

When drawing a path diagram the variables need to be placed in a structured way,
such that the diagram is easily interpretable (Boker et al., 2002). Manually defin-
ing such a graph layout can be tedious and time-consuming work; an automated
solution to placing variables would work best in most situations. This section
introduces three novel algorithms—which are implemented in semPlot—that can
be used to automatically place variables such that complex SEM models are easily
interpretable.

The three layout algorithms are each designed to place variables in a tree-like
structure next to each other on horizontal levels. They are chosen such that first,
the structural part of the model—especially the relationship between exogenous
and endogenous variables—is clearly visible; and second, Indicators of a latent

231

11. Unified Visualizations of Structural Equation Models

variable are placed next to each other and either below or above the latent vari-
able. To achieve this, all three algorithms start with exogenous variables1 or their
indicators placed at the top level of the graph (level 0) and expand downwards to
the bottom of the graph (level n).

The first algorithm is based on the way the LISREL program (Jöreskog &
Sörbom, 1996) plots path diagrams. In this algorithm variables are placed on
one of four horizontal levels. The top level contains manifest variables that are
either exogenous themselves or only indicators of exogenous latent variables. The
second level contains latent variables that are either exogenous themselves or re-
gressed only on exogenous manifest variables. The third level contains all other
(endogenous) latent variables and the fourth level contains all other (endogenous)
manifest variables. Intercepts can be added by placing a representation of the unit
vector next to or below/above each variable. In defining the horizontal placement
the latent variables are placed in the order they appear in the model, and man-
ifest variables are placed such that they are closest to latent variables they are
connected to.

The second algorithm is a variation of the Reingold-Tilford algorithm (Reingold
& Tilford, 1981) which places variables in a tree structure originating from a set of
user defined root nodes at the top. The igraph package (Csardi & Nepusz, 2006)
can be used to compute the Reingold-Tilford algorithm. However, in the presence
of intercepts, exogenous latents, or covariances, this algorithm does not produce
proper diagram structures out of the box. To solve this, the algorithm is applied
to a modified version of the network representation of the model: by removing
all arrows (making edges undirected) and removing all covariances. Through a
specific choice of root variables, a tree structure is obtained in which exogenous
variables are placed on top and endogenous variables at the bottom.

Finally, the third algorithm uses a variation of the placement algorithm de-
scribed by Boker et al. (2002). This algorithm computes for each node the longest
outgoing path, and places nodes accordingly on horizontal levels from highest (top)
to lowest (bottom) longest outgoing path-length. For more stable results (e.g., in-
dicators of exogenous latents should be placed above the latent), this algorithm
can be enhanced by not using the original network representation of a model but
one in which the direction of the edges between exogenous latent variables and
their indicators is reversed and all double-headed edges (covariances) are removed.

In all three algorithms, horizontal levels that do not contain any nodes are
not included in the graph, and if there are only exogenous latent variables and no
regressions between manifest variables (e.g., factor analysis models) the layout is
flipped. In cases which feature many indicators per latent variable, it is more useful
to place variables in a circle-like fashion; here, the origin of the tree placement is
not at the top, expanding to the bottom, but at the center, expanding outward.
To do this, we may transform the horizontal levels to nested circles; the higher
the level, the smaller the circle.

Often, the structural part of a model—containing only regressions between
latent variables—is the only part that requires specifically thoughtful placement
of variables; for the measurement parts—the factor loadings of indicators on each

1A variable is treated as exogenous if it has no incoming directed edges attached.

232

11.3. Algorithms for Drawing Path Diagrams

Y1 Y2 Y3 Y4 Y5 Y6

Y7 Y8 Y9 Y10 Y11 Y12

F1 F2

F3 F4

1 1 1 1 1 1

1 1 1 1 1 1

(a)

Y1 Y2 Y3 Y4 Y5 Y6

Y7 Y8 Y9

Y10 Y11 Y12

F1 F2

F3

F4

1 1 1 1 1 1

1 1 1

1 1 1

(b)

Y1 Y2 Y3 Y4 Y5 Y6

Y7 Y8 Y9 Y10 Y11 Y12

F1 F2

F3

F4

1 1 1 1 1 1

1 1 1 1 1 1

(c)

Y1Y2Y3 Y4Y5Y6

Y7

Y8

Y9

Y10 Y11 Y12

F1 F2

F3

F4

111 111

1

1

1

1 1 1

(d)

Figure 11.6: Path diagram including parameter estimates of example 5.25 of the
Mplus user guide. Panel (a) shows default placement, panel (b) the adjusted
Reingold-Tilford algorithm, panel (c) the adjusted Boker-McArdle-Neale algo-
rithm and panel (d) a layout where only the structural part is based on the
adjusted Boker-McArdle-Neale algorithm and the measurement sub-models are
drawn around the latent variables.

233

11. Unified Visualizations of Structural Equation Models

latent variable—indicators simply need be placed on a straight line under, over,
or next to the latent. To this end, it might not be necessary to run a complicated
placement algorithm over all variables, but rather only over the structural part of
a model, followed by placing indicators near the latent. Such a placement of nodes
for the structural part of a model could be used on the basis of any of the above
mentioned algorithms, but also through any network drawing algorithm (e.g., by
using a force-embedded algorithm; Fruchterman & Reingold, 1991).

In semPaths, the layout argument can be used to control which algorithm is
used to define the placement of the nodes. This argument can be set to "tree"

to obtain the default layout, "tree2" to obtain the adjusted Reingold-Tilford
algorithm or "tree3" to obtain the adjusted Boker-McArdle-Neale algorithm. To
obtain circular versions of these algorithms, "circle", "circle2" and "circle3"

can be used. To split the layout algorithm for structural and measurement models,
the layoutSplit argument can be used. Finally, the layout argument can also
be used to manually define the placement of nodes (see package documentation
for examples). Figure 11.6 shows the result of these algorithms on example 2.25
from the MPlus user’s guide (Muthén & Muthén, 1998–2012).

11.4 Conclusion

The semPlot package extends many popular SEM software packages with ad-
vanced visualization functions. These functions can be used to display specified
models, parameter estimates, model constraints, and implied correlation struc-
tures. Furthermore, semPlot provides a bridge between these software packages
and di↵erent modeling frameworks. The package uses several novel algorithms
for automatic placement of variables in the path diagrams and allows for detailed
manual customizations2.

semPlot is sufficiently user-friendly to be used by researchers with limited
experience in R, while it presents more advanced users with a broad scope of
functionality and flexibility. Several features are open to further development.
First, the use of semPlot key be extended in various ways—such as though web
interfaces (RStudio & Inc., 2013). Second, support is to be added for additional
SEM software packages such as Amos (Arbuckle, 2010), EQS (Bentler & Wu, 1993,
using the REQS R package; Mair & Wu, 2012) and R packages semPLS (Monecke
& Leisch, 2012) and lava (Holst & Budtz-Joergensen, 2013). The developmental
version of semPlot is available at GitHub, http://github.com/SachaEpskamp/
semPlot, where new ideas for the package can also be submitted.

2See for detailed instruction the package website: http://sachaepskamp.com/semPlot

234

