
Chapter 10

State of the aRt Personality

Research

Abstract

Network analysis represents a novel theoretical approach to personal-
ity. Network approaches motivate alternative ways of analyzing data, and
suggest new ways of modeling and simulating personality processes. In the
present chapter, we provide an overview of network analysis strategies as
they apply to personality data. We discuss di↵erent ways to construct net-
works from typical personality data, and show how to compute and interpret
important measures of centrality and clustering. All analyses are illustrated
using a data set on the commonly used HEXACO questionnaire using ele-
mentary R-code that readers may easily adapt to apply to their own data.

10.1 Introduction

A network is an abstract model composed of a set of nodes or vertices, a set of
edges, links or ties that connect the nodes, together with information concern-
ing the nature of the nodes and edges (e.g., De Nooy, Mrvar, & Batagelj, 2011).
Figure 10.1 reports the example of a simple network, with six nodes and seven
edges. The nodes usually represent entities and the edges represent their rela-
tions. This simple model can be used to describe many kinds of phenomena, such
as social relations, technological and biological structures, and information net-
works (e.g., Newman, 2010, Chapters 2–5). Recently networks of relations among
thoughts, feelings and behaviors have been proposed as models of personality and
of psychopathology: in this framework, traits have been conceived of as emerging

This chapter has been adapted from: Costantini, G., Epskamp, S., Borsboom, D., Perugini,
M., Mõttus, R., Waldorp, L. J., and Cramer, A. O. J. (2014). State of the aRt personality
research: A tutorial on network analysis of personality data in R. Journal of Research in Per-
sonality 54, 13–29. (The first two authors contributed equally to this work).
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Figure 10.1: A network with six nodes and seven edges. Positive edges are green
and negative edges are red. The letters identify the nodes, the numbers represent
weights associated to the edges

phenomena that arise from such networks (Borsboom & Cramer, 2013; Cramer,
Sluis, et al., 2012; Schmittmann et al., 2013). An R package, qgraph, has been
developed for the specific purpose of analyzing personality and psychopathology
data (Epskamp et al., 2012).

The aim of this contribution is to provide the reader with the necessary theoret-
ical and methodological tools to analyze personality data using network analysis,
by presenting key network concepts, instructions for applying them in R (R Core
Team, 2016), and examples based on simulated and on real data. First, we show
how a network can be defined from personality data. Second, we present a brief
overview of important network concepts. Then, we discuss how network concepts
can be applied to personality data using R. In the last part of the chapter, we
outline how network-based simulations can be performed that are specifically rel-
evant for personality psychology. Both the data and the R code are available for
the reader to replicate our analyses and to perform similar analyses on his/her
own data.

10.2 Constructing Personality Networks

A typical personality data set consists of cross-sectional measures of multiple sub-
jects on a set of items designed to measure several facets of personality. In stan-
dard approaches in personality research, such data are used in factor analysis to
search for an underlying set of latent variables that can explain the structural
covariation in the data. In a causal interpretation of latent variables (Borsboom
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et al., 2003), responses to items such as “I like to go to parties” and “I have
many friends” are viewed as being causally dependent on a latent variable (e.g.,
extraversion). For example, McCrae and Costa’s (2008) interpretation of the re-
lation between extraversion and its indicators is explicitly causal: “extraversion
causes party-going behavior in individuals” (McCrae & Costa, 2008, p. 288). This
approach has culminated in currently influential models such as the Five Factor
Model of personality (McCrae & Costa, 2008), in which five dominant latent vari-
ables are ultimately held responsible for most of the structural covariation between
responses to personality items (additional latent factors such as facets may cause
some of the covariation).

Recently, however, this perspective has been challenged in the literature (Cramer,
Sluis, et al., 2012). In particular, it has been put forward that the default reliance
on latent variable models in personality may be inappropriate, because it may well
be that the bulk of the structural covariation in personality scales results from di-
rect interactions between the variables measured through personality items. For
instance, one may suppose that people who like to go to parties gain more friends
because they meet more people, and people who have more friends get invited
to good parties more often. In this way, one can achieve an explanation of the
relevant pattern of covariation without having to posit latent variables.

Thus, in this scheme of thinking, one may suppose that, instead of reflecting the
pervasive influence of personality factors, the structural covariance in personality
is actually due to local interactions between the variables measured. In this way
of thinking, personality resembles an ecosystem in which some characteristics and
behaviors stimulate each other, while others have inhibitory relations. Under this
assumption, the proper way to analyze personality data is not through the a priori
imposition of a latent variable structure, but through the construction of a network
that represents the most important relations between variables; this way, one may
get a hold of the structure of the ecosystem of personality.

It is important to stress that not all personality scholars have embraced a
causal view of latent factors. Some researchers for instance consider factors as the
common elements shared by many observable variables and not as their causes
(Ashton & Lee, 2005; Funder, 1991; Lee, 2012). Also from this di↵erent theoretical
perspective, the heuristic value of network analysis remains important. Factor
and network analysis di↵er, at the very least, in the fact that they direct the
researcher’s attention toward di↵erent aspects of personality. While factor analysis
focuses almost exclusively on the elements shared among the indicators, whether
or not interpreted causally, network analysis shifts the focus towards the direct
relationships among the observable variables. We do not challenge the use of factor
analysis as a statistical technique by itself: network analysis and factor analysis
can in principle be combined (Cramer, Sluis, et al., 2012; Lee, 2012)1. However,
a network perspective may foster important insights in the field that are unlikely
to come by relying exclusively on a latent variable perspective.

The current section explains how a network structure can be estimated and vi-
sualized in R based on typical personality research data. We explain how networks

1See also Chapter 7 and Chapter 8 for recent discussions on this topic.
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are encoded in weights matrices, discuss the most important kinds of networks and
show how to estimate these network.

Directed and Undirected Networks

There are di↵erent types of networks, which yield di↵erent kinds of information
and are useful in di↵erent situations. In a directed network, relationships between
nodes are asymmetrical. Research on directed networks has seen extensive de-
velopments in recent years since the work of Pearl and Verma (1995) and others
on causal systems. Methodology based on directed networks is most useful if one
is willing to accept that the network under consideration is acyclic, which means
that there are no feedback loops in the system (if A influences B, then B can-
not influence A). A directed network without feedback loops is called a Directed
Acyclic Graph (DAG). In contrast, in an undirected network, all relationships are
symmetrical. These networks are most useful in situations where (a) one cannot
make the strong assumption that the data-generating model is a DAG, (b) one
suspects that some of the relations between elements in the network are recipro-
cal, and (c) one’s research is of an exploratory character and is mainly oriented to
visualizing the salient relations between nodes. Since the latter situation appears
more realistic for personality research, the current chapter focuses primarily on
undirected networks.

Encoding a Network in a Weights Matrix

The structure of a network depends on the relations between its elements. Un-
weighted networks represent only the presence or absence of the edges, while
weighted networks encode additional information about the magnitude of the con-
nections. When it is important to distinguish large from small connections—such
as in personality—weighted networks are preferred. A weighted network can be
encoded in a weights matrix, which is a square matrix in which each row and
column indicate a node in the network. The elements of the matrix indicate the
strength of connection between two nodes; a zero in row i and column j indicates
that there is no edge between node i and node j. For example, the network of
Figure 10.1 can be represented with the following weights matrix:

A B C D E F

A 0 0.3 0 -0.3 0.2 0.3
B 0.3 0 -0.9 0 0 0
C 0 -0.9 0 0.8 0 0
D -0.3 0 0.8 0 0.3 0
E 0.2 0 0 0.3 0 0
F 0.3 0 0 0 0 0

In this network there are positive connections, for instance between nodes A
and B, and negative connections, for instance between nodes A and D. The zeroes
in the matrix indicate that there are absent connections in the network, such as
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between nodes A and C. Furthermore, we may note that the matrix is symmetric
and that the diagonal values are not used in the network.

The qgraph package (Epskamp et al., 2012) can be used to visualize such a
weights matrix as a network:

mat <- matrix(c(

0, 0.3, 0, -0.3, 0.2, 0.3,

0.3, 0, -0.9, 0, 0, 0,

0, -0.9, 0, 0.8, 0, 0,

-0.3, 0, 0.8, 0, 0.3, 0,

0.2, 0, 0, 0.3, 0, 0,

0.3, 0, 0, 0, 0, 0), ncol = 6, nrow = 6,

byrow = TRUE)

library("qgraph")

qgraph(mat, layout = "spring", edge.labels = TRUE,

labels = LETTERS[1:6], fade = FALSE)

Here, the first argument in the qgraph function—the (mat) argument—calls
the weights matrix to plot. The other arguments specify graphical layout.

Correlation Networks, Partial Correlation Networks, and
LASSO Networks

To illustrate network analysis on personality data we made public a dataset in
which nine-hundred-sixty-four participants (704 female and 256 male, M age =
21.1, SD = 4.9, plus four participants who did not indicate gender and age) were
administered the HEXACO-60 (Ashton & Lee, 2009). The HEXACO-60 is a short
60-items inventory that assesses six major dimensions of personality: honesty-
humility, emotionality, extraversion, Agreeableness vs. anger, conscientiousness
and openness to experience (Ashton & Lee, 2007). Each of the major dimensions
subsumes four facets, which can be computed as the average of two or three
items. Participants indicated their agreement with each statement on a scale
from 1 (strongly disagree) to 5 (strongly agree). An example of an item (of trait
emotionality) is “When I su↵er from a painful experience, I need someone to make
me feel comfortable”.

We can load the HEXACO dataset into R as follows:

Data <- read.csv("HEXACOfacet.csv")

The reader may use str(Data) to get an overview of the variables in the dataset.
Exploratory factor analysis can be performed to inspect the structure of the
dataset, using package psych (Revelle, 2010). The command fa.parallel(Data)

executes parallel analysis, which suggests six factors. The command fa(r=Data,

nfactors=6, rotate="Varimax") can be used to extract six orthogonal factors.
Factor loadings are reported in Table 10.1 and reproduce the expected structure
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E C O X H A Uniq. Compl. Smc
Hsi -.05 .11 .11 .05 .60 -.05 .61 1.17 .26
Hfa .14 .22 .15 -.04 .63 .19 .48 1.69 .39
Hga .11 -.01 .24 .03 .54 .14 .62 1.65 .29
Hmo .04 -.01 .05 -.05 .44 .07 .79 1.12 .16
Efe .48 .03 -.16 -.22 -.07 -.04 .69 1.72 .27
Ean .55 .17 .08 -.12 .11 -.11 .63 1.54 .30
Ede .66 -.01 -.11 -.08 -.01 -.03 .55 1.10 .34
Ese .68 .07 .02 .10 .13 .08 .50 1.18 .36
Xss -.36 .18 .06 .53 -.08 .00 .54 2.14 .38
Xsb -.05 .08 .07 .63 -.02 -.25 .52 1.40 .36
Xso .17 -.02 .03 .65 .06 .01 .55 1.17 .33
Xli -.11 .06 .02 .67 .00 .12 .52 1.13 .37
Afo .09 -.09 .04 .13 .16 .43 .75 1.68 .20
Age .09 -.06 -.02 .04 .13 .54 .68 1.21 .23
Afl -.06 -.02 -.01 -.10 .06 .67 .53 1.08 .29
Apa -.11 .10 .14 -.01 .09 .49 .71 1.45 .22
Cor .01 .73 -.07 .06 .01 .00 .46 1.03 .37
Cdi .19 .58 .19 .21 .18 -.03 .51 1.99 .41
Cpe .08 .70 .18 .05 .06 -.08 .46 1.22 .41
Cpr -.21 .52 .12 -.12 .15 .12 .62 1.87 .32
Oaa -.04 .17 .71 -.04 .15 .04 .44 1.23 .42
Oin -.25 .09 .59 .04 .15 -.01 .56 1.55 .35
Ocr .15 .01 .62 .14 .01 .08 .56 1.26 .32
Oun -.07 .01 .57 .10 .11 -.08 .65 1.22 .29

Table 10.1: Factor loadings. Factors are labeled according to their highest load-
ings. Note: E = loading on emotionality, C = loading on conscientiousness, O
= loading on openness to experience, X = loading on extraversion, H = loading
on honesty-humility, A = loading on agreeableness versus anger. Smc = squared
multiple correlation of each facet with all the others. Uniq. = uniqueness. Compl.
= Hofmann’s row-complexity index (1978).

(Ashton & Lee, 2009). For each facet Table 10.1 reports also the squared multi-
ple correlation with all the other facets and the Hofmann’s row-complexity index,
which represents the number of latent variables needed to account for each mani-
fest variable (Hofmann, 1978; Pettersson & Turkheimer, 2010) and is included in
the output of function fa.

Correlation networks. We will construct networks by representing measured
variables as nodes, connected by an edge if two variables interact with each other.
To do this we can use a simple heuristic: node A is connected to node B if node
A is associated with node B. A correlation matrix describes pairwise associations
between the facets of the HEXACO and therefore can be used for estimating such
a network structure. We can compute Pearson correlations on this dataset using
the cor function:

200



10.2. Constructing Personality Networks

cor(Data)

Notice that a correlation matrix is symmetric and that a value of zero indicates
no connection. Thus, a correlation matrix, by default, has properties that allow
it to be used as a weights matrix to encode an undirected network. Using this
connection opens up the possibility to investigate correlation matrices visually
as networks. To do so, we can use the qgraph package and ask it to plot the
correlation matrix as a network; in the remainder, we will indicate this network
as a correlation network. To facilitate interpretation, we color nodes according to
the assignment of facets to traits as specified in the HEXACO manual:

groups <- factor(c(

rep("Honesty Humility", 4),

rep("Emotionality", 4),

rep("Extraversion", 4),

rep("Agreeableness vs. anger", 4),

rep("Conscientiousness", 4),

rep("Openness to experience", 4)))

qgraph(cor(Data), layout = "spring", labels = colnames(Data),

groups = groups)

Figure 10.2A represents the correlation structure of the facets of the HEXACO
dataset. Green lines represent positive correlations, while red lines represent neg-
ative correlations. The wider and more saturated an edge is drawn, the stronger
the correlation. As the reader may expect, the figure shows that the correlations
of facets within traits are generally higher than the correlations of facets between
traits, which is likely to reflect the fact that in psychometric practice items are
typically grouped and selected on the basis of convergent and discriminant validity
(Campbell & Fiske, 1959).

In recent literature correlation networks have been applied to grasp complex
co-variation patterns in personality data that would be harder to notice otherwise
in, say, factor loading matrices. Epskamp et al. (2012) showed how qgraph can
be used to visualize the correlational structure of a 240 node dataset (Dolan et
al., 2009) in which the NEO-PI-R (Costa & McCrae, 1992; Hoekstra et al., 2003)
was used to assess the five factor model for personality (McCrae & Costa, 2008).
Cramer, Sluis, et al. (2012) further analyzed this network and showed that it did
not correspond to a correlation network that should arise had the data been gen-
erated by the five factor model for personality. Ziegler et al. (2013) constructed
a correlation network on 113 personality facet scale scores from the NEO-PI-R,
HEXACO, 6FPQ, 16PF, MPQ, and JPI and interpreted this network as a nomo-
logical network usable in scale development. Schlegel, Grandjean, and Scherer
(2013) investigated the overlap of social and emotional e↵ectiveness constructs
and found the correlation network to display four meaningful components. Fi-
nally, Franić, Borsboom, Dolan, and Boomsma (2014) used correlation networks
to show the similarity between genetic and environmental covariation between
items of the NEO-FFI.
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Partial correlation networks. Correlation networks are highly useful to visu-
alize interesting patterns in the data that might otherwise be very hard to spot.
However, they are not necessarily optimal for the application of network analysis
if the goal is to extract the structure of a data-generating network. The reason
is that correlations between nodes in the network may be spurious, rather than
being due to a genuine interaction between two nodes. For instance, spurious cor-
relations may arise as the consequence of shared connections with a third node.
Often, therefore, a network is constructed using the partial correlation matrix,
which gives the association that is left between any two variables after condition-
ing on all other variables. The partial correlation coefficients are directly related
to the inverse of the correlation matrix, also called the precision matrix (Lauritzen,
1996; Pourahmadi, 2011). Networks constructed on this basis are called partial
correlation networks or concentration graphs (Cox &Wermuth, 1993), and the sta-
tistical data-generating structures that they encode are known as Markov random
fields (Kindermann, Snell, et al., 1980).

The partial correlation network can be obtained in qgraph by setting the ar-
gument graph to "concentration":

qgraph(cor(Data), layout = "spring", labels = colnames(Data),

groups = groups, graph = "concentration")

The partial correlation network is shown in Figure 10.2B. We can see that nodes
still cluster together; the partial correlations within traits are generally stronger
than the partial correlations between traits. Comparing figures 2A and 2B we can
see structure emerging in for example the Openess (purple) cluster: the creativity
node (Ocr) is no longer directly connected to the inquisitiveness (Oin) and uncon-
ventionality (Oun) nodes but now indirectly via the aesthetic appreciation (Oaa)
node. Furthermore, we can see that the conscientiousness node prudence (Cpr)
now has a more central role in the network and obtained relatively stronger con-
nections with nodes of di↵erent traits: flexibility (Afl) and patience (Apa) of the
Agreeableness vs. anger trait and sociability (Xso) and Social self-esteem (Xss) of
the extroversion trait.

Adaptive LASSO networks. In weighted networks, two nodes are connected
if and only if the strength of connection between them is nonzero; a value of
zero in the weights matrix encodes no connection between two nodes. Both the
correlation and the partial correlation networks have been estimated based on an
empirical sample and will therefore not result in exact zeroes. Thus, both networks
will always be fully connected networks, possibly with arbitrarily small weights on
many of the edges.

It has been argued that in social sciences everything is to some extent correlated
with everything. This is akin to what Meehl and Lykken have called the crud factor
or ambient noise level (Lykken, 1968, 1991; Meehl, 1990) and what may at least
partly be responsible for the controversial general factor of personality (Musek,
2007). If a network model of pairwise interactions is assumed to underlie the
data then all nodes that are indirectly connected will be correlated, mainly due
to spurious connections. Therefore, even at the population level we can assume
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C. Adaptive lasso Network

Figure 10.2: Networks of the HEXACO-60. Nodes represent personality facets (a
description of each facet is provided in Table 10.2), green lines represent positive
connections and red lines represent negative connections. Thicker lines represent
stronger connections and thinner lines represent weaker connections. The node
placement of all graphs is based on the adaptive LASSO network to facilitate
comparison. The width and color are scaled to the strongest edge and not com-
parable between graphs; edge strengths in the correlation network are generally
stronger than edge strengths in the partial correlation network.
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that most correlations in personality research will be nonzero, resulting in a fully
connected correlation network.

While correlation networks of personality measures are likely to be fully con-
nected in the population, partial correlation networks are not necessarily so. This
is of specific interest since the absence of an edge in a partial correlation network
entails that two nodes are conditionally independent given all other nodes in the
network—they cannot directly interact. The model in which partial correlations
are set to zero is called the Gaussian graphical model (GGM; Lauritzen, 1996) as
it can be visualized as a network. An optimal GGM is both sparse (many absent
edges) while maintaining a high likelihood. Finding such a model corresponds to
checking which connections are absent in the population network. Default sig-
nificance tests can be used for this purpose (Drton & Perlman, 2004). However,
significance tests require an arbitrary choice of significance level; di↵erent choices
yield di↵erent results, with more stringent significance levels resulting in sparser
networks. If one ignores this issue, one has a multiple testing problem, whereas
if one deals with it in standard ways (e.g., through a Bonferroni correction), one
faces a loss of power.

A practical way to deal with the issue of arbitrary choices is to construct
networks based on di↵erent choices and to see how stable the main results are;
however, a more principled alternative is to use a LASSO penalty (Friedman,
Hastie, & Tibshirani, 2008) in estimating the partial correlation networks. This
causes small connections to automatically shrink to be exactly zero and results
in a parsimonious network. If the data indeed arose from a sparse network with
pairwise interactions, such a procedure will in fact converge on the generating
network (Foygel & Drton, 2011).

The adaptive LASSO is a generalization of the LASSO that assigns di↵erent
penalty weights for di↵erent coefficients (Zou, 2006) and outperforms the LASSO
in the estimation of partial correlation networks, especially if the underlying net-
work is sparse (Fan, Feng, & Wu, 2009; Krämer et al., 2009). The penalty weights
can be chosen in a data-dependent manner, relying on the LASSO regression coeffi-
cients (Krämer et al., 2009). In simulation studies, the likelihood of false positives
using this method resulted even smaller than that obtained with the LASSO pe-
nalization (Krämer et al., 2009), so if an edge is present in the adaptive LASSO
network one can reasonably trust that there is a structural relation between the
variables in question (of course, the network does not specify the exact nature
of the relation, which may for instance be due to a direct causal e↵ect, a logical
relation pertaining to item content, a reciprocal e↵ect, or the common e↵ect of an
unmodeled latent variable).

The adaptive LASSO is also convenient practically, as it is implemented in
the R-package parcor (Krämer et al., 2009). Since the adaptive LASSO, as im-
plemented in package parcor, relies on k-fold validation, set.seed can be used
to ensure the exact replicability of the results, which might be slightly di↵erent
otherwise. To estimate the network structure of the HEXACO dataset according
to the adaptive LASSO, the following code can be used:

library("parcor")

library("Matrix")
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set.seed(100)

adls <- adalasso.net(Data)

network <- as.matrix(forceSymmetric(adls$pcor.adalasso))

qgraph(network, layout = "spring", labels = colnames(Data),

groups = groups)

The adaptive LASSO network is shown in Figure 10.2C. One can see that, com-
pared to the partial correlation network, the adaptive LASSO yields a more parsi-
monious graph (fewer connections) that encodes only the most important relations
in the data; In this network 134 (48.6%) of the edges are identified as zero.

10.3 Analyzing the Structure of Personality Networks

Once a network is estimated, several indices can be computed that convey infor-
mation about network structure2. Two types of structure are important. First,
one is typically interested in the global structure of the network: how large is it?
Does it feature strong clusters? Does it reveal a specific type of structure, like
a small-world (Watts & Strogatz, 1998)? Second, one may be interested in local
patterns, i.e., one may want to know how nodes di↵er in various characteristics:
which nodes are most central? Which nodes are specifically strongly connected?
What is the shortest path from node A to node B? Here we discuss a limited
selection of indices that we regard as relevant to personality research, focusing
especially on centrality and clustering coefficients. More extensive reviews of net-
work indices may be found in Boccaletti et al. (2006); Butts (2008); de De Nooy
et al. (2011); Kolaczyk (2009); and Newman (2010).

Descriptive Statistics

Before the computation of centrality measures, a number of preparatory com-
putations on the data are in order. The network is undirected, therefore the
corresponding weights matrix is symmetric and each edge weight is represented
twice, above and below the main diagonal. The function upper.tri can be used
to extract the unique edge weights3 and save them in a vector:

ew <- network[upper.tri(network)]

To compute the number of edges in the network, it is sufficient to define a logical
vector that has value TRUE ( = 1) if the edge is di↵erent from zero and FALSE (

2The adaptive LASSO networks, the correlation and the partial correlation networks are
characterized by the presence of both positive and negative edges. The importance of signed
networks is apparent not only in the study of social phenomena, in which it is important to make a
distinction between liking and disliking relationships (e.g., Leskovec, Huttenlocher, & Kleinberg,
2010), but also in the study of personality psychology (e.g., Costantini & Perugini, 2014). Some
network indices have been generalized to the signed case (e.g., Costantini & Perugini, 2014;
Kunegis, Lommatzsch, & Bauckhage, 2009), however most indices are designed to unsigned
networks. For the computation of the latter kind of indices, we will consider the edge weights in
absolute value.

3The function upper.tri extracts the elements above the main diagonal. One could equally
consider those below the diagonal using the function lower.tri.
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= 0) if the edge is exactly zero (i.e., absent). The sum of this vector gives the
number of nonzero edges. With a similar procedure, it is possible to count the
positive and the negative edges: it is sufficient to replace != with > or <:

sum(ew != 0) # the number of edges

sum(ew > 0) # the number of positive edges

sum(ew < 0) # the number of negative edges

The network has 142 edges, of which 100 are positive and 42 are negative. The
function t.test can be used to compare the absolute weights of the positive versus
the negative edges:

t.test(abs (ew [ew > 0]), abs(ew [ew < 0]) , var.equal = TRUE)

In our network, positive edges are generally associated to larger weights (M = .11,
SD = .09) than the negative edges (M = .06, SD = .04), and the t-test indicates
that this di↵erence is significant, t(140) = 3.13, p = .0022.

Centrality Measures

Not all nodes in a network are equally important in determining the network’s
structure and, if processes run on the network, in determining its dynamic charac-
teristics (Kolaczyk, 2009). Centrality indices can be conceived of as operational-
izations of a node’s importance, which are based on the pattern of the connections
in which the node of interest plays a role. In network analysis, centrality in-
dices are used to model or predict several network processes, such as the amount
of flow that traverses a node or the tolerance of the network to the removal of
selected nodes (Borgatti, 2005; Crucitti, Latora, Marchiori, & Rapisarda, 2004;
Jeong, Mason, Barabási, & Oltvai, 2001) and can constitute a guide for network
interventions (Valente, 2012). Several indices of centrality have been proposed,
based on di↵erent models of the processes that characterize the network and on a
di↵erent conception of what makes a node important (Borgatti & Everett, 2006;
Borgatti, 2005) The following gives a succinct overview of the most often used
centrality measures4.

Degree and strength. First, degree centrality is arguably the most common
centrality index and it is defined as the number of connections incident to the
node of interest (Freeman, 1978). The degree centrality of node C in Figure 10.1
is 2 because it has two connections, with nodes B and D. Degree can be straight-
forwardly generalized to weighted networks by considering the sum of the weights
of the connections (in absolute value), instead of their number. This generaliza-
tion is called strength (Barrat, Barthelemy, Pastor-Satorras, & Vespignani, 2004;
Newman, 2004). For instance, strength of node C in Figure 10.1 is 1.7, which is

4The functions to implement centrality indices, clustering coefficients and small-worldness
are implemented in the R package qgraph (Epskamp et al., 2012). Some of the functions rely
on procedures originally implemented in packages igraph (Csardi & Nepusz, 2006), sna (Butts,
2010), and WGCNA (Langfelder & Horvath, 2012). These packages are in our experience among
the most useful for network analysis.

206



10.3. Analyzing the Structure of Personality Networks

the highest in the network. Degree and strength focus only on the paths of uni-
tary length (Borgatti, 2005). A strength-central personality characteristic (e.g.,
an item, a facet or a trait) is one that can influence many other personality char-
acteristics (or be influenced by them) directly, without considering the mediating
role of other nodes.

Closeness and betweenness. Several other measures exist that, di↵erently
from degree centrality and the related indices, consider edges beyond those inci-
dent to the focal node. An important class of these indices rely on the concepts of
distance and of geodesics (Brandes, 2001; Dijkstra, 1959). The distance between
two nodes is defined as the length of the shortest path between them. Since, in
typical applications in personality psychology, weights represent the importance of
an edge, weights are first converted to lengths, usually by taking the inverse of the
absolute weight (Brandes, 2008; Opsahl et al., 2010). The geodesics between two
nodes are the paths that connect them that have the shortest distance. Closeness
centrality (Freeman, 1978; Sabidussi, 1966) is defined as the inverse of the sum
of the distances of the focal node from all the other nodes in the network5. In
terms of network flow, closeness can be interpreted as the expected speed of arrival
of something flowing through the network (Borgatti, 2005). A closeness-central
personality characteristic is one that is likely to be quickly a↵ected by changes in
another personality characteristic, directly or through the changes in other person-
ality features. Its influence can reach other personality features more quickly than
the influence of those that are peripheral according to closeness, because of the
short paths that connect itself and the other traits. In the network in Figure 10.1,
node D has the highest closeness. To compute the exact value of closeness, one
should first compute the distances between D and all the other nodes: A (1/0.3),
B (1/0.8 + 1/0.9), C (1/0.8), E (1/0.3) and F (1/.3 + 1/.3). The sum of all the
distances is 16.94 and the inverse, 0.59, is the closeness centrality of D.

Betweenness centrality is defined as the number of the geodesics between any
two nodes that pass through the focal one. To account for the possibility of several
geodesics between two nodes, if two geodesics exist, each one is counted as a half
path and similarly for three or more (Brandes, 2001; Freeman, 1978). Betweenness
centrality assumes that shortest paths are particularly important (Borgatti, 2005):
if a node high in betweenness centrality is removed, the distances among other
nodes will generally increase. Both closeness and betweenness centrality can be
applied to weighted and directed networks, as long as the weights and/or the
directions of the edges are taken into account when computing the shortest paths
(e.g., Opsahl et al., 2010).

The betweenness centrality of node A in Figure 10.1 is 4 and is the highest
in the network. The four shortest paths that pass through A are those between
F and the nodes B, C, D, and E. Betweenness centrality can also be extended
to evaluate the centrality of edges instead of nodes, by considering the geodesics

5The computation of closeness assumes that the network is connected (i.e., a path exists
between any two nodes), otherwise, being the distance of disconnected nodes infinite, the index
will result to zero for all the nodes. Variations of closeness centrality that address this issue have
been proposed (Kolaczyk, 2009; Opsahl et al., 2010). Alternatively it can be computed only for
the largest component of the network (Opsahl et al., 2010).
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that pass through an edge: this generalization is called edge betweenness centrality
(Brandes, 2008; Newman, 2004; Newman & Girvan, 2004). For instance, the edge-
betweenness centrality of the edge (D,E) is 3 and the three shortest paths that pass
through (D,E) are the one between D and E, the one between C and E (through
D), and the between B and E (through C and D).

Betweenness-central personality characteristics and betweenness-central edges
are particularly important for other personality characteristics to quickly influence
each other. It is interesting to investigate the conditions in which some nodes be-
come more or less central. For instance, a study that analyzed a network of moods
showed that the mood “worrying” played a more central role for individuals high
in neuroticism than for those with low neuroticism (Bringmann et al., 2013): the
prominent role of worrying for neuroticism was recently confirmed by an experi-
mental fMRI study (Servaas, Riese, Ormel, & Aleman, 2014).

Brandes (2008) discusses several other variants of the shortest-paths between-
ness, some of which are implemented in package sna (Butts et al., 2008). Gener-
alizations of betweenness centrality that account for paths other than the shortest
ones have been also proposed (Brandes & Fleischer, 2005; Freeman, Borgatti, &
White, 1991; Newman, 2005). In addition, Opsahl and colleagues (2010) proposed
generalizations of degree, closeness, and betweenness centralities by combining in
the formula both the number and the weights of the edges. They introduced a
tuning parameter that allows setting their relative importance: a higher value of
the tuning parameter emphasizes the importance of the weights over the mere
presence of the ties and vice versa. Another important family of centrality indices
defines the centrality of a node as recursively dependent on the centralities of their
neighbors. Among the most prominent of those indices are eigenvector central-
ity (Bonacich, 1972, 2007), Bonacich power (Bonacich, 1987) and alpha centrality
(Bonacich & Lloyd, 2001).

Clustering Coefficients

Besides centrality, other network properties have been investigated that are rel-
evant also for personality networks. The local clustering coefficient is a node
property defined as the number of connections among the neighbors of a focal
node over the maximum possible number of such connections (Watts & Strogatz,
1998). If we define a triangle as a triple of nodes all connected to each other, the
clustering coefficient can be equally defined as the number of triangles to which
the focal node belongs, normalized by the maximum possible number of such tri-
angles. The clustering coefficient is high for a node i if most of i’s neighbors are
also connected to each other and it is important to assess the small-world prop-
erty (Watts & Strogatz, 1998; Humphries & Gurney, 2008), as we detail below.
Consider for instance the node D in Figure 10.1, which has three neighbors, A C,
and E. Of the three possible connections among its neighbors, only one is present
(the one between A and E), therefore its clustering coefficient is 1/3.

The clustering coefficient can be also interpreted as a measure of how much
a node is redundant (Latora, Nicosia, & Panzarasa, 2013; Newman, 2010): if
most of a node’s neighbors are also connected with each other, removing that
node will not make it harder for its neighbors to reach or influence each other. A
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personality characteristic that has a high clustering coefficient is mainly connected
to other personality features that are directly related to each other. In personality
questionnaires the strongest connections are usually among nodes of the same
subscale: in these cases, having a high clustering coefficient may coincide with
having most connections with other nodes belonging to the same subscale, while
having no large connection with nodes of other scales.

While in its original formulation the clustering coefficient can be applied only
to unweighted networks (or to weighted networks, disregarding the information
about weights), it has been recently generalized to consider positive edge weights
(Saramäki, Kivelä, Onnela, Kaski, & Kertesz, 2007). The first of such general-
izations was proposed by Barrat and colleagues (2004) and has been already dis-
cussed in the context of personality psychology and psychopathology (Borsboom
& Cramer, 2013). Onnela and colleagues (2005) proposed a generalization that is
based on the geometric averages of edge weights of each triangle centered on the
focal node. A di↵erent generalization has been proposed in the context of gene
co-expression network analysis by Zhang and Horvath, which is particularly suited
for networks based on correlations (Kalna & Higham, 2007; Zhang, Horvath, et
al., 2005). All of these generalizations coincide with the unweighted clustering
coefficient when edge weights become binary (Saramäki et al., 2007). Recently
three formulations of clustering, the unweighted clustering coefficient (Watts &
Strogatz, 1998), the index proposed by Onnela et al. (2005) and the one proposed
by Zhang et al. (2005) have been generalized to signed networks and the prop-
erties of such indices have been discussed in the context of personality networks
(Costantini & Perugini, 2014).

Transitivity (or global clustering coefficient) is a concept closely connected
to clustering coefficient that considers the tendency for two nodes that share a
neighbor to be connected themselves for the entire network, instead than for the
neighborhood of each node separately. It is defined as three times the number of
triangles, over the number of connected triples in the network, where a connected
triple is a node with two edges that connect it to an unordered pair of other nodes
(Newman, 2003). Di↵erently from the local clustering coefficient, transitivity is a
property of the network and not of the single nodes. For instance, the network
in Figure 10.1 has one triangle (A, D, E) and 12 connected triples, therefore
its transitivity is 3⇥ 1)/12 = 1/4. Transitivity has been extended by Opsahl and
Panzarasa (2009) to take into account edge weights and directions, and by Kunegis
and collaborators to signed networks (Kunegis et al., 2009).

Small Worlds

The transitivity and clustering coefficient can be used to assess the network small-
world property. The small-world property was initially observed in social networks
as the tendency for any two people to be connected by a very short chain of
acquaintances (Milgram, 1967). The small-world property is formally defined as
the tendency of a network to have both a high clustering coefficient and a short
average path length (Watts & Strogatz, 1998). Small-world networks are therefore
characterized by both the presence of dense local connections among the nodes
and of links that connect portions of the network otherwise far away from each
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other. An index of small-worldness for unweighted and undirected networks has
been proposed as the ratio of transitivity to the average distance between two
nodes. Both transitivity and path length are standardized before the computation
of small-worldness, by comparing them to the corresponding values obtained in
equivalent random networks (with the same N and the same degree distribution).
Alternatively, the index can be computed using the average of local clustering
coefficients instead of transitivity. A network with a small-worldness value higher
than three can be considered as having the small-world property, while a small-
worldness between one and three is considered a borderline value (Humphries &
Gurney, 2008). Because the assessment of small-worldness relies on shortest paths
between all the pairs of nodes, it can be computed only for a connected network
or the giant component of a disconnected network.

Application to the HEXACO Data

Centrality analyses. The function centrality_auto allows to quickly com-
pute several centrality indices. It requires the weights matrix as input. The
function automatically detects the type of network and can handle both un-
weighted and weighted networks, and both directed and undirected networks.
For a weighted and undirected network, the function gives as output the node
strength, the weighted betweenness and the weighted closeness centralities. The
edge betweenness centrality is also computed.

centrality <- centrality_auto(network)

nc <- centrality$node.centrality

ebc <- centrality$edge.betweenness.centrality

The centrality values are computed and stored in variable centrality. Node cen-
tralities are then saved in the variable nc while edge betweenness centralities are
saved in the variable ebc. The values of centrality for each node are reported in
Table 10.2. The command centralityPlot(network) can be used to plot the cen-
trality indices in a convenient way, that allows to quickly compare them. Table 10.3
reports the correlations among the three indices of node centrality together with
Hofmann’s (1978) row-complexity and the squared multiple correlation of each
facet with all the others. All the indices of centrality have positive significant cor-
relations with each other. Strength centrality and, to a lower extent, betweenness
centrality, seem to be favored by row-complexity: sharing variance with more than
one factor allows a facet to play a more central role. These results suggest that, in
this network, facets tend to be central to the whole network and not only to their
purported parent traits. All centrality indices, especially strength and closeness,
correlate with the squared multiple correlations: The more variance a facet shares
with other facets, the stronger are its connections and the more central results the
corresponding node6.

6Despite being substantial, the correlations of centrality indices with row-complexity and
squared multiple correlations do not suggest that the indices fully overlap. Moreover, the rela-
tions can vary substantially and it is possible to imagine situations in which the relations are
absent or even in the opposite direction.
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Node Dimension Facet Betweenness Closeness Strength
Hsi Honesty-Humility Sincerity 5 2.66 0.73
Hfa Honesty-Humility Fairness 31 3.03 1.46
Hga Honesty-Humility Greed-avoidance 14 2.83 1.13
Hmo Honesty-Humility Modesty 0 2.14 0.45
Efe Emotionality Fearfulness 6 2.70 1.03
Ean Emotionality Anxiety 2 3.04 1.10
Ede Emotionality Dependence 3 3.02 1.05
Ese Emotionality Sentimentality 17 3.17 1.40
Xss Extraversion Social self-esteem 11 3.11 1.35
Xsb Extraversion Social boldness 23 3.33 1.21
Xso Extraversion Sociability 7 3.19 1.07
Xli Extraversion Liveliness 12 3.12 1.29
Afo Agreeableness vs. anger Forgiveness 5 2.70 1.00
Age Agreeableness vs. anger Gentleness 5 2.66 0.80
Afl Agreeableness vs. anger Flexibility 14 2.90 1.02
Apa Agreeableness vs. anger Patience 5 2.85 0.85
Cor Conscientiousness Organization 7 3.09 0.99
Cdi Conscientiousness Diligence 26 3.34 1.30
Cpe Conscientiousness Perfectionism 5 3.13 1.26
Cpr Conscientiousness Prudence 19 3.52 1.45
Oaa Openness to experience Aesthetic appreciation 14 2.95 1.24
Oin Openness to experience Inquisitiveness 5 2.71 1.08
Ocr Openness to experience Creativity 10 3.00 1.26
Oun Openness to experience Unconventionality 3 2.63 0.98

Table 10.2: Centrality Indices. Note: the four most central nodes according to
each index are reported in bold.

1 2 3 4 5
1. Betweenness 1 .61⇤⇤ .72⇤⇤⇤ .32 .54⇤⇤

2. Closeness .61⇤⇤ 1 .75⇤⇤⇤ .15 .69⇤⇤⇤

3. Strength .70⇤⇤⇤ .82⇤⇤⇤ 1 .47⇤ .75⇤⇤⇤

4. Complexity .41⇤ .28 .43⇤ 1 .11
5. SMC .56⇤⇤ .73⇤⇤⇤ .79⇤⇤⇤ .12 1

Table 10.3: Correlation of node centralities, row-complexity and squared multiple
correlation (SMC). Note: ⇤ = p < .05, ⇤⇤ = p < .01, ⇤ ⇤ ⇤ = p < .001. Pearson
correlations are reported below the diagonal, Spearman correlations are reported
above the diagonal. Complexity = Hofmann’s row-complexity index. SMC =
squared multiple correlation.
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The three indices of centrality converge in indicating that node Cpr (prudence)
is among the four most central nodes in this network. Cpr is also the more closeness
central node and owes its high centrality to the very short paths that connect it to
other traits. For instance, facets Apa (patience), Xso (sociability), and Xss (social
self-esteem) are even closer to Cpr than other conscientiousness facets are7. This
suggests that in the personality network it is very easy that a change in some
portion of the network will eventually make a person either more reckless or more
prudent. On the other hand, if a person becomes more reckless or more prudent,
we can expect important changes in the overall network. This result, although it
should be considered as preliminary, is in line with studies that investigated the
evolution of conscientiousness. Impulse-control, a facet of conscientiousness that
is very similar to prudence (Cpr), shows the most marked variation through the
individual development compared to other conscientiousness facets (Jackson et al.,
2009). It is possible that this is the case also because changes in other personality
traits are expected to a↵ect prudence more quickly than other facets, as revealed
by its high closeness.

Hfa (fairness) is the most betweenness-central and strength-central node, but
it is not particularly closeness-central (it is ranked 10th in closeness centrality).
Figure 10.3 highlights the edges lying on the shortest paths that travel through
node Hfa, in a convenient layout (the code for producing this figure is in the sup-
plemental materials). The high betweenness centrality of Hfa is due the role that
Hfa plays in transmitting the influence of other honesty-humility facets to di↵er-
ent traits, and vice versa. The edge between nodes Hsi (sincerity) and Hfa is also
the most betweenness-central in the whole network: most of the shortest paths
between Hsi and other personality traits travel through this edge and therefore
through Hfa. These results suggest that, if it was possible to reduce the possi-
bility for fairness (Hfa) to vary, the influence of the other honesty-humility facets
would propagate less easily to the rest of personality facets and vice versa. Such
hypotheses could be tested for instance by comparing the personality networks
of individuals that typically face situations in which their fairness is allowed to
become active to the networks of individuals that usually face situations in which
their fairness cannot be activated (Tett & Guterman, 2000). The characteristics
of situations for instance could be assessed by using valid instruments such as the
Riverside Situational Q-sort (Sherman, Nave, & Funder, 2010), which includes
items such as “It is possible for P to deceive someone”, or “Situation raises moral

7As an anonymous reviewer pointed out, one could wonder how can the length of the path
between Cpr and other conscientiousness facets be longer than the path between Cpr and other
nodes, given that Cpr’s strongest correlations are those with the other conscientiousness facets.
This happens because we did not consider the network defined by the zero-order correlations,
but the adaptive LASSO penalized network of partial correlations (Krämer et al., 2009). As an
example, consider the shortest path between Cpr and Cdi (diligence), which is slightly longer
(8.80) than the shortest path between Cpr and Apa (patience; 6.82). Although the correlation
between Cpr and Cdi is stronger (r = .26) than the correlation between Cpr and Apa (r = .22), in
the adaptive LASSO network, the direct connection between Cpr and Cdi is smaller (pr = .04)
than the one with Apa (pr = .15). While the shortest path between Cpr and Apa travels
through their direct connection, the shortest path between Cpr and Cdi travels through node
Cor (organization): prudence seems to influence (or to be influenced by) diligence especially
through changes in orderliness, but this path of influence is longer than the direct path between
Cpr and Apa.
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Figure 10.3: Shortest paths that pass through node Hfa (fairness). The edges
belonging to the shortest-paths are full, while the other edges are dashed.

or ethical issues” that would be relevant for this case.

Clustering coefficients. Many indices of clustering coefficient can be easily
computed using function clustcoef_auto. The function requires the same input
as centrality_auto and is similarly programmed to recognize the kind of data
given as input and to choose an appropriate network representation for the data.
By applying the function, we can immediately collect the results:

clustcoef <- clustcoef_auto(network)

The command clusteringPlot(network, signed = TRUE) can be used to plot
the clustering coefficients in a convenient layout. Table 10.4 reports the correlation
among several clustering coefficients. The unsigned indices are computed using
the absolute values of the weights. In the following analyses we will use the signed
version of the Zhang’s clustering coefficient (Costantini & Perugini, 2014; Zhang
et al., 2005), which resulted more resistant to random variations in the network.

Combining clustering coefficients and centrality. The signed clustering
coefficient can be interpreted as an index of a node’s redundancy in a node’s
neighborhood (Costantini & Perugini, 2014): the importance of the unique causal
role of highly clustered nodes is strongly reduced by the presence of strong con-
nections among their neighbors. In general, it is interesting to inspect whether
there is a relation between centrality indices and clustering coefficients: in our
experience, we found that the centrality indices were often inflated by the high
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1 2 3 4 5 6 7
1. Watts and Strogatz
(1998)

1 .25 .65⇤⇤⇤ .51⇤ .90⇤⇤⇤ .57⇤⇤ .94⇤⇤⇤

2. Watts and Stro-
gatz, signed (Costan-
tini & Perugini, 2014)

.26 1 .28 .45⇤ .29 .76⇤⇤⇤ .25

3. Zhang and Horvath
(2005)

.49⇤ .30 1 .89⇤⇤⇤ .50⇤ .59⇤⇤ .71⇤⇤⇤

4. Zhang and Hor-
vath, signed (Costan-
tini & Perugini, 2014)

.34 .33 .94⇤⇤⇤ 1 .37 .79⇤⇤⇤ .53⇤⇤

5. Onnela et al. (2005) .89⇤⇤⇤ .25 .37 .24 1 .55⇤⇤ .84⇤⇤⇤

6. Onnela et al., signed
(Costantini & Perug-
ini, 2014)

.61⇤⇤ .76⇤⇤ .59⇤⇤ .64⇤⇤ .66⇤⇤⇤ 1 .53⇤⇤

7. Barrat et al. (2004) .94⇤⇤⇤ .30 .57⇤⇤ .37 .87⇤⇤⇤ .60⇤⇤ 1

Table 10.4: Correlation among indices of local clustering coefficient. Note: ⇤ =
p < .05, ⇤⇤ = p < .01, ⇤ ⇤ ⇤ = p < .001. Pearson correlations are reported below
the diagonal, Spearman correlations are reported above the diagonal.

clustering in correlation networks. However this might be not true for networks
defined with adaptive LASSO, which promotes sparsity (Krämer et al., 2009).

The following plots can be used to visualize both the centrality and the cluster-
ing coefficient of each node. The code reported here is for betweenness centrality,
but it is easy to extend it to other indices by just replacing "Betweenness" with
the index of interest. First the plot is created and then the node labels are added
in the right positions, using the command text. Command abline can be used
to trace lines in the plot. A horizontal line is created to visually identify the me-
dian value of betweenness and a vertical line to identify the median value of the
clustering coefficient.

plot(clustcoef$signed_clustZhang, nc$Betweenness,

col = "white")

text(clustcoef$signed_clustZhang, nc$Betweenness,

rownames(nc))

abline(h = median(nc$Betweenness), col = "grey")

abline(v = median(clustcoef$signed_clustZhang),

col = "grey")

The resulting plots are shown in Figure 10.4. It is apparent that the most central
nodes do not have a particularly high clustering coefficient in this case and this is
especially true for nodes Hfa and Cpr, which are among the most central in this
network. The clustering coefficient correlates negatively with closeness centrality
(r = −.67, p < .001), with strength (r = −.82, p < .001), and with betweenness
centrality (r = −.50, p = .013).

One node, Hmo (modesty), emerges as both particularly high in clustering
coefficient and low in all the centrality measures. Modesty correlates almost ex-
clusively with other honesty-humility facets and has the lowest multiple correlation
with all the other variables in our dataset and this is likely to have determined its
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peripherality. A closer exam of its connections reveals that Hmo has seven neigh-
bors, the three other facets of honesty-humility (His, Hfa, and Hga), facets anxiety
and fearfulness of emotionality (Ean), facet social boldness of extraversion (Xsb)
and facet prudence of conscientiousness (Cpr), the connections with fearfulness,
social boldness and prudence having very small weights. Moreover many of its
neighbors are connected with each other. Even if the edges incident in node Hmo
were blocked, its neighbors would be nonetheless connected to each other directly
or by a short path. Modesty therefore does not seem to play a very important
unique role in the overall personality network.

Transitivity and small-worldness. The function smallworldness computes
the small-worldness index (Humphries & Gurney, 2008). First the function con-
verts the network to an unweighted one, which considers only the presence or the
absence of an edge. Then the average path length and the global transitivity of
the network are computed and the same indices are calculated on B=1000 random
networks, with the same degree distribution of the focal network. The resulting
values are entered in the computation of the small-worldness index. The output
includes the small-worldness index, the transitivity of the network, and its average
path length. It also returns summaries of the same indices computed on the ran-
dom networks: the mean value and the .005 and .995 quantiles of the distribution.
Function set.seed can be used to ensure the exact replicability of the results.
The function requires the network as input and it is optionally possible to set the
values of three parameters, B, up and lo, which are respectively the number of
random networks and the upper and lower probabilities for the computation of
the quantiles.

set.seed(100)

smallworldness(network)

The small-worldness value for our network is 1.01. An inspection of the values
of transitivity and of average path length shows that they are not significantly
di↵erent from those emerged from similar random networks. Therefore we may
conclude that this personality network does not show a clear small-world topology.

Emerging insights. In this section, we showed how it is possible to perform
a network analysis on a real personality dataset. We identified the most central
nodes and edges, discussed centrality in the light of clustering coefficient and
investigated some basic topological properties of the network, such as the small-
world property. Two nodes resulted particularly central in the network and were
the facet prudence of conscientiousness (Cpr) and the facet fairness of honesty-
humility (Hfa).

Our network did not show the small-world property. The absence of a strong
transitivity means that the connection of two nodes with a common neighbor does
not increase the probability of a connection between themselves. The absence of
a particularly short path length implies that it is not generally possible for any
node to influence any other node using a short path. This result is not in line with
the small-worldness property that emerged in the DSM-IV network reported by
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Figure 10.4: Centrality and clustering coefficient. The horizontal and the vertical
lines represent the median values of centrality and clustering coefficient respec-
tively. The closeness values are multiplied by 1000.
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Figure 10.5: Histogram of the number of edges estimated in 900 replications of
the adaptive LASSO.

Borsboom et al. (2011). It has been hypothesized that the small-world property
might be at the basis of phenomena connected to the comorbidity that arise in
psychopathology (Cramer et al., 2010); this also may simply not be a property of
normal personality. This di↵erence could reflect the fact that di↵erent personality
characteristics represent distinct systems, while psychopathology systems seem to
be more integrated. This result may be also attributable to the strategies that
were used for defining this network and the DSM-IV network and may have been
influenced by the particular personality scales under study. Future research may
be directed towards the question of what network structure characterizes normal
versus abnormal personality.

Stability of Results

The adaptive LASSO chooses the LASSO penalty parameter based on k-fold cross-
validation, subdividing the dataset in k (10 by default) random samples. Because
of this, under di↵erent random seeds slightly di↵erent network structures will be
obtained. To investigate the stability of the results discussed in this section, we
repeated the network estimation procedure 900 times under di↵erent random seeds
and recomputed the strength, closeness and betweenness centrality measures and
the signed versions of the clustering coefficients proposed by Zhang and by Onnela.
The codes to replicate these findings can be found in the supplementary materials.

Visually the resulting graphs looked remarkably similar and only di↵ered in
the weakest edges in the graph. Figure 10.5 shows a histogram of the amount
of nonzero connections present in each of the replications; the median amount of
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Figure 10.6: Estimated centrality and clustering coefficients under 900 replications
of the adaptive LASSO. The colored line represents the results discussed in the
chapter.

estimated edges was 138. Figure 10.6 shows the estimated centrality and clustering
coefficients for both the graph used in the analyses (colored line) and the 900
replications (vague gray lines). It can be seen that overall the measures are stable
across di↵erent replications. Among the three centrality measures, more stable
results were obtained for closeness and strength than for betweenness. Between
the clustering coefficients we can see that Zhang’s clustering coefficient is much
more stable than Onnela’s; in Onnela’s clustering coefficient especially the Hmo
node shows divergent behavior. This behavior is due to the number small of
connections of Hmo obtained in each replication, ranging from 3 to 11 (M = 3.96,
SD = 0.64). Onnela’s clustering coefficient is scaled to the number of connections
regardless of weight. Therefore the relatively small di↵erence in connections can
have a large impact on this clustering coefficient.

From these results, we advise that Zhang’s clustering coefficient should be
preferred over Onnela’s clustering coefficient in adaptive LASSO networks. Fur-
thermore, we advise the reader to replicate these measures under di↵erent random
seeds and to check for the stability of the results before substantively interpreting
them.

10.4 Conclusion

Network approaches o↵er a rich trove of novel insights into the organization,
emergence, and dynamics of personality. By integrating theoretical considera-
tions (Cramer et al., 2010), simulation models (Mõttus, Penke, Murray, Booth, &
Allerhand, 2014; Van Der Maas et al., 2006), and flexible yet user-friendly data-
analytic techniques (Epskamp et al., 2012), network approaches have potential to
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achieve a tighter fit between theory and data analysis than has previously been
achieved in personality research. At the present time, the basic machinery for
generating, analyzing, and simulating networks is in place. Importantly, the R
platform o↵ers an impressive array of packages and techniques for the researcher
to combine, and most of the important analyses are currently implemented. We
hope that, in the present chapter, we have successfully communicated the most
important concepts and strategies that characterize the approach, and have done
so in such a way that personality researchers may benefit from using network
modeling in the analysis of their own theories and datasets.

In the present chapter, we have applied network modeling to an illustrative
dataset, with several intriguing results that may warrant further investigation.
However, we do stress that many of our results are preliminary in nature. The
primary reason for this is that current personality questionnaires are built accord-
ing to psychometric methodology that is tightly coupled to factor analysis and
classical test theory (Borsboom, 2005). This makes their behavior predictable
from pure design specifications, which in turn limits their evidential value. That
is, if one makes the a priori decision to have, say, 10 items per subscale, and
selects items on the basis of their conformity to such a structure, many of the
correlations found in subsequent research are simply built into the questionnaire.
Therefore, it is hardly possible to tell to what extent results reflect a genuine
structure, or are an artifact of the way personality tests are constructed. Trait
perspectives are not immune to this problem, as in some cases the factors of
personality may simply appear from questionnaire data because they have been
carefully placed there. Future research should investigate potential solutions to
this issue, for instance by considering variable sets consisting of ratings on the
familiar personality-descriptive adjectives of a language, as in lexical studies (e.g.,
Ashton & Lee, 2005, 2007; De Raad et al., 2014; Goldberg, 1990b; Saucier et al.,
2014), and by comparing the characteristics of such networks to networks that
emerge from questionnaire data.

An interesting question is whether all individuals are scalable on all items,
as current methodology presumes. It is entirely possible, if not overwhelmingly
likely, that certain items assess variables that simply do not apply to a given
individual. Current psychometric methods have never come to grip with the “n.a.”
answer category, and in practice researchers simply force all individuals to answer
all items. In networks, it is easier to deal with the n.a.-phenomenon, as nodes
deemed to be inapplicable to a given person could simply be omitted from that
person’s network. This would yield personality networks that may di↵er in both
structure and in size across individuals, an idea that resonates well with the notion
that di↵erent people’s personalities might in fact be also understood in terms of
distinct theoretical structures (Borsboom et al., 2003; Cervone, 2005; Lykken,
1991). The application of experience sampling methodology and of other ways to
gather information on dynamical processes personality may also o↵er an inroad
into this issue (Fleeson, 2001; Hamaker, Dolan, & Molenaar, 2005; Bringmann et
al., 2013).

The notion that network structures may di↵er over individuals, and that these
di↵erences may in fact be the key for understanding both idiosyncrasies and
communalities in behavior, was illustrated in the simulation work reported by
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Costantini and Perugini (2014). Future research might be profitably oriented
to questions such as (a) what kind of structural di↵erences in networks could
be expected based on substantive theory, (b) how such di↵erences relate to well-
established findings in personality research (see also Mõttus et al., 2014), (c) which
network growth processes are theoretically supported by developmental perspec-
tives. Of course, ultimately, such theoretical models would have to be related back
to empirical data of the kind discussed in the data-analysis part of this chapter;
therefore, a final highly important question is to derive testable implications from
such perspectives. This includes the investigation of how we can experimentally or
quasi-experimentally distinguish between explanations based on latent variables,
and explanations based on network theory.

Ideally, these future developments are coupled with parallel developments in
statistical and technical respects. Several important extensions of network models
are called for. First, in this work we focused on the adaptive lasso, which is an
e↵ective method to extract a network from empirical data that has been prof-
itably used in other fields (Krämer et al., 2009). However network analysis is a
field in rapid evolution and alternative methods are being developed and studied.
Among these, we consider particularly promising the graphical lasso (Friedman
et al., 2008), for which adaptations exist that take into account the presence of
latent variables in the network (Chandrasekaran et al., 2012; Yuan, 2012). Al-
ternative methods based on Bayesian approaches have also been proposed and
implemented (Mohammadi, Wit, et al., 2015). Further research is needed to sys-
tematically compare these and other methods in the complex scenarios that are
usually encountered in personality psychology. Second, as noted in this chapter,
many network analytics were originally designed for unweighted networks. Al-
though some of the relevant analyses have now been extended to the weighted
case (see Boccaletti et al., 2006; Opsahl et al., 2010; Costantini & Perugini, 2014,
several other techniques still await such generalization. One important such set of
techniques, which were also illustrated in the present work, deals with the deter-
mination of network structure. Both the theoretical definition of global structures,
such as in terms of small-worlds, scale-free networks (Barabási, 2009), and ran-
dom networks, and the practical determination of these structures (e.g., through
coefficients such as small-worldness or through fitting functions on the degree dis-
tribution) are based on unweighted networks. It would be highly useful if these
notions, and the accompanying techniques, would be extended to the weighted net-
work case. Another technical improvement that should be within reach is how to
deal with data that likely reflect mixtures of distinct networks. In the case of time
series data, such approaches have already been formulated through the applica-
tion of mixture modeling (Bringmann et al., 2013); however, statistical techniques
suited to this problem may also be developed for the case of cross-sectional data.
The issue is important in terms of modeling idiosyncrasies in behavior, but may
also be key in terms of relating normal personality to psychopathology (Cramer
et al., 2010). Naturally, this includes the question of how we should think about
the relation between normal personality and personality disorders.
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